Several previous publications have shown the area
and delay reduction when implementing real number computation
using HUB formats for both floating-point and fixed-point.
In this paper, we present a HUB floating-point adder for FPGA
which greatly improves the speed of previous proposed HUB
designs for these devices. Our architecture is based on the double
path technique which reduces the execution time since each
path works in parallel. We also deal with the implementation of
unbiased rounding in the proposed adder. Experimental results
are presented showing the goodness of the new HUB adder for
FPGA.