JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Listar por autor 
    •   RIUMA Principal
    • Listar por autor
    •   RIUMA Principal
    • Listar por autor

    Listar por autor "López-Rubio, Ezequiel"

    • 0-9
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Y
    • Z

    Ordenar por:

    Orden:

    Resultados:

    Mostrando ítems 1-20 de 96

    • título
    • fecha de publicación
    • fecha de envío
    • ascendente
    • descendente
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
      • A Convolutional Autoencoder and a Neural Gas model based on Bregman Divergences for Hierarchical Color Quantization 

        Fernández-Rodríguez, Jose David; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; Benito-Picazo, Jesús; Domínguez-Merino, EnriqueAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Ortega-Zamorano, Francisco[et al.] (Elsevier, 2023)
        Color quantization (CQ) is one of the most common and important procedures to be performed on digital images. In this paper, a new approach to hierarchical color quantization is described, presenting a novel neural network ...
      • A fast robust geometric fitting method for parabolic curves. 

        López-Rubio, EzequielAutoridad Universidad de Málaga; Thurnhofer-Hemsi, Karl; Blázquez-Parra, Elidia BeatrizAutoridad Universidad de Málaga; De-Cózar-Macías, ÓscarAutoridad Universidad de Málaga; Ladrón-de-Guevara-Muñoz, María del CarmenAutoridad Universidad de Málaga (Elsevier, 2018-07-18)
        Fitting discrete data obtained by image acquisition devices to a curve is a common task in many fields of science and engineering. In particular, the parabola is some of the most employed shape features in electrical ...
      • A novel continual learning approach for competitive neural networks 

        Fernández-Rodríguez, Jose David; Maza Quiroga, Rosa María; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2022)
        Continual learning tries to address the stability-plasticity dilemma to avoid catastrophic forgetting when dealing with non-stationary distributions. Prior works focused on supervised or reinforcement learning, but few ...
      • Analysis of functional connectome pipelines for the diagnosis of autism spectrum disorders 

        Maza Quiroga, Rosa María; López-Rodríguez, DomingoAutoridad Universidad de Málaga; Thurnhofer-Hemsi, Karl; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Jiménez Valverde, Clara; López-Rubio, EzequielAutoridad Universidad de Málaga[et al.] (2022-05)
        This paper explores the effect of using different pipelines to compute connectomes (matrices representing brain connections) and use them to train machine learning models with the goal of diagnosing Autism Spectrum ...
      • Anomalous trajectory detection for automated traffic video surveillance 

        Fernández-Rodríguez, Jose David; García-González, Jorge; Benítez-Rochel, RafaelaAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; García-González, Jorge[et al.] (2022)
        Vehicle trajectories extracted from traffic video sequences can be helpful for many purposes. In particular, the analysis of detected anomalous trajectories may enhance drivers’ safety. This work proposes a methodology to ...
      • Aplicación web para la gestión automática de publicaciones de grupos de investigación. 

        López Sánchez, Diego Miguel (2024)
        La tarea de los investigadores en cualquier campo de la ciencia da lugar a una gran cantidad de publicaciones en foros de divulgación, revistas, congresos de reconocido prestigio para dar a conocer su trabajo durante ...
      • Automate d lab eling of training data for improved object detection in traffic videos by fine-tuned deep convolutional neural networks 

        García Aguilar, Iván; García-González, Jorge; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (Elsevier, 2023)
        The exponential increase in the use of technology in road management systems has led to real-time vi- sual information in thousands of locations on road networks. A previous step in preventing or detecting accidents involves ...
      • Automated detection of vehicles with anomalous trajectories in traffic surveillance videos. 

        Fernández-Rodríguez, Jose David; García-González, Jorge; Benítez-Rochel, RafaelaAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Ramos-Jiménez, Gonzalo PascualAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga[et al.] (IOS Press, 2023-05-10)
        Video feeds from traffic cameras can be useful for many purposes, the most critical of which are related to monitoring road safety. Vehicle trajectory is a key element in dangerous behavior and traffic accidents. In this ...
      • Background modeling by shifted tilings of stacked denoising autoencoders 

        García-González, Jorge; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2019-06-18)
        The effective processing of visual data without interruption is currently of supreme importance. For that purpose, the analysis system must adapt to events that may affect the data quality and maintain its performance level ...
      • Background modeling for video sequences by stacked denoising autoencoders 

        García-González, Jorge; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2018-11-05)
        Nowadays, the analysis and extraction of relevant information in visual data flows is of paramount importance. These images sequences can last for hours, which implies that the model must adapt to all kinds of circumstances ...
      • Background subtraction by probabilistic modeling of patch features learned by deep autoencoders. 

        García-González, Jorge; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2020-08-01)
        Video sequence analysis systems must be able to operate for long periods of time and they must attempt that the different events that can affect the quality of the input data do not diminish the performance of the system ...
      • Blood Cell Classification Using the Hough Transform and Convolutional Neural Networks 

        Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Rodríguez-Espinosa, María Jesús; Thurnhofer-Hemsi, Karl (Springer, 2018)
        The detection of red blood cells in blood samples can be crucial for the disease detection in its early stages. The use of image processing techniques can accelerate and improve the effectiveness and efficiency of this ...
      • Clasificación de imágenes de lesiones cutáneas mediante redes neuronales convolucionales y aprendizaje profundo 

        García Ciudad, Javier (2020-11-24)
        El cáncer de piel es el cuarto tipo de cáncer más común en el mundo, el primero en numerosos países y, además, se espera que su incidencia aumente en las próximas décadas. Gran parte de ellos presentan una mortalidad ...
      • Clasificación de noticias mediante técnicas de procesamiento del lenguaje natural basadas en aprendizaje profundo. 

        Doblas Martín, Pedro (2021-06)
        Uno de los sectores más afectados por la evolución tecnológica de los últimos años es el periodístico, debido tanto al auge del periodismo digital como a la personalización de contenidos mediante el estudio de perfiles de ...
      • Color Space Selection for Self-Organizing Map Based Foreground Detection in Video Sequences 

        López-Rubio, Francisco Javier; López-Rubio, EzequielAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Domínguez, Enrique; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga (2014-07-18)
        The selection of the best color space is a fundamental task in detecting foreground objects on scenes. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution ...
      • Content Based Image Retrieval by Convolutional Neural Networks 

        Hamreras, Safa; Benítez-Rochel, RafaelaAutoridad Universidad de Málaga; Boucheham, Bachir; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2019-06-07)
        In this paper, we present a Convolutional Neural Network (CNN) for feature extraction in Content based Image Retrieval (CBIR). The proposed CNN aims at reducing the semantic gap between low level and high-level features. ...
      • Content-based image retrieval by ensembles of deep learning object classifiers. 

        Hamreras, Safa; Boucheham, Bachir; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Benítez-Rochel, RafaelaAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga (2020-05-20)
        Ensemble learning has demonstrated its efficiency in many computer vision tasks. In this paper, we address this paradigm within content based image retrieval (CBIR). We propose to build an ensemble of convolutional neural ...
      • Continuous Chemical Classification in Uncontrolled Environments with Sliding Windows. 

        González-Monroy, JavierAutoridad Universidad de Málaga; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Gonzalez-Jimenez, Antonio Javier (Elsevier, 2016-09-03)
        Electronic noses are sensing devices able to classify chemical volatiles according to the readings of an array of non-selective gas sensors and some pattern recognition algorithm. Given their high versatility to host ...
      • Deep Learning networks with p-norm loss layers for spatial resolution enhancement of 3D medical images 

        Thurnhofer-Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga; Roé-Vellvé, Núria; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga (2019-06-19)
        Nowadays, obtaining high-quality magnetic resonance (MR) images is a complex problem due to several acquisition factors, but is crucial in order to perform good diagnostics. The enhancement of the resolution is a typical ...
      • Deep Learning Neural Networks to Improve Small Object Detection. 

        García Aguilar, Iván (UMA Editorial, 2024)
        This Ph.D. thesis is about enhancing small object detection and segmentation in road video sequences by integrating convolutional neural networks (CNNs) and super-resolution (SR) techniques. In response to the increasing ...
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
         

         

        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA