- RIUMA Principal
- Listar por autor
Listar por autor "Molina-Cabello, Miguel Ángel"
Mostrando ítems 1-20 de 55
-
Anomalous trajectory detection for automated traffic video surveillance
Fernández-Rodríguez, Jose David; García-González, Jorge; Benítez-Rochel, Rafaela; Molina-Cabello, Miguel Ángel; López-Rubio, Ezequiel; García-González, Jorge[et al.] (2022)Vehicle trajectories extracted from traffic video sequences can be helpful for many purposes. In particular, the analysis of detected anomalous trajectories may enhance drivers’ safety. This work proposes a methodology to ... -
Aplicación de recomendaciones de moda basada en redes de aprendizaje profundo
Pineda Palencia, Ismael (2019-12-10)Los sistemas de búsqueda tradicionales de las webs o aplicaciones móviles que realizan las búsquedas mediante un simple texto han evolucionado, dando paso así a los nuevos sistemas basados en la búsqueda por imágenes. En ... -
Aplicación web para la gestión automática de publicaciones de grupos de investigación.
López Sánchez, Diego Miguel (2024)La tarea de los investigadores en cualquier campo de la ciencia da lugar a una gran cantidad de publicaciones en foros de divulgación, revistas, congresos de reconocido prestigio para dar a conocer su trabajo durante ... -
Are learning styles useful? A new software to analyze correlations with grades and a case study in engineering
Molina-Cabello, Miguel Ángel; Thurnhofer-Hemsi, Karl; Molina Cabello, David; Palomo-Ferrer, Esteban José (Wiley, 2023)Knowing student learning styles represents an effective way to design the most suitable methodology for our students so that performance can improve with less effort for both students and teachers. However, a methodology ... -
Automated detection of vehicles with anomalous trajectories in traffic surveillance videos.
Fernández-Rodríguez, Jose David; García-González, Jorge; Benítez-Rochel, Rafaela; Molina-Cabello, Miguel Ángel; Ramos-Jiménez, Gonzalo Pascual; López-Rubio, Ezequiel[et al.] (IOS Press, 2023-05-10)Video feeds from traffic cameras can be useful for many purposes, the most critical of which are related to monitoring road safety. Vehicle trajectory is a key element in dangerous behavior and traffic accidents. In this ... -
Background modeling for video sequences by stacked denoising autoencoders
García-González, Jorge; Ortiz-de-Lazcano-Lobato, Juan Miguel; Luque-Baena, Rafael Marcos; Molina-Cabello, Miguel Ángel; López-Rubio, Ezequiel (2018-11-05)Nowadays, the analysis and extraction of relevant information in visual data flows is of paramount importance. These images sequences can last for hours, which implies that the model must adapt to all kinds of circumstances ... -
Blood Cell Classification Using the Hough Transform and Convolutional Neural Networks
Molina-Cabello, Miguel Ángel; López-Rubio, Ezequiel; Luque-Baena, Rafael Marcos; Rodríguez-Espinosa, María Jesús; Thurnhofer-Hemsi, Karl (Springer, 2018)The detection of red blood cells in blood samples can be crucial for the disease detection in its early stages. The use of image processing techniques can accelerate and improve the effectiveness and efficiency of this ... -
CADICA: A new dataset for coronary artery disease detectionby using invasive coronary angiograph
Jiménez-Partinen, Ariadna; Molina-Cabello, Miguel Ángel; Thurnhofer-Hemsi, Karl; Palomo-Ferrer, Esteban José; Rodríguez Capitán, Jorge; Molina Ramos, Ana Isabel; Jiménez-Navarro, Manuel Francisco[et al.] (Wiley, 2024)Coronary artery disease (CAD) remains the leading cause of death globally and invasive coronary angiography (ICA) is considered the gold standard of anatomical imaging evaluation when CAD is suspected. However, risk ... -
Clasificación de imágenes histopatológicas de cáncer de mama utilizando técnicas de aprendizaje profundo
Andújar Zambrano, Paula (2022-09)En la actualidad, el uso de algoritmos clasificadores para el diagnóstico del cáncer es una práctica extendida en la rama de la oncología. Existen una gran cantidad de algoritmos y modelos que ayudan a los profesionales ... -
Comparación de marcos de trabajo de Aprendizaje Profundo para la detección de objetos
Benito-Picazo, Jesús; Thurnhofer Hemsi, Karl; Molina-Cabello, Miguel Ángel; Domínguez, Enrique (2018-11-08)Muchas aplicaciones en visión por computador necesitan de sistemas de detección precisos y eficientes. Esta demanda coincide con el auge de la aplicación de técnicas de aprendizaje profundo en casi todos las áreas del ... -
Content Based Image Retrieval by Convolutional Neural Networks
Hamreras, Safa; Benítez-Rochel, Rafaela; Boucheham, Bachir; Molina-Cabello, Miguel Ángel; López-Rubio, Ezequiel (2019-06-07)In this paper, we present a Convolutional Neural Network (CNN) for feature extraction in Content based Image Retrieval (CBIR). The proposed CNN aims at reducing the semantic gap between low level and high-level features. ... -
Content-based image retrieval by ensembles of deep learning object classifiers.
Hamreras, Safa; Boucheham, Bachir; Molina-Cabello, Miguel Ángel; Benítez-Rochel, Rafaela; López-Rubio, Ezequiel (2020-05-20)Ensemble learning has demonstrated its efficiency in many computer vision tasks. In this paper, we address this paradigm within content based image retrieval (CBIR). We propose to build an ensemble of convolutional neural ... -
Deep Learning networks with p-norm loss layers for spatial resolution enhancement of 3D medical images
Thurnhofer-Hemsi, Karl; López-Rubio, Ezequiel; Roé-Vellvé, Núria; Molina-Cabello, Miguel Ángel (2019-06-19)Nowadays, obtaining high-quality magnetic resonance (MR) images is a complex problem due to several acquisition factors, but is crucial in order to perform good diagnostics. The enhancement of the resolution is a typical ... -
Desarrollo de una aplicación web para la gestión de expedientes de un bufete de abogados
Molina Cabello, David (2018-02-22)La idea de este proyecto es la creación de una aplicación web que permita al público contactar vía internet con su abogado y seguir online la evolución de su caso hasta su solución final. Para ello, el cliente creará en ... -
Detección automática de glóbulos rojos mediante la transformada de Hough
Rodríguez Espinosa, María Jesús (2018-03-16)El presente Trabajo de Fin de Grado consiste en la creación de un programa en MATLAB que consiga la detección y recuento de glóbulos rojos en imágenes de microscopía óptica de sangre. Este estudio tiene como fin obtener, ... -
Diseño y desarrollo de una aplicación web para alojar algoritmos de reconocimiento de enfermedades dermatológicas
Gordillo Sánchez, Pablo (2022-09)Los modelos de aprendizaje automático son ampliamente utilizados por la comunidad informática desde hace años para realizar tareas de clasificación de imágenes. Una de sus grandes ventajas frente a otros tipos de algoritmos ... -
Encoding generative adversarial networks for defense against image classification attacks
Rodríguez Rodríguez, José Antonio; Pérez Bravo, José María; García-González, Jorge; Molina-Cabello, Miguel Ángel; Thurnhofer-Hemsi, Karl; López-Rubio, Ezequiel[et al.] (2022)Image classification has undergone a revolution in recent years due to the high performance of new deep learning models. However, severe security issues may impact the performance of these systems. In particular, adversarial ... -
Enhanced transfer learning model by image shifting on a square lattice for skin lesion malignancy assessment
Molina-Cabello, Miguel Ángel; Thurnhofer Hemsi, Karl; Maza Quiroga, Rosa María; Domínguez, Enrique; López-Rubio, Ezequiel; Molina-Cabello, Miguel Ángel[et al.] (2021)Skin cancer is one of the most prevalent diseases among people. Physicians have a challenge every time they have to determine whether a diseased skin is benign or malign. There exist clinical diagnosis methods (such as ... -
Feature density as an uncertainty estimator method in the binary classification mammography images task for a supervised deep learning model
Hernández Vásquez, Marco A.; Fuentes Fino, Ricardo Javier; Calderón-Ramírez, Saúl; Domínguez-Merino, Enrique; López-Rubio, Ezequiel; Molina-Cabello, Miguel Ángel[et al.] (2022)Labeled medical datasets may include a limited number of observations for each class, while unlabeled datasets may include observations from patients with pathologies other than those observed in the labeled dataset. This ...