- RIUMA Principal
- Listar por autor
Listar por autor "López-García, Guillermo"
Mostrando ítems 1-6 de 6
-
Advancing Deep Learning Solutions in the Era of Precision Medicine: From Omics Data to Clinical Narratives.
López-García, Guillermo (UMA Editorial, 2024)The main objective of this PhD Thesis is the development of deep learning (DL)-based approaches to tackle inherently complex predictive problems in the domain of precision medicine. We have focused on two of the most ... -
Aprendizaje profundo aplicado a la bioinformática
López-García, Guillermo (2018-12-17)Actualmente, el aprendizaje profundo (deep learning ) constituye una de las tecnologías del campo de la Inteligencia Artificial (IA) que goza de mayor éxito y popularidad. En campos como el procesamiento de imágenes y el ... -
Detection of tumor morphology mentions in clinical reports in Spanish using transformers
López-García, Guillermo; Jerez-Aragonés, José Manuel; Ribelles, Nuria; Alba-Conejo, Emilio; Veredas-Navarro, Francisco Javier (Springer, 2021)The aim of this study is to systematically examine the performance of transformer-based models for the detection of tumor morphology mentions in clinical documents in Spanish. For this purpose, we analyzed 3 transformer ... -
Explainable clinical coding with in-domain adapted transformers
López-García, Guillermo; Jerez-Aragonés, José Manuel; Ribelles, Nuria; Alba-Conejo, Emilio; Veredas-Navarro, Francisco Javier (Elsevier, 2023)Background and Objective: Automatic clinical coding is a crucial task in the process of extracting relevant in-formation from unstructured medical documents contained in Electronic Health Records (EHR). However, most of ... -
Named Entity Recognition for De-identifying Real-World Health Records in Spanish.
López-García, Guillermo; Moreno-Barea, Francisco J.; Mesa, Héctor; Jerez-Aragonés, José Manuel; Ribelles, Nuria; Alba-Conejo, Emilio; Veredas-Navarro, Francisco Javier[et al.] (Springer Nature, 2023)A growing and renewed interest has emerged in Electronic Health Records (EHRs) as a source of information for decision-making in clinical practice. In this context, the automatic de-identification of EHRs constitutes an ... -
A transfer-learning approach to feature extraction from cancer transcriptomes with deep autoencoders
López-García, Guillermo; Jerez-Aragonés, José Manuel; Franco, Leonardo; Veredas-Navarro, Francisco Javier (2019-06-18)The diagnosis and prognosis of cancer are among the more challenging tasks that oncology medicine deals with. With the main aim of fitting the more appropriate treatments, current personalized medicine focuses on using ...