Mostrar el registro sencillo del ítem

dc.contributor.advisorAldana-Montes, José Francisco 
dc.contributor.authorRybinski, Maciej
dc.contributor.otherLenguajes y Ciencias de la Computaciónen_US
dc.date.accessioned2018-02-23T12:12:39Z
dc.date.available2018-02-23T12:12:39Z
dc.date.issued2017-06-25
dc.identifier.urihttps://hdl.handle.net/10630/15255
dc.description.abstractSemantic relatedness is a measure that quantifies the strength of a semantic link between two concepts. Often, it can be efficiently approximated with methods that operate on words, which represent these concepts. Approximating semantic relatedness between texts and concepts represented by these texts is an important part of many text and knowledge processing tasks of crucial importance in many domain-specific scenarios. The problem of most state-of-the-art methods for calculating domain-specific semantic relatedness is their dependence on highly specialized, structured knowledge resources, which makes these methods poorly adaptable for many usage scenarios. On the other hand, the domain knowledge in the fields such as Life Sciences has become more and more accessible, but mostly in its unstructured form - as texts in large document collections, which makes its use more challenging for automated processing. In this dissertation, three new corpus-based methods for approximating domain-specific textual semantic relatedness are presented and evaluated with a set of standard benchmarks focused on the field of biomedicine. Nonetheless, the proposed measures are general enough to be adapted to other domain-focused scenarios. The evaluation involves comparisons with other relevant state-of-the-art measures for calculating semantic relatedness and the results suggest that the methods presented here perform comparably or better than other approaches. Additionally, the dissertation also presents an experiment, in which one of the proposed methods is applied within an ontology matching system, DisMatch. The performance of the system was evaluated externally on a biomedically themed ‘Phenotype’ track of the Ontology Alignment Evaluation Initiative 2016 campaign. The results of the track indicate, that the use distributional semantic relatedness for ontology matching is promising, as the system presented in this thesis did stand out in detecting correct mappings that were not detected by any other systems participating in the track. The work presented in the dissertation indicates an improvement achieved w.r.t. the stat-of-the-art through the domain adapted use of the distributional principle (i.e. the presented methods are corpus-based and do not require additional resources). The ontology matching experiment showcases practical implications of the presented theoretical body of work.en_US
dc.language.isoengen_US
dc.publisherUMA Editorialen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLingüística computacional - Tesis doctorales
dc.subject.otherSemantic relatednessen_US
dc.subject.otherComputational linguisticsen_US
dc.subject.otherDistributional semanticsen_US
dc.subject.otherOntology matchingen_US
dc.titleImproving approximation of domain-focused, corpus-based, lexical semantic relatednessen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.centroE.T.S.I. Informáticaen_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem