JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Docencia
    • Trabajos Fin de Grado
    • Ver ítem
    •   RIUMA Principal
    • Docencia
    • Trabajos Fin de Grado
    • Ver ítem

    Aprendizaje profundo aplicado a problemas de predicción de supervivencia en cáncer

    • Autor
      Cabello Toscano, María del Rocío
    • Director/es
      Veredas-Navarro, Francisco JavierAutoridad Universidad de Málaga
    • Fecha
      2020-01-13
    • Palabras clave
      Cáncer - Estadísticas; Ingeniería biomédica; Informática - Trabajos Fin de Grado; Grado en Ingeniería de la Salud - Trabajos Fin de Grado
    • Resumen
      El cáncer se cobró 18,1 millones de muertes a nivel mundial en 2018 y $87,8 billones para cuidados de salud durante el año 2014 en EEUU. El tremendo impacto que esta enfermedad supone a nivel mundial, junto con la disponibilidad cada vez mayor de datos genómicos y transcriptómicos, han potenciado el interés en incorporar tecnologías de vanguardia, como es el Aprendizaje Profundo (AI), a la lucha contra el cáncer. AI ha destacado en los últimos años, particularmente por el rendimiento de los modelos de Redes Neuronales Convolucionales (RNC) en reconocimiento de imágenes. El problema para el cual todos los modelos de este proyecto han sido entrenados es la predicción de supervivencia en cáncer en un conjunto discreto de intervalos de tiempo a partir de datos de RNA-Seq, debido a la importancia que el análisis de la supervivencia tiene en cuanto al estudio de los tratamientos contra el cáncer y su mejora. La propia naturaleza de los datos biológicos trae consigo algunos inconvenientes cuando se usan para entrenar modelos de RNC. Estos datos normalmente est´an formados por un número mucho mayor de variables (M) que de observaciones (N). Esto se conoce como la maldición de la dimensionalidad (en inglés, the Curse of Dimensionality) (M>>N). Otro inconveniente es la falta, a priori, de información espacial entre las variables biológicas. RNC son un tipo de modelo concreto de Aprendizaje Profundo que está especialmente pensado para el procesado de imágenes, en las cuales los píxeles que las componen se relacionan con sus píxeles vecinos. Esta relación se usa en las RNC para extraer más conocimientos de las observaciones y tener, en consecuencia, un mejor rendimiento. En este proyecto se proponen algunas estrategias para tratar de resolver estos dos inconvenientes. Con el objetivo de equipar a los perfiles de expresión génica con estructura, cinco estrategias han sido propuestas, aplicadas y comparadas. ...
    • URI
      https://hdl.handle.net/10630/19153
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    CabellotoscanomariadelrocioMemoria.pdf (6.843Mb)
    Colecciones
    • Trabajos Fin de Grado

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA