- RIUMA Principal
- Listar por autor
Listar por autor "Antequera-Gómez, María Luisa"
Mostrando ítems 1-2 de 2
-
A deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case study
Picornell Rodríguez, Antonio; Hurtado-Requena, Sandro José; Antequera-Gómez, María Luisa; Barba-González, Cristóbal; Ruiz-Mata, Rocío; De Gálvez-Montañez, Enrique; Recio-Criado, María Marta; Trigo-Pérez, María del Mar; Aldana-Montes, José Francisco; Navas-Delgado, Ismael[et al.] (Elsevier, 2023-11-16)Airborne pollen can trigger allergic rhinitis and other respiratory diseases in the synthesised population, which makes it one of the most relevant biological contaminants. Therefore, implementing accurate forecast systems ... -
Artificial intelligence for automatically detecting animals in camera trap images: a combination of MegaDetector and YOLOv5
Mulero-Pázmány, Margarita Cristina; Hurtado, Sandro; Cardas Ezeiza, Cristian; Antequera-Gómez, María Luisa; Barba-González, Cristóbal; Romero-Pacheco, David; Díaz-Ruiz, Francisco; Navas-Delgado, Ismael; Real-Giménez, Raimundo[et al.] (2023)Camera traps have gained high popularity for collecting animal images in a cost-effective and non-invasive manner, but manually examining these large volumes of images to extract valuable data is a laborious and costly ...