Mostrar el registro sencillo del ítem

dc.contributor.authorMorales-González, Juan Miguel 
dc.contributor.authorSaez-Gallego, Javier
dc.date.accessioned2018-07-06T11:43:38Z
dc.date.available2018-07-06T11:43:38Z
dc.date.created2018
dc.date.issued2018-07-06
dc.identifier.urihttps://hdl.handle.net/10630/16157
dc.description.abstractA method to predict the aggregate demand of a cluster of price-responsive consumers of electricity is discussed in this presentation. The price-response of the aggregation is modeled by an optimization problem whose defining parameters represent a series of marginal utility curves, and minimum and maximum consumption limits. These parameters are, in turn, estimated from observational data using an approach inspired from duality theory. The resulting estimation problem is nonconvex, which makes it very hard to solve. In order to obtain good parameter estimates in a reasonable amount of time, we divide the estimation problem into a feasibility problem and an optimality problem. Furthermore, the feasibility problem includes a penalty term that is statistically adjusted by cross validation. The proposed methodology is data-driven and leverages information from regressors, such as time and weather variables, to account for changes in the parameter estimates. The estimated price-response model is used to forecast the power load of a group of heating, ventilation and air conditioning systems, with positive results.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. European Research Council: This research work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 755705).en_US
dc.language.isoengen_US
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectProgramación matemáticaen_US
dc.subject.otherForecastingen_US
dc.subject.otherInverse optimizationen_US
dc.subject.otherElectricity demand responseen_US
dc.titlePredicting the electricity demand response via data-driven inverse optimizationen_US
dc.typeconference outputen_US
dc.centroEscuela de Ingenierías Industrialesen_US
dc.relation.eventtitleInternational Symposium on Mathematical Programmingen_US
dc.relation.eventplaceBordeaux, Franceen_US
dc.relation.eventdate1 de julio de 2018en_US
dc.departamentoMatemática Aplicada
dc.rights.accessRightsopen accessen_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem