El presente trabajo trata de responder a la cuestión de investigación de si es posible mejorar la precisión de los modelos globales de predicción de quiebra existentes en la literatura previa. Para responder a esta cuestión se ha tenido en cuenta los excelentes resultados de clasificación que proporcionan los métodos computacionales tales como las redes neuronales artificiales, y se han construidos tanto modelos regionales para Asia, Europa y Norte América, como modelos globales. En concreto, se ha utilizado el denominado Perceptrón Multicapa y los resultados obtenidos han permitido constatar una mayor precisión de los métodos computacionales frente a las técnicas estadísticas tradicionales.
La estructura del presente trabajo de investigación es la siguiente. En el capítulo 1 se lleva a cabo un análisis de la literatura previa sobre predicción de quiebra. De este análisis se han obtenido conclusiones sobre los métodos aplicados y su perfeccionamiento, sobre las variables empleadas, y sobre la evolución de los resultados obtenidos por los distintos modelos. Además, y atendiendo al enfoque de estudio adoptado, se ha analizado la literatura diferenciando entre modelos globales y modelos regionales. Este primer capítulo concluye aportando una clasificación de los estudios previos en la que se pone de manifiesto los principales argumentos utilizados y la brecha existente acerca de la superioridad de los modelos globales frente a los modelos regionales. El capítulo 2 aborda los fundamentos del método de naturaleza computacional utilizado en el presente trabajo. Además, se presentan la técnica de validación cruzada y los principales criterios de selección de modelos, que han sido adicionalmente utilizados para el contraste de los resultados.