Metal phosphonates are essentially acidic solids featured by groups such as P-OH, -COOH, etc. Moreover, the presence of coordination and lattice water molecules favors the formation of H-bond networks, which make these compounds appropriate as proton conductors, attractive for proton exchange membranes (PEMs) of fuel Cells.1
We report here, general characteristics of metal phosphonate derivatives composed of the polyfunctional 5-(dihydroxyphosphoryl) isophthalate ligand2 and lanthanides or zirconium ions. In the case of the lanthanide derivatives, crystalline compounds were synthesized under hydrothermal conditions. Preliminary results suggest that at least three isostructural series of compounds are formed. One of them, with La3+ derivative as prototype, is characterized by an orthorhombic unit cell (a = 12.7745(6) Å, b = 11.8921(4) Å, c = 7.2193(5) Å). Pr3+, Eu3+ and Gd3+ compounds, displays a monoclinic unit cell likewise the Yb3+ solid, the latter exhibiting different crystallographic parameters. Zr(IV) = compound, with formula Zr[(HO3P-C6H3-(COO)2H)2]·8H2O; was obtained at 80 ºC in the presence of HF as mineralizing agent. This solid crystallizes in an orthorhombic unit cell (a = 21.9306 Å, b = 16.6169 Å, c = 3.6462 Å). All these compounds contain in their frameworks water molecules that contribute to the formation of H-bond networks, making them prone as proton conductor candidates. Structural and proton conductivity are underway.