Mostrar el registro sencillo del ítem

dc.contributor.authorDraper-Fontanals, Cristina 
dc.date.accessioned2019-10-28T07:55:20Z
dc.date.available2019-10-28T07:55:20Z
dc.date.created2019
dc.date.issued2019-10-28
dc.identifier.urihttps://hdl.handle.net/10630/18643
dc.description.abstractFor each central simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. This manifold turns out to be an Einstein manifold. Our construction is inspired in 3-Sasakian Geometry. The geometry of any 3-Sasakian homogeneous manifold is very well codified in Lie theoretical terms, appearing complex symplectic triple systems when describing the horizontal part of the tangent space. So, our new family can be seen as a split version of the 3-Sasakian homogeneous manifolds, a kind of split-quaternionic geometry. Recent results with Alberto Elduque lead to the classification of the simple real symplectic triple systems and hence to a precise description of the related reductive pairs.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.language.isoengen_US
dc.subjectEinstein, Variedades deen_US
dc.subjectLie, Algebras deen_US
dc.subject.otherEinstein manifolden_US
dc.subject.otherSimplectic triple systemen_US
dc.subject.otherStandard enveloping Lie algebraen_US
dc.titleA new family of Einstein manifolds based on nonassociative structuresen_US
dc.typeconference outputen_US
dc.centroEscuela de Ingenierías Industrialesen_US
dc.relation.eventtitleWorkshop on Differential Geometry and Nonassociative Algebrasen_US
dc.relation.eventplaceLuminy, Franceen_US
dc.relation.eventdateNoviembre 2019en_US
dc.departamentoMatemática Aplicada
dc.rights.accessRightsopen accessen_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem