Mostrar el registro sencillo del ítem

dc.contributor.authorGalán-García, José Luis 
dc.contributor.authorAguilera-Venegas, Gabriel 
dc.contributor.authorRodríguez-Cielos, Pedro 
dc.contributor.authorPadilla-Domínguez, Yolanda Carmen 
dc.contributor.authorGalán-García, María Ángeles 
dc.contributor.authorRodríguez-Cielos, Ricardo
dc.date.accessioned2019-07-25T10:19:10Z
dc.date.available2019-07-25T10:19:10Z
dc.date.created2019
dc.date.issued2019-07-25
dc.identifier.urihttps://hdl.handle.net/10630/18145
dc.description.abstractPartial Differential Equations (PDE) are one of the most difficult topics that Engineering and Sciences students have to study in the different Math subjects in their degree. In this talk we introduce SFOPDES (Stepwise First Order Partial Differential Equations Solver) aimed to be used as a tutorial for helping both the teacher and the students in the teaching and learning process of PDE. The type of problems that SFOPDES solves can be grouped in the following three blocks: 1. Pfaff Differential Equations, which consists on finding the general solution for: P(x; y; z) dx + Q(x; y; z) dy + R(x; y; z) dz = 0 (a) General method. (b) Particular cases: i. Separable equations. ii. Exact Pfaff equations. iii. One-separated variable equations. 2. Quasi-linear Partial Differential Equations, which consists on finding the general solution for: P(x; y; x) p + Q(x; y; z) q = R(x; y; z) (a) General method. (b) Particular solution which contents a given curve. 3. Using Lagrange-Charpit Method for finding a complete integral for a given general first order partial differential equation: F(x; y; z; p; q) = 0. (a) General method. (b) Particular cases: i. F(p; q) = 0 ii. g1(x; p) = g2(y; q) iii. z = px + qy + g(p; q)en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.otherPDEen_US
dc.subject.otherStepwise tutorialen_US
dc.subject.otherCASen_US
dc.subject.otherDERIVEen_US
dc.subject.otherSYMPYen_US
dc.subject.otherPYTHONen_US
dc.titleSFOPDES: A stepwise tutorial for teaching Partial Differential Equations using a CASen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroEscuela de Ingenierías Industrialesen_US
dc.relation.eventtitle25th Conference on Applications of Computer Algebra ACA 2019en_US
dc.relation.eventplaceMontreal, Canadáen_US
dc.relation.eventdate16 al 20 de julio de 2019en_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem