JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Unsupervised learning as a complement to convolutional neural network classification in the analysis of saccadic eye movement in spino-cerebellar ataxia type 2

    • Autor
      Stoean, Catalin; Stoean, Ruxandra; Becerra-García, Roberto Antonio; Atencia-Ruiz, Miguel AlejandroAutoridad Universidad de Málaga; García-Lagos, FranciscoAutoridad Universidad de Málaga; Velázquez-Pérez, Luis; Joya-Caparrós, GonzaloAutoridad Universidad de Málaga; García-Bermúdez, Rodolfo
    • Fecha
      2019-06-17
    • Palabras clave
      Redes neuronales artificiales; Congresos y conferencias
    • Resumen
      This paper aims at assessing spino-cerebellar type 2 ataxiaby classifying electrooculography records into registers corresponding to healthy, presymptomatic and ill individuals. The primary used technique is the convolutional neural network applied to the time series of eye movements, called saccades. The problem is exceptionally hard, though, because the recorded saccadic movements for presymptomatic cases often do not substantially di er from those of healthy individuals. Precisely this distinction is of the utmost clinical importance, since early intervention on presymptomatic patients can ameliorate symptoms or at least slow their progression. Yet, each register contains a number of saccades that, although not consistent with the current label, have not been considered indicative of another class by the examining physicians. As a consequence, an unsupervised learning mechanism may be more suitable to handle this form of misclassi cation. Thus, our proposal introduces the k-means approach and the SOM method, as complementary techniques to analyse the time series. The three techniques operating in tandem lead to a well performing solution to this diagnosis problem.
    • URI
      https://hdl.handle.net/10630/17824
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    IWANN_2019___Saccades.pdf (544.8Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA