
- RIUMA Principal
- Listar por autor
Listar por autor "Molina-Cabello, Miguel Ángel"
Mostrando ítems 21-40 de 55
-
Foreground detection by competitive learning for varying input distributions
López-Rubio, Ezequiel; Molina-Cabello, Miguel Ángel
; Luque-Baena, Rafael Marcos
; Domínguez-Merino, Enrique
(World Scientific Publishing, 2018)
One of the most important challenges in computer vision applications is the background modeling, especially when the background is dynamic and the input distribution might not be stationary, i.e. the distribution of the ... -
Foreground detection by probabilistic modeling of the features discovered by stacked denoising autoencoders in noisy video sequences
García-González, Jorge; Ortiz-de-Lazcano-Lobato, Juan Miguel; Luque-Baena, Rafael Marcos
; Molina-Cabello, Miguel Ángel
; López-Rubio, Ezequiel
(2019-06-07)
A robust foreground detection system is presented, which is resilient to noise in video sequences. The proposed model divides each video frame in patches that are fed to a stacked denoising autoencoder, which is responsible ... -
Foreground object detection enhancement by adaptive super resolution for video surveillance
Molina-Cabello, Miguel Ángel; Elizondo Acuña, David Alberto; Luque-Baena, Rafael Marcos
; López-Rubio, Ezequiel
(2019-09-16)
Foreground object detection is a fundamental low level task in current video surveillance systems. It is usually accomplished by keeping a model of the background at each frame pixel. Many background learning algorithms ... -
Herramienta para el etiquetado de objetos en secuencias de video
Rodríguez Maldonado, José (2020-01-20)Uno de los tres pilares sobre los que se sustenta la inteligencia artificial es la disponibilidad de datos públicos etiquetados. En el campo de la visión por ordenador puede llegar a resultar muy complicado, y sobre todo ... -
Histopathological image analysis for breast cancer diagnosis by ensembles of convolutional neural networks and genetic algorithms
Molina-Cabello, Miguel Ángel; Rodríguez Rodríguez, José Antonio; Thurnhofer Hemsi, Karl; López-Rubio, Ezequiel
(2021-07)
One of the most invasive cancer types which affect women is breast cancer. Unfortunately, it exhibits a high mortality rate. Automated histopathological image analysis can help to diagnose the disease. Therefore, computer ... -
Homography estimation with deep convolutional neural networks by random color transformations
Molina-Cabello, Miguel Ángel; Elizondo Acuña, David Alberto; Luque-Baena, Rafael Marcos
; López-Rubio, Ezequiel
(2019-09-13)
Most classic approaches to homography estimation are based on the filtering of outliers by means of the RANSAC method. New proposals include deep convolutional neural networks. Here a new method for homography estimation ... -
Impacto del ruido gaussiano y el brillo en redes neuronales de detección de objetos pre-entrenadas.
Ángel Ruiz, Juan Antonio (2024)El Aprendizaje Profundo aplicado al procesamiento de imágenes y vídeos se trata de una actividad cada vez mas presente en la actualidad. Dentro de esta aplicación de lo que hoy día conocemos como Inteligencia Artificial, ... -
Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning
Calderón-Ramírez, Saúl; Murillo-Hernández, Diego; Rojas-Salazar, Kevin; Calvo-Valverde, Luis-Alexander; Yang, Shengxiang; Moemeni, Armaghan; Elizondo Acuña, David Alberto; López-Rubio, Ezequiel; Molina-Cabello, Miguel Ángel
[et al.] (2021-07)
Computer aided diagnosis for mammogram images have seen positive results through the usage of deep learning architectures. However, limited sample sizes for the target datasets might prevent the usage of a deep learning ... -
Infering Air Quality from Traffic Data using Transferable Neural Network Models
Molina-Cabello, Miguel Ángel; Passow, Benjamin N.; Domínguez-Merino, Enrique
; Elizondo Acuña, David Alberto; Obszynska, Jolanta (Springer, 2019-06)
This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy ... -
Longitudinal study of the learning styles evolution in Engineering degrees
Molina-Cabello, Miguel Ángel; Thurnhofer-Hemsi, Karl; Domínguez, Enrique; López-Rubio, Ezequiel
; Palomo-Ferrer, Esteban José
(2021)
A learning style describes what are the predominant skills for learning tasks. In the context of university education, knowing the learning styles of the students constitutes a great opportunity to improve both teaching ... -
Mejora de la incertidumbre al usar datos fuera de la distribución (OOD) en un modelo semi-supervisado de aprendizaje profundo
Fuentes Fino, Ricardo Javier (2022-02)El presente proyecto de investigación tiene como finalidad hacer una comparación entre la distancia de Mahalanobis y la densidad de características (Feature Density) como métodos estimadores de incertidumbre, aplicado a ... -
Mitigating Carlini & Wagner attacks with Encoding Generative Adversarial Network.
Tell-Gónzalez, Guillermo; Fernández-Rodríguez, Jose David; Molina-Cabello, Miguel Ángel; Benítez-Rochel, Rafaela
; López-Rubio, Ezequiel
(2024)
Deep Learning models are experiencing a significant surge in popularity, expanding into various domains, including critical applications like object recognition in autonomous vehicles, where any failure could have fatal ... -
Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution
Thurnhofer-Hemsi, Karl; López-Rubio, Ezequiel; Roé-Vellvé, Núria; Molina-Cabello, Miguel Ángel
(IOS Press, 2020-05-20)
In medical imaging, the lack of high-quality images is present in many areas such as magnetic resonance (MR). Due to many acquisition impediments, the generated images have not enough resolution to carry out an adequate ... -
Neural Controller for PTZ cameras based on nonpanoramic foreground detection
Molina-Cabello, Miguel Ángel; López-Rubio, Ezequiel
; Luque-Baena, Rafael Marcos
; Domínguez, Enrique; Thurnhofer-Hemsi, Karl (2017-05-29)
Abstract—In this paper a controller for PTZ cameras based on an unsupervised neural network model is presented. It takes advantage of the foreground mask generated by a nonparametric foreground detection subsystem. Thus, ... -
A new self-organizing neural gas model based on Bregman divergences
Palomo-Ferrer, Esteban José; Molina-Cabello, Miguel Ángel
; López-Rubio, Ezequiel
; Luque-Baena, Rafael Marcos
(2018-07-20)
In this paper, a new self-organizing neural gas model that we call Growing Hierarchical Bregman Neural Gas (GHBNG) has been proposed. Our proposal is based on the Growing Hierarchical Neural Gas (GHNG) in which Bregman ... -
Optimization of Convolutional Neural Network ensemble classifiers by Genetic Algorithms
Molina-Cabello, Miguel Ángel; Accino, Cristian; López-Rubio, Ezequiel
; Thurnhofer-Hemsi, Karl (Springer, 2019)
Breast cancer exhibits a high mortality rate and it is the most invasive cancer in women. An analysis from histopathological images could predict this disease. In this way, computational image processing might support this ... -
Panorama Construction for PTZ Camera Surveillance with the Neural Gas network
Thurnhofer-Hemsi, Karl; López-Rubio, Ezequiel; Domínguez, Enrique; Luque-Baena, Rafael Marcos
; Molina-Cabello, Miguel Ángel
(Wiley, 2018-04)
The construction of a model of the background of a scene still remains as a challenging task in video surveillance systems, in particular for moving cameras. This work presents a novel approach for constructing a panoramic ... -
Panoramic Background Modeling for PTZ Cameras with Competitive Learning Neural Networks
Thurnhofer-Hemsi, Karl; López-Rubio, Ezequiel; Domínguez, Enrique; Luque-Baena, Rafael Marcos
; Molina-Cabello, Miguel Ángel
(2017-05-29)
The construction of a model of the background of a scene still remains as a challenging task in video surveillance systems, in particular for moving cameras. This work presents a novel approach for constructing a panoramic ... -
Peer assessments in Engineering: A pilot project
Thurnhofer-Hemsi, Karl; Molina-Cabello, Miguel Ángel; Palomo-Ferrer, Esteban José
; López-Rubio, Ezequiel
; Domínguez, Enrique (2021)
The evaluation methods employed in a course are the most important point for the students, above any other learning aspect. For teachers, this task is arduous when the number of students is high. Traditional evaluation ... -
Pixel Features for Self-organizing Map Based Detection of Foreground Objects in Dynamic Environments
Molina-Cabello, Miguel Ángel; López-Rubio, Ezequiel
; Luque-Baena, Rafael Marcos
; Domínguez, Enrique; Palomo-Ferrer, Esteban José
Among current foreground detection algorithms for video sequences, methods based on self-organizing maps are obtaining a greater relevance. In this work we propose a probabilistic self-organising map based model, which ...