This paper summarizes our findings with respect to order policies for an inventory control problem for a perishable product with a maximum fixed shelf life in a periodic review system, where chance constraints play a role. A Stochastic Programming (SP) problem is presented which models a practical production planning problem over a finite horizon. Perishability, non-stationary demand, fixed ordering cost and a service level (chance) constraint make this problem complex. Inventory control handles this type of models with so-called order policies.
We compare three different policies: a) production timing is fixed in advance combined with an order up-to level, b) production timing is fixed in advance and the production quantity takes the age distribution into account and c) the decision of the order quantity depends on the age-distribution of the items in stock. Several theoretical properties for the optimal solutions of the policies are presented. In this paper, four different solution approaches from earlier studies are used to derive parameter values
for the order policies. For policy a), we use MILP approximations and alternatively the so-called Smoothed Monte Carlo method with sampled demand to optimize values. For policy b), we outline a sample based approach to determine the order quantities. The flexible policy c) is derived by SDP. All policies are compared on feasibility regarding the α-service level, computation time and ease of implementation to support management in the choice for an order policy.