Mostrar el registro sencillo del ítem

dc.contributor.authorGómez-de-Gabriel, Jesús Manuel 
dc.contributor.authorGarcía-Cerezo, Alfonso José 
dc.contributor.authorGandarias, Juan Manuel
dc.date.accessioned2017-12-13T08:56:49Z
dc.date.available2017-12-13T08:56:49Z
dc.date.issued2017-10-29
dc.identifier.urihttps://hdl.handle.net/10630/14881
dc.description.abstractThis paper 1 describes the use of two artificial intelligence methods for object recognition via pressure images from a high-resolution tactile sensor. Both meth- ods follow the same procedure of feature extraction and posterior classification based on a supervised Supported Vector Machine (SVM). The two approaches differ on how features are extracted: while the first one uses the Speeded-Up Robust Features (SURF) descriptor, the other one employs a pre-trained Deep Convolutional Neural Network (DCNN). Besides, this work shows its applica- tion to object recognition for rescue robotics, by distinguishing between differ- ent body parts and inert objects. The performance analysis of the proposed methods is carried out with an experiment with 5-class non-human and 3-class human classification, providing a comparison in terms of accuracy and compu-tational load. Finally, it is discussed how feature-extraction based on SURF can be obtained up to five times faster compared to DCNN. On the other hand, the accuracy achieved using DCNN-based feature extraction can be 11.67% superior to SURF.en_US
dc.description.sponsorshipProyecto DPI2015-65186-R European Commission under grant agreement BES-2016-078237. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSensoresen_US
dc.subject.otherSensorsen_US
dc.titleHuman and Object Recognition with a High-resolution tactile sensoren_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.centroEscuela de Ingenierías Industrialesen_US
dc.relation.eventtitleIEEE Sensors 2017en_US
dc.relation.eventplaceGlasgow, Reino Unidoen_US
dc.relation.eventdate29/10/2017en_US
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional