Mostrar el registro sencillo del ítem

dc.contributor.authorStoean, Ruxandra
dc.contributor.authorAtencia-Ruiz, Miguel Alejandro 
dc.date.accessioned2018-05-02T12:57:58Z
dc.date.available2018-05-02T12:57:58Z
dc.date.created2018
dc.date.issued2018
dc.identifier.citationAtencia, Miguel, and Ruxandra Stoean. 2018. “Non-Negative Matrix Factorization for Medical Imaging.” In European Symposium on Artificial Neural Networks, edited by M. Verleysen, 379–384.en_US
dc.identifier.urihttps://hdl.handle.net/10630/15659
dc.description.abstractA non-negative matrix factorization approach to dimensionality reduction is proposed to aid classification of images. The original images can be stored as lower-dimensional columns of a matrix that hold degrees of belonging to feature components, so they can be used in the training phase of the classification at lower runtime and without loss in accuracy. The extracted features can be visually examined and images reconstructed with limited error. The proof of concept is performed on a benchmark of handwritten digits, followed by the application to histopathological colorectal cancer slides. Results are encouraging, though dealing with real-world medical data raises a number of issues.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Techen_US
dc.language.isoengen_US
dc.publisheri6doc.comen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatemáticas aplicadas - Congresosen_US
dc.titleNon-negative matrix factorization for medical imagingen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroEscuela de Ingenierías Industrialesen_US
dc.relation.eventtitleEuropean Symposium on Artificial Neural Networks (ESANN)en_US
dc.relation.eventplaceBrujas (Bélgica)en_US
dc.relation.eventdate25 Abril 2018en_US
dc.rights.ccAtribución-NoComercial-CompartirIgual 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem