Mostrar el registro sencillo del ítem

dc.contributor.authorFernández-Vega, Iván
dc.contributor.authorVillegas Fernández, Alejandro
dc.contributor.authorGutiérrez-Carrasco, Eladio Damián 
dc.contributor.authorPlata-González, Óscar Guillermo 
dc.date.accessioned2020-02-11T11:59:06Z
dc.date.available2020-02-11T11:59:06Z
dc.date.created2020
dc.date.issued2020-02-11
dc.identifier.urihttps://hdl.handle.net/10630/19259
dc.descriptionPresented at HiPEAC Conference 2020, Bologna (Italy)en_US
dc.description.abstractTime series analysis is an important research topic of great interest in many fields. However, the memory-bound nature of the state-of-the-art algorithms limits the execution performance in some processor architectures. We analyze the Matrix Profile algorithm from the performance viewpoint in the context of the Intel Xeon Phi Knights Landing architecture (KNL). The experimental evaluation shows a performance improvement up to 190x with respect to the sequential execution and that the use of the HBM memory improves performance in a factor up to 5x with respect to the DDR4 memory.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInformática-Congresosen_US
dc.subject.otherTime series analysisen_US
dc.subject.otherIntel Xeon Phi
dc.titleAccelerating time series motif discovery in the Intel Xeon Phi KNL processor.en_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroE.T.S.I. Informáticaen_US
dc.relation.eventtitleHiPEAC Conference 2020en_US
dc.relation.eventplaceBologna (Italy)en_US
dc.relation.eventdateEnero 2020en_US
dc.cclicense


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem