JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Machine learning models to search relevant genetic signatures in clinical context

    • Autor
      Urda, Daniel; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Franco, Leonardo; Sánchez-Maroño, Noelia; Jerez-Aragonés, José ManuelAutoridad Universidad de Málaga
    • Fecha
      2017-06-26
    • Palabras clave
      Bioinformática; Biología computacional
    • Resumen
      Clinicians are interested in the estimation of robust and relevant genetic signatures from gene sequencing data. Many machine learning approaches have been proposed trying to address well-known issues of this complex task (feature or gene selection, classification or model selection, and prediction assessment). Addressing this problem often requires a deep knowledge of these methods and some of them demand high computational resources that may not be affordable. In this paper, an exhaustive study that includes different types of feature selection methods and classifiers is presented, providing clinicians an useful insight of the most suitable methods for this purpose. Predictions assessment is performed using a bootstrap crossvalidation strategy as an honest validation scheme. The results of this study for six benchmark datasets show that filter or embedded methods are preferred, in general, to wrapper methods according to their better statistical significant results, in terms of accuracy, and lower demand for computational resources.
    • URI
      http://hdl.handle.net/10630/14000
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    PID4655531.pdf (418.8Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA