Mostrar el registro sencillo del ítem
Comparing Deep Recurrent Networks Based on the MAE Random Sampling, a First Approach
dc.contributor.author | Camero Unzueta, Andres | |
dc.contributor.author | Toutouh-el-Alamin, Jamal | |
dc.contributor.author | Alba-Torres, Enrique | |
dc.date.accessioned | 2018-11-26T10:40:41Z | |
dc.date.available | 2018-11-26T10:40:41Z | |
dc.date.created | 2018 | |
dc.date.issued | 2018-11-26 | |
dc.identifier.uri | https://hdl.handle.net/10630/16952 | |
dc.description.abstract | Recurrent neural networks have demonstrated to be good at tackling prediction problems, however due to their high sensitivity to hyper-parameter configuration, finding an appropriate network is a tough task. Automatic hyper-parameter optimization methods have emerged to find the most suitable configuration to a given problem, but these methods are not generally adopted because of their high computational cost. Therefore, in this study we extend the MAE random sampling, a low-cost method to compare single-hidden layer architectures, to multiple-hidden-layer ones. We validate empirically our proposal and show that it is possible to predict and compare the expected performance of an hyper-parameter configuration in a low-cost way. | en_US |
dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research was partially funded by Ministerio de Economı́a, Industria y Competitividad, Gobierno de España, and European Regional Development Fund grant numbers TIN2016-81766-REDT (http://cirti.es) and TIN2017-88213-R (http://6city.lcc.uma.es). | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Inteligencia artificial | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Recurrent neural network | en_US |
dc.subject.other | MAE random sampling | en_US |
dc.title | Comparing Deep Recurrent Networks Based on the MAE Random Sampling, a First Approach | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.centro | E.T.S.I. Informática | en_US |
dc.relation.eventtitle | Conference of the Spanish Association for Artificial Intelligence (CAEPIA) | en_US |
dc.relation.eventplace | Granada, España | en_US |
dc.relation.eventdate | 23-26 de octubre de 2018 | en_US |