JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Foreground object detection enhancement by adaptive super resolution for video surveillance

    • Autor
      Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Elizondo Acuña, David Alberto; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2019-09-16
    • Palabras clave
      Redes neuronales (Informática)
    • Resumen
      Foreground object detection is a fundamental low level task in current video surveillance systems. It is usually accomplished by keeping a model of the background at each frame pixel. Many background learning algorithms have difficulties to attain real time operation when applied directly to the output of state of the art high resolution surveillance cameras, due to the large number of pixels. Here we propose a strategy to address this problem which consists in maintaining a low resolution model of the background which is upscaled by adaptive super resolution in order to produce a foreground detection mask of the same size as the original input frame. Extensive experimental results demonstrate the suitability of our proposal, in terms of reduction of the computational load and foreground detection accuracy.
    • URI
      https://hdl.handle.net/10630/18348
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    BMVC_2019___resize.pdf (472.7Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA