
- RIUMA Principal
- Listar por autor
Listar por autor "Cardas Ezeiza, Cristian"
Mostrando ítems 1-4 de 4
-
Análisis supervisado de imágenes aéreas usando técnicas de aprendizaje profundo aplicado a detección de cultivos tropicales
Cardas Ezeiza, Cristian (2020-11-10)En la actualidad, el enorme volumen de datos accesibles sobre diversas áreas de conocimiento y los modelos matemáticos, junto al poder de procesamiento de los computadores, están dando pie a numerosas aplicaciones que ... -
Artificial intelligence for automatically detecting animals in camera trap images: a combination of MegaDetector and YOLOv5
Mulero-Pázmány, Margarita Cristina; Hurtado, Sandro; Cardas Ezeiza, Cristian; Antequera-Gómez, María Luisa; Barba-González, Cristóbal; Romero-Pacheco, David
; Díaz-Ruiz, Francisco; Navas-Delgado, Ismael
; Real-Giménez, Raimundo
[et al.] (2023)
Camera traps have gained high popularity for collecting animal images in a cost-effective and non-invasive manner, but manually examining these large volumes of images to extract valuable data is a laborious and costly ... -
GreenSenti-IA: A Workflow Approach for Biodiversity Analysis in Urban Green Area Monitoring.
Benítez-Hidalgo, Antonio; García-Nieto, José Manuel; Aldana Martín, José Francisco; Cardas Ezeiza, Cristian; Aldana-Montes, José Francisco
; Navas-Delgado, Ismael
[et al.] (2023)
Nowadays, efficient urban planning cannot be conceived without carefully considering its ecological footprint. In particular, the smart design and monitoring of urban green areas is an important challenge in modern cities ... -
On the performance of SQL scalable systems on Kubernetes: a comparative study
Cardas Ezeiza, Cristian; Aldana Martín, José Francisco; Burgueño Romero, Antonio Manuel; Nebro-Urbaneja, Antonio Jesús; Mateos, Jose M.; Sánchez-Martínez, Juan José[et al.] (2022-09-09)
The popularization of Hadoop as the the-facto standard platform for data analytics in the context of Big Data applications has led to the upsurge of SQL-on-Hadoop systems, which provide scalable query execution engines ...