JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Analyzing Digital Image by Deep Learning for Melanoma Diagnosis

    • Autor
      Thurnhofer Hemsi, Karl; Domínguez-Merino, EnriqueAutoridad Universidad de Málaga
    • Fecha
      2019-06-19
    • Palabras clave
      Congresos y conferencias; Procesamiento de imágenes; Melanoma
    • Resumen
      Image classi cation is an important task in many medical applications, in order to achieve an adequate diagnostic of di erent le- sions. Melanoma is a frequent kind of skin cancer, which most of them can be detected by visual exploration. Heterogeneity and database size are the most important di culties to overcome in order to obtain a good classi cation performance. In this work, a deep learning based method for accurate classi cation of wound regions is proposed. Raw images are fed into a Convolutional Neural Network (CNN) producing a probability of being a melanoma or a non-melanoma. Alexnet and GoogLeNet were used due to their well-known e ectiveness. Moreover, data augmentation was used to increase the number of input images. Experiments show that the compared models can achieve high performance in terms of mean ac- curacy with very few data and without any preprocessing.
    • URI
      https://hdl.handle.net/10630/17841
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Anazlyzing_Digital_Image_by_Deep_Learning_for_Melanoma_Diagnosis.pdf (1012.Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA