JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Predicting the electricity demand response via data-driven inverse optimization

    • Autor
      Morales-González, Juan MiguelAutoridad Universidad de Málaga; Saez-Gallego, Javier
    • Fecha
      2018-07-06
    • Palabras clave
      Programación matemática
    • Resumen
      A method to predict the aggregate demand of a cluster of price-responsive consumers of electricity is discussed in this presentation. The price-response of the aggregation is modeled by an optimization problem whose defining parameters represent a series of marginal utility curves, and minimum and maximum consumption limits. These parameters are, in turn, estimated from observational data using an approach inspired from duality theory. The resulting estimation problem is nonconvex, which makes it very hard to solve. In order to obtain good parameter estimates in a reasonable amount of time, we divide the estimation problem into a feasibility problem and an optimality problem. Furthermore, the feasibility problem includes a penalty term that is statistically adjusted by cross validation. The proposed methodology is data-driven and leverages information from regressors, such as time and weather variables, to account for changes in the parameter estimates. The estimated price-response model is used to forecast the power load of a group of heating, ventilation and air conditioning systems, with positive results.
    • URI
      https://hdl.handle.net/10630/16157
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ISMP2018_JMMorales.pdf (2.712Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA