JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Transfer learning or design a custom CNN for tactile object recognition

    • Autor
      Gandarias, Juan Manuel; Pastor-Martín, Francisco; Muñoz-Ramírez, Antonio JoséAutoridad Universidad de Málaga; García-Cerezo, Alfonso JoséAutoridad Universidad de Málaga; Gómez-de-Gabriel, Jesús ManuelAutoridad Universidad de Málaga
    • Fecha
      2018-10-29
    • Palabras clave
      Sensores
    • Resumen
      Novel tactile sensors allow treating pressure lectures as standard images due to its highresolution. Therefore, computer vision algorithms such as Convolutional Neural Networks (CNNs) can be used to identify objects in contact. In this work, a high-resolution tactile sensor has been attached to a robotic end-effector to identify objects in contact. Moreover, two CNNs-based approaches have been tested in an experiment of classification of pressure images. These methods include a transfer learning approach using a pre-trained CNN on an RGB images dataset and a custom-made CNN trained from scratch with tactile information. A comparative study of performance between them has been carried out.
    • URI
      https://hdl.handle.net/10630/16729
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Poster_RoboTac_Gandarias.pdf (774.0Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA