JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Multiomic studies to improve fruit quality of berry fruits

    • Autor
      Jiménez, Lidia; Pott, Delphine; Duran, Sara; Mott, Daniella; Petit, Aurélie; Celejewska, Karolina; Piecko, Jan; Masny, Agnieszka; Savini, Gianluca; Chartier, Philippe; Krüger, Erika; Sonsteby, Anita; Denoyes, Beatrice; Vallarino Castro, José G.; Osorio-Algar, SoniaAutoridad Universidad de Málaga
    • Fecha
      2019-02-21
    • Palabras clave
      Clima - Cambios - Aspectos ambientales; Bayas
    • Resumen
      In this study we are going to use different omic-techniques to analyze fruits of three species of berries such as strawberry, raspberry and black currant. Berry fruit are well appreciated for their delicate flavor and nutraceutical properties, with consumer demand increasing over the last years. Furthermore, climate change and market globalization have made necessary to improve the production while maintaining fruit quality traits. Goodberry project is developping analytical platforms, covering from transcriptomic to metabolites and volatile compounds analysis, to find new factors controlling plant adaptation, fruit production and quality. In this study we implement the metabolomic analysis of strawberry, raspberry and black currant fruits from the 2017 harvest, as well as 2018 harvest during this year. To analyze and compare the data we use multiomic tools and bioinformatics to extract properly conclusion The analyses take different berry cultivars, adapted to diverse environments, were grown in 2017 and 2018 in different latitudes (Germany, France, Norway, Italy, Poland and Scotland). The data comes from a combination of gas-chromatography-mass spectrometry (GC-TOF-MS) and headspace solid phase micro extraction (HS-SPME) coupled with GC-MS was used to semi-quantify fruit primary metabolome and volatilome. Around 50 key primary metabolites, including sugars and acids, which are fundamental factors influencing fruit taste and 75 volatiles, responsible of the aroma, were identified across the different genotypes and climates. Multivariate statistical approaches allow us to point out the genetic and environmental factors underlying complex metabolic traits involved in fruit quality. Preliminary analysis showed that both climate and genetic factors influence primary metabolite and volatile content, even if the environment seems to have a stronger impact on the first one.
    • URI
      https://hdl.handle.net/10630/17356
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    POSTER_GOODBERRY_Multiomics.pdf (1.148Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA