JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Listar por autor 
    •   RIUMA Principal
    • Listar por autor
    •   RIUMA Principal
    • Listar por autor

    Listar por autor "Molina-Cabello, Miguel Ángel"

    • 0-9
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Y
    • Z

    Ordenar por:

    Orden:

    Resultados:

    Mostrando ítems 21-40 de 55

    • título
    • fecha de publicación
    • fecha de envío
    • ascendente
    • descendente
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
      • Foreground detection by competitive learning for varying input distributions 

        López-Rubio, EzequielAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Domínguez-Merino, EnriqueAutoridad Universidad de Málaga (World Scientific Publishing, 2018)
        One of the most important challenges in computer vision applications is the background modeling, especially when the background is dynamic and the input distribution might not be stationary, i.e. the distribution of the ...
      • Foreground detection by probabilistic modeling of the features discovered by stacked denoising autoencoders in noisy video sequences 

        García-González, Jorge; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2019-06-07)
        A robust foreground detection system is presented, which is resilient to noise in video sequences. The proposed model divides each video frame in patches that are fed to a stacked denoising autoencoder, which is responsible ...
      • Foreground object detection enhancement by adaptive super resolution for video surveillance 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Elizondo Acuña, David Alberto; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2019-09-16)
        Foreground object detection is a fundamental low level task in current video surveillance systems. It is usually accomplished by keeping a model of the background at each frame pixel. Many background learning algorithms ...
      • Herramienta para el etiquetado de objetos en secuencias de video 

        Rodríguez Maldonado, José (2020-01-20)
        Uno de los tres pilares sobre los que se sustenta la inteligencia artificial es la disponibilidad de datos públicos etiquetados. En el campo de la visión por ordenador puede llegar a resultar muy complicado, y sobre todo ...
      • Histopathological image analysis for breast cancer diagnosis by ensembles of convolutional neural networks and genetic algorithms 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Rodríguez Rodríguez, José Antonio; Thurnhofer Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga (2021-07)
        One of the most invasive cancer types which affect women is breast cancer. Unfortunately, it exhibits a high mortality rate. Automated histopathological image analysis can help to diagnose the disease. Therefore, computer ...
      • Homography estimation with deep convolutional neural networks by random color transformations 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Elizondo Acuña, David Alberto; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2019-09-13)
        Most classic approaches to homography estimation are based on the filtering of outliers by means of the RANSAC method. New proposals include deep convolutional neural networks. Here a new method for homography estimation ...
      • Impacto del ruido gaussiano y el brillo en redes neuronales de detección de objetos pre-entrenadas. 

        Ángel Ruiz, Juan Antonio (2024)
        El Aprendizaje Profundo aplicado al procesamiento de imágenes y vídeos se trata de una actividad cada vez mas presente en la actualidad. Dentro de esta aplicación de lo que hoy día conocemos como Inteligencia Artificial, ...
      • Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning 

        Calderón-Ramírez, Saúl; Murillo-Hernández, Diego; Rojas-Salazar, Kevin; Calvo-Valverde, Luis-Alexander; Yang, Shengxiang; Moemeni, Armaghan; Elizondo Acuña, David Alberto; López-Rubio, EzequielAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga[et al.] (2021-07)
        Computer aided diagnosis for mammogram images have seen positive results through the usage of deep learning architectures. However, limited sample sizes for the target datasets might prevent the usage of a deep learning ...
      • Infering Air Quality from Traffic Data using Transferable Neural Network Models 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Passow, Benjamin N.; Domínguez-Merino, EnriqueAutoridad Universidad de Málaga; Elizondo Acuña, David Alberto; Obszynska, Jolanta (Springer, 2019-06)
        This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy ...
      • Longitudinal study of the learning styles evolution in Engineering degrees 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Thurnhofer-Hemsi, Karl; Domínguez, Enrique; López-Rubio, EzequielAutoridad Universidad de Málaga; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga (2021)
        A learning style describes what are the predominant skills for learning tasks. In the context of university education, knowing the learning styles of the students constitutes a great opportunity to improve both teaching ...
      • Mejora de la incertidumbre al usar datos fuera de la distribución (OOD) en un modelo semi-supervisado de aprendizaje profundo 

        Fuentes Fino, Ricardo Javier (2022-02)
        El presente proyecto de investigación tiene como finalidad hacer una comparación entre la distancia de Mahalanobis y la densidad de características (Feature Density) como métodos estimadores de incertidumbre, aplicado a ...
      • Mitigating Carlini & Wagner attacks with Encoding Generative Adversarial Network. 

        Tell-Gónzalez, Guillermo; Fernández-Rodríguez, Jose David; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Benítez-Rochel, RafaelaAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2024)
        Deep Learning models are experiencing a significant surge in popularity, expanding into various domains, including critical applications like object recognition in autonomous vehicles, where any failure could have fatal ...
      • Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution 

        Thurnhofer-Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga; Roé-Vellvé, Núria; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga (IOS Press, 2020-05-20)
        In medical imaging, the lack of high-quality images is present in many areas such as magnetic resonance (MR). Due to many acquisition impediments, the generated images have not enough resolution to carry out an adequate ...
      • Neural Controller for PTZ cameras based on nonpanoramic foreground detection 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Domínguez, Enrique; Thurnhofer-Hemsi, Karl (2017-05-29)
        Abstract—In this paper a controller for PTZ cameras based on an unsupervised neural network model is presented. It takes advantage of the foreground mask generated by a nonparametric foreground detection subsystem. Thus, ...
      • A new self-organizing neural gas model based on Bregman divergences 

        Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga (2018-07-20)
        In this paper, a new self-organizing neural gas model that we call Growing Hierarchical Bregman Neural Gas (GHBNG) has been proposed. Our proposal is based on the Growing Hierarchical Neural Gas (GHNG) in which Bregman ...
      • Optimization of Convolutional Neural Network ensemble classifiers by Genetic Algorithms 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Accino, Cristian; López-Rubio, EzequielAutoridad Universidad de Málaga; Thurnhofer-Hemsi, Karl (Springer, 2019)
        Breast cancer exhibits a high mortality rate and it is the most invasive cancer in women. An analysis from histopathological images could predict this disease. In this way, computational image processing might support this ...
      • Panorama Construction for PTZ Camera Surveillance with the Neural Gas network 

        Thurnhofer-Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga; Domínguez, Enrique; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga (Wiley, 2018-04)
        The construction of a model of the background of a scene still remains as a challenging task in video surveillance systems, in particular for moving cameras. This work presents a novel approach for constructing a panoramic ...
      • Panoramic Background Modeling for PTZ Cameras with Competitive Learning Neural Networks 

        Thurnhofer-Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga; Domínguez, Enrique; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga (2017-05-29)
        The construction of a model of the background of a scene still remains as a challenging task in video surveillance systems, in particular for moving cameras. This work presents a novel approach for constructing a panoramic ...
      • Peer assessments in Engineering: A pilot project 

        Thurnhofer-Hemsi, Karl; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Domínguez, Enrique (2021)
        The evaluation methods employed in a course are the most important point for the students, above any other learning aspect. For teachers, this task is arduous when the number of students is high. Traditional evaluation ...
      • Pixel Features for Self-organizing Map Based Detection of Foreground Objects in Dynamic Environments 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Domínguez, Enrique; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga
        Among current foreground detection algorithms for video sequences, methods based on self-organizing maps are obtaining a greater relevance. In this work we propose a probabilistic self-organising map based model, which ...
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
         

         

        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA