jMetal is a Java-based framework for multi-objective optimization with metaheuristics providing, among other features, a wide set of algorithms that are representative of the state-of-the-art. Although it has become a widely used tool in the area, it lacks support for automatic tuning of algorithm parameter settings, which can prevent obtaining accurate Pareto front approximations, especially for inexperienced users. In this paper, we present a first approach to combine jMetal and irace, a package for automatic algorithm configuration; the NSGA-II is chosen as the target algorithm to be tuned. The goal is to facilitate the combined use of both tools to jMetal users to avoid wasting time in adjusting manually the parameters of the algorithms. Our proposal involves the definition of a new algorithm template for evolutionary algorithms, which allows the flexible composition of multi-objective evolutionary algorithms from a set of configurable components, as well as the generation of configuration files for adjusting the algorithm parameters with irace. To validate our approach, NSGA-II is tuned with a benchmark problems and compared with the same algorithm using standard settings, resulting in a new variant that shows a competitive behavior.