We show that the popular and general κ-μ shadowed fading model with integer fading parameters μ and m can be represented as a mixture of squared Nakagami- m̂ (or Gamma) distributions. Thus, its PDF and CDF can be expressed in closed-form in terms of a finite number of elementary functions (powers and exponentials). The main implications arising from such connection are then discussed, which can be summarized as: (1) the performance evaluation of communication systems operating in κ-μ shadowed fading becomes as simple as if a Nakagami- m̂ fading channel was assumed; (2) the κ-μ shadowed distribution can be used to approximate the κ-μ distribution using a closed-form representation in terms of elementary functions, by choosing a sufficiently large value of m; and (3) restricting the parameters μ and m to take integer values has limited impact in practice when fitting the κ-μ shadowed fading model to field measurements. As an application example, the average channel capacity of communication systems operating under κ-μ shadowed fading is obtained in closed-form.