En los últimos años la protección ambiental y el uso de fuentes de energía renovables son dos objetivos principales en la investigación química. La energía solar se puede aprovechar para la degradación fotocatalítica de moléculas orgánicas contaminantes, hormonas o medicamentos, tanto en el aire, en el agua, como en las superficies, porque la luz solar es capaz de descomponerlas [1]. A pesar de la gran cantidad de aplicaciones fotocatalíticas de la titania (TiO2), fotocatalizador no tóxico, de bajo costo y muy prometedor [2], hay algunos factores críticos que limitan su fotoactividad. El principal es el valor de su salto de energía, que limita su uso como fotocatalizador en la región UV del espectro. Con el objetivo principal de extender su uso a la región visible del espectro, en literatura se ha propuesto el depósito de metales nobles en su superficie, modificaciones superficiales, así como el dopaje con iones de metales de transición o elementos de tierras raras. En este sentido, el uso de ceria (CeO2) ha atraído una gran atención debido a propiedades como su biocompatibilidad, inercia química así como su actividad en reacciones de oxidación, relacionada con la formación vacantes de oxígeno en su superficie [3]. Se ha comprobado que el sistema oxídico mixto CeO2-TiO2 es más fotoactivo que la titania pura debido a la disminución del salto de energía y a la mejora en la movilidad de los excitones. Este trabajo tiene como objetivo desarrollar fotocatalizadores basados en nanoestructuras de titania que sean activas en el visible, dopando la matriz de titania con cerio. Principalmente se pretende evaluar tanto el papel del cerio como la morfología del nanomaterial en la respuesta fotocatalítica bajo luz UV y solar.