JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Deep Learning networks with p-norm loss layers for spatial resolution enhancement of 3D medical images

    • Autor
      Thurnhofer-Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga; Roé-Vellvé, Núria; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga
    • Fecha
      2019-06-19
    • Palabras clave
      Computación, Teoría de la; Congresos y conferencias; Resonancia magnética -- Congresos
    • Resumen
      Nowadays, obtaining high-quality magnetic resonance (MR) images is a complex problem due to several acquisition factors, but is crucial in order to perform good diagnostics. The enhancement of the resolution is a typical procedure applied after the image generation. State-of-the-art works gather a large variety of methods for super-resolution (SR), among which deep learning has become very popular during the last years. Most of the SR deep-learning methods are based on the min- imization of the residuals by the use of Euclidean loss layers. In this paper, we propose an SR model based on the use of a p-norm loss layer to improve the learning process and obtain a better high-resolution (HR) image. This method was implemented using a three-dimensional convolutional neural network (CNN), and tested for several norms in order to determine the most robust t. The proposed methodology was trained and tested with sets of MR structural T1-weighted images and showed better outcomes quantitatively, in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the restored and the calculated residual images showed better CNN outputs.
    • URI
      https://hdl.handle.net/10630/17836
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Deep_Learning_networks.pdf (893.7Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA