
Fundamenta Informaticae XXX???XXX 1001–1017 1001

IOS Press

Low Disruption Transformations on Cyclic Automata

Gema M. Martı́n and Francisco J. Vico
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga

Severo Ochoa, 4, Parque Tecnológico de Andalucı́a,

E-29590 Campanillas - Málaga, Spain

gema,fjv@geb.uma.es

Jürgen Dassow
Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,

PSF 4120, D-39016 Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de

Abstract. We extend the edit operators of substitution, deletion, and insertion of a symbol over a
word by introducing two new operators (partial copy and partial elimination) inspired by biological
gene duplication. We define a disruption measure for an operator over a word and prove that whereas
the traditional edit operators are disruptive, partial copy and partial elimination are non-disruptive.
Moreover, we show that the application of only edit operators does not generate (with low disruption)
all the words over a binary alphabet, but this can indeed be done by combining partial copy and
partial elimination with the substitution operator.

1. Introduction

Edit operators of substitution, deletion, and insertion of a symbol over a word have been extensively
studied in literature and have been applied to many different kinds of problems. These are biologically
inspired operators that are also known as point mutation operators [2, 3].

They have been applied to the problem of transforming a word of finite length into another word.
Moreover, this very case has been studied expanding the set of edit operators. For example, in [10],
the set of edit operators is extended to include the squashing and expansion operators. Whereas in the
squashing operator two (or more) contiguous symbols of the first word can be transformed into a single
symbol of the second word, in the expansion operator a single symbol in the first word may be expanded
into two or more contiguous symbols of the second word. In [11], the edit operators together with the

1002 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

straightforward transposition of adjacent symbols are used in pattern recognition. The theory of error-
correcting codes of variable lengths treats errors that can be modelled as substitutions, insertions or
deletions of symbols ([7, 5]).

Furthermore, there are many studies that endeavour to explain a number of bioinspired evolutionary
processes using edit operators. In [3], the concept of an evolutionary system is introduced. This is a
language generating device inspired by the evolution of cell populations, and it is based on edit operators
and string divisions. The purpose of this system is to model some properties of evolving cell communities
at the syntactical level. In [2], a computational device called network of evolutionary processors is
proposed. It is based on evolutionary rules and communication within a network. Such evolutionary
rules are substitution, deletion, and insertion rules. The generative power of evolutionary networks
where only two types of such rules are allowed is discussed in [1]. There have been several studies of
molecular evolution models that incorporate base substitutions, insertions, and deletions ([13, 8]).

However, to our knowledge, there are not many studies that analyze the disruptive effects of the
edit operators. Since non-random search methods benefits from a low disruption in the application of
operators to refine solutions, an analysis of how disruptive these operators are, and the proposal of new
low disruptive operators is necessary.

In this paper, such a study of disruption of the edit operators is done. In order to be able to use the
edit operators, we need to use devices that can be represented as words. One of the simplest devices
that can be represented in this way is the cyclic unary deterministic finite automata (CUDFAs, for short).
With the purpose of studying the disruption of the edit operators, we define a disruptive measure by using
the similarity measure for CUDFAs that has been introduced in [4]. A CUDFA will be given directly
from its graphical expression (Figure 1), and represented as a binary word, w ∈ {0, 1}+, where the
zeros represent the non-accepting states of the automaton, and the ones represent the accepting states
of the automaton. We define the disruption of an operator over a CUDFA w as the portion of words
that are accepted by the initial CUDFA and are not accepted by the resultant CUDFA after applying
an operator and vice versa. We show that by iterative application of edit operators we cannot generate
all words if we require that any operator is accompanied by low disruption. We define two new non-
disruptive bioinspired operators. If we combine them with the substitution operator, then starting from
any w ∈ {0, 1}+, we obtain all the words v ∈ {0, 1}+ that accept a non-empty language where each step
has low disruption.

The proposed non-disruptive operators have been inspired by gene duplication, an important genetic
mechanism that plays an important role in evolution [9, 14]. Considering the binary word as a genome,
duplication simply adds redundant information (in our case, to w ∈ {0, 1}+), keeping the associated
phenotype (the language accepted by w) unchanged. The genomic portion gained after gene duplication
provides a substrate for coding new functions (proteins, in biology) by future alterations: mutations,
additions, deletions, or even being totally or partially copied/eliminated again. In particular, partial
copy/elimination may introduce significant differences in the genome, but keeping the fitting level of the
phenotype.

2. Cyclic unary deterministic automata

The reader is assumed to be familiar with the basic concepts of formal language theory. For further
information the reader is referred to [12]. Here, only some notations used in this paper will be recalled.

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1003

In the sequel, we will consider that 0 ∈ N. For the cases in which zero is not included, we will write
N+. Throughout the paper, V = {0, 1} and h is the mapping V → V with h(1) = 0 and h(0) = 1. For
w ∈ V ∗ and x ∈ V , we denote the length of w and the number of occurrences of x in w by |w| and |w|x.

In this paper we work with languages over a unary alphabet. LetA be a deterministic finite automaton
over a unary alphabet (for short, UDFA) that represents an infinite regular language. As the alphabet is
unary, each UDFA will have the structure that is shown in Figure 1. Its states are divided into two groups,
the first one, that we call initial phase, will contain the states from the first state to the i − 1 state, the
second one, that we call loop, will contain the rest of the states. The initial phase can be empty in those
automata, whose last state transits to its initial state.

//WVUTPQRS0 //WVUTPQRS1 // . . . //WVUTPQRSi // WVUTPQRSi+ 1 // . . . //WVUTPQRSn

xx

Figure 1: Structure of a UDFA

A UDFA can be represented as a vector (v, w) where v ∈ {0, 1}∗ describes the initial phase and
w ∈ {0, 1}+ describes the loop. The zeros represent the non-accepting states of the automaton, and the
ones represent the accepting states of the automaton.

A UDFA is cyclic (for short CUDFA) if its initial phase is empty. Then, instead of (λ,w), we
represent the CUDFA as a word w ∈ {0, 1}+. A language accepted by some CUDFA will be called a
cyclic unary regular language (for short CURL).

For a word w = x1x2 . . . xn ∈ {0, 1}+, we set B(w) = {i | xi = 1}. Let w describe a CUDFA, and
let B(w) = {b1, b2, . . . , bm}. It is clear that bi < |w| for 1 ≤ i ≤ m, and the regular set accepted by the
CUDFA is

M = {bi + |w|k | 1 ≤ i ≤ m, k ∈ N}.

That is, M is union of a finite set of disjoint successions of natural numbers. In the sequel we use the
notation

M = {{bi + |w|k}k∈N}i=1,...,m. (1)

IfM is the union of the successionsA1, A2, . . . , Am, then we also say thatAi is an element ofM . In this
paper we consider a CUDFA as a genotype, and its accepted language as the corresponding phenotype.

3. Definitions

We first define some operators over CUDFAs which are inspired by mutations, insertions, deletions and
copying of molecules which occur in the evolution of biological systems.

For any natural numbers m, p > 0, we set

T (m, p) = {w | w = (x1x2 . . . xm)p, xi ∈ V for 1 ≤ i ≤ m}.

Definition 3.1. For any natural numbers n,m, p > 0, i with 1 ≤ i ≤ n, q > 1, and y ∈ V we define

1004 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

• the addition operator Ai,y : V n −→ V n+1 as

Ai,y(x1x2 . . . xn) = x1x2 . . . xiyxi+1 . . . xn,

• the partial copy operator PCp : T (m, p) −→ T (m, p+ 1) as

PCp((x1x2 . . . xm)p) = (x1x2 . . . xm)p+1,

• the elimination operator Ei : V
n −→ V n−1 as

Ei(x1x2 . . . xn) = x1x2 . . . xi−1xi+1 . . . xn,

• the partial elimination operator PEq : T (m, q) −→ T (m, q − 1) as

PEq((x1x2 . . . xm)q) = (x1x2 . . . xm)q−1,

• the mutation operator Mi : V
n −→ V n as

Mi(x1x2 . . . xn) = x1x2 . . . h(xi) . . . xn.

Let A, E , M, PC, and PE , be the sets of all addition, elimination, mutation, partial copy, and partial
elimination operators, respectively. The operators in A, E andM are called the edit operators.

We mention that all these operators are defined on the genotype. In nature, the rate of fixation of those
low-disruption mutations is higher than the rate of fixation of those mutations that change the original
phenotype too much. Therefore, we need a measure for the similarity of CURLs which represent the
phenotypes.

In order to define the disruption of an operator over an automaton, we use the measure of similarity
for CURLs defined in [4]. According to this measure, the disruptiveness of applying an operation to
an automaton A to obtain an automaton B will be described by two rational numbers. The first one
represents the portion of the words accepted by A but not by B, and the second one represents the
portion of words accepted by B but not by A. This is analogous to the concepts of Recall and Precision
in Information Retrieval. The precision is the fraction of the documents retrieved that are relevant to the
user’s information needs, while the recall is the fraction of the documents that are relevant to the query
and are successfully retrieved.

Definition 3.2. For two successions A = {a + bn}n∈N and B = {c + dk}k∈N, the overlap ISOA,B of
A and B (for Infinite Successions Overlap) is defined as:

ISOA,B =

gcd(b, d)

d
if A ∩B 6= ∅

0 in other case
.

Given two CURLs M and N , we have that M ∩ N 6= ∅ if and only if there exist at least A ∈ M and
B ∈ N such that A ∩B 6= ∅.

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1005

Definition 3.3. Let M and N be two CURLs, and let n be the number of successions of M . We define
the overlap URLOM,N of M with N (for Unary Regular Languages Overlap) as

URLOM,N =

1

n

∑
A∈M
B∈N

ISOA,B if M ∩N 6= ∅

0 in other case

.

Then, we can say that the measure ISOM,N between CURLs gives the portion of strings in M which
also belong to N . In [4], it is proven that the previous definition is independent on the choice of the
successions used to represents languages M and N and also [4] includes the following statement.

Lemma 3.1. Let M and N be CURLs. URLOM,N = 1 if and only if M ⊆ N .

Now we are in the position to define a notion which measures the change of the phenotypes obtained
though the application of an operator.

Definition 3.4. Let w ∈ V + be a CUDFA and O ∈ M ∪ A ∪ E ∪ PC ∪ PE be an operator such that
O(w) is defined. Let L and L′ be the CURLs represented by w and O(w), respectively. We define the
disruption D(O,w) of the operator O over w as

D(O,w) = (1− URLOL,L′ , 1− URLOL′,L).

That is, the disruption of an operator O over w is a pair (a, b) with a, b ∈ R, where a is the portion
of words that are accepted by w and are not accepted by O(w) and b is the portion of words that are
accepted by O(w) and are not accepted by w.

When D(O,w) = (0, 0) for a given operator O and all w, we will say that the operator O is not
disruptive or not destructive.

4. Determination of the disruption of the operators

In this section, we study the disruption of the operators that have been defined in the previous section.
First of all, let us see a result that we will use in the sequel.

Lemma 4.1. Let w ∈ V + be a CUDFA. The CURLs represented by w and by wn, where n ∈ N and
n > 1, are the same.

Proof:
Let C = {{ai + |w|k}k∈N}i=1,...,m be the CURL represented by w, where ai{0, . . . , |w| − 1} for any
1 ≤ i ≤ m. Therefore, the CURL represented by wn is

C ′ =

n−1⋃
j=0

{{(ai + j|w|) + n|w|k}k∈N}i=1,...,m.

Since URLOC,C′ = 1 and URLOC′,C = 1, by Lemma 3.1, C = C ′. ut

1006 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

Note A string with length s is accepted by a CUDFA w = x0x1 . . . xk−1 with xi ∈ {0, 1} for any
i = 0, . . . , k − 1 if and only if xs (mod k) = 1. If w′ = wn for some natural number n > 1, then the
acceptance is given by xs (mod kn) = x(s (mod kn)) (mod k) = xs (mod k) = 1.

The next corollaries follow immediately.

Corollary 4.1. Let w ∈ V + be a CUDFA. The regular languages represented by wn and by wm, where
n,m ∈ N and n,m > 1, coincide.

Corollary 4.2. For any p ≥ 1 and q > 1, PCp and PEq are not disruptive operators.

Let us study the disruption of the remaining operators.

Lemma 4.2. Let w ∈ V + be a CUDFA and i a natural number with 1 ≤ i ≤ |w|. If |w|1 = m, then

• D(Mi, w) = (0,
1

m+ 1
) if we mutate a zero into a one,

• D(Mi, w) = (
1

m+ 1
, 0) if we mutate a one into a zero.

Proof:
Let C = {{ai+ |w|k}k∈N}i=1,...,m be the CURL represented by w, where ai ∈ {0, . . . , |w| − 1} for any
1 ≤ i ≤ m.

If we mutate a zero in the position i, the CURL represented by Mi(w) is

C ′ = {{ai + |w|k}k∈N}i=1,...,m ∪ {b+ |w|k}k∈N

with 0 ≤ b ≤ |w| − 1. In this case, since a non-accepting state has been changed into an accept-
ing state in w, a portion of new words has been added to C. Since, URLOC′,C =

m

m+ 1
(because

gcd(|w|, |w|) = |w| and C has only m subsuccessions of the m + 1 that C ′ has) and URLOC,C′ = 1
(because gcd(|w|, |w|) = |w| and C ′ has m subsuccessions of the m that C has),

D(Mi, w) = (0,
1

m+ 1
).

If we mutate a one in the position i, the CURL represented by Mi(w) is

C ′ = {a1 + |w|k}k∈N ∪ · · · ∪ {ai−1 + |w|k}k∈N
∪ {ai+1 + |w|k}k∈N ∪ · · · ∪ {am + |w|k}k∈N.

In this case, since an accepting state has been changed into a non-accepting state in w, a portion of words
has been removed from C. Since, URLOC,C′ =

m

m+ 1
and URLOC′,C = 1,

D(Mi, w)) = (
1

m+ 1
, 0).

ut

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1007

Lemma 4.3. For any CUDFA w ∈ V + with |w|1 = m, any natural number i with 1 ≤ i ≤ |w|, and any

y ∈ V , D(Ai,y, w) = (1− m+ y

|w|+ 1
, 1− m

|w|
).

Proof:
Let C = {{ai + |w|k}k∈N}i=1,...,s ∪ {{bj + |w|k}k∈N}j=1,...,r be the CURL represented by w, where
ai ∈ {0, . . . , i− 1} for any 1 ≤ i ≤ s and bj ∈ {i, . . . , |w| − 1} for any 1 ≤ j ≤ r. Then, m = s+ r.

Case y = 1. The CURL represented by Ai,1(w) is

C ′ = {{ai + (|w|+ 1)k}k∈N}i=1,...,s ∪ {i+ (|w|+ 1)k}k∈N
∪ {{(bj + 1) + (|w|+ 1)k}k∈N}j=1,2,...,r.

Let us compute that portion of words accepted by w that are still accepted by Ai,1(w). We get that

URLOC,C′ =
m+ 1

|w|+ 1
(because gcd(|w|, |w|+1) = 1, A∩B 6= ∅ for any A ∈ C and any B ∈ C ′, and

C ′ has m+ 1 subsuccessions).
Let us compute that portion of words accepted by Ai,1(w) that are also accepted by w. We get

URLOC′,C =
m

|w|
(because gcd(|w|, |w|+ 1) = 1, A ∩ B 6= ∅ for any A ∈ C and any B ∈ C ′, and C

has m subsuccessions). Therefore, D(Ai,1, w) = (1− m+ 1

|w|+ 1
, 1− m

|w|
).

Case y = 0. The CURL represented by Ai,0(w) is

C ′ = {{ai + (|w|+ 1)k}k∈N}i=1,...,s ∪ {{(bj + 1) + (|w|+ 1)k}k∈N}j=1,...,r.

Let us compute that portion of words accepted by w that are still continue being accepted by Ai,0(w).
We get URLOC,C′ =

m

|w|+ 1
.

Let us compute that portion of words accepted by Ai,0(w) that are also accepted by w. We get
URLOC′,C =

m

|w|
. Therefore, D(Ai,0, w) = (1− m

|w|+ 1
, 1− m

|w|
). ut

Lemma 4.4. Let w ∈ V + be a CUDFA, |w|1 = m ≥ 1, i a natural number with 1 ≤ n ≤ |w|, and y the

i-th letter of w. Then D(Ei, w) = (1− m− y
|w| − 1

, 1− m

|w|
).

Proof:
Let C = {{ai + |w|k}k∈N}i=1,...,s ∪ {{bj + |w|k}k∈N}j=1,...,r be the CURL represented by w, where
ai ∈ {0, . . . , i− 1} for 1 ≤ i ≤ s and bj ∈ {i, . . . , |w| − 1} for 1 ≤ j ≤ r. Then, m = s+ r.

If we eliminate a one at position i, that is, y = 1, the CURL represented by Ei(w) is

C ′ = {{ai + (|w| − 1)k}k∈N}i=1,...,s−1 ∪ {{(bj − 1) + (|w| − 1)k}k∈N}j=1,...,r.

Let us compute that portion of words accepted by w that are still accepted by Ei(w). We get that

URLOC,C′ =
m− 1

|w| − 1
(because gcd(|w|, |w| − 1) = 1, A∩B 6= ∅ for any A ∈ C and any B ∈ C ′, and

C ′ has m− 1 subsuccessions).

1008 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

Furthermore, URLOC′,C =
m

|w|
(because gcd(|w|, |w| − 1) = 1, A∩B 6= ∅ for any A ∈ C and any

B ∈ C ′, and C has m subsuccessions). Therefore, D(Ei, w) = (1− m− 1

|w| − 1
, 1− m

|w|
).

If we eliminate a zero in position i, that is, y = 0, the CURL represented by Ei(w) is

C ′ = {{ai + (|w| − 1)k}k∈N}i=1,...,s ∪ {{(bj − 1) + (|w| − 1)k}k∈N}j=1,...,r.

Thus we have URLOC,C′ =
m

|w| − 1
and URLOC′,C =

m

|w|
. Therefore, finally we get D(Ei, w) =

(1− m

|w|+ 1
, 1− m

|w|
). ut

Therefore, the edit operators are disruptive operators. Moreover, for an edit operator, the disruption
is decreasing as the number of ones in the word is increasing.

5. Low disruptions and iterated application of operators

We now define the central notion of the paper.

Definition 5.1. Let the CUDFA w ∈ V +,O ⊆M∪A∪E ∪PC ∪PE , and a real number λ, 0 < λ < 1
be given.

i) We say that a word v can be obtained with a disruption strictly less than λ from w using O if there
exist operators O1, O2, . . . , Op ∈ O, p ≥ 0, such that

• v = Op(Op−1 . . . (O2(O1(w))) . . .) and

• D(Oi, Oi−1(. . . (O2(O1(w)) . . .)) < (λ, λ) for any 1 ≤ i ≤ p.

ii) By LD(w,O, λ) we denote the set of all words v which can be obtained with a disruption strictly
less than λ from w using O.

An important branch of the biological community supports the idea that during evolution gradual accu-
mulations of small genetic changes occur resulting in producing small alterations in the phenotype; this
permits the individual to stay adapted to the environment. From this point of view, those words which
can be obtained in such a way that in each step a low disruption occurs are the most interesting of the set
of all words which can be obtained from w by iterated applications of operations from O (e.g. [3], [1]
and other papers).

In Definition 5.1, we have made the natural supposition 0 < λ < 1. If λ = 1, then any sequence
of operators is an evolution with disruption at most 1, i.e., we allow all sequences which coincides with
the situation studied in previous papers. If λ = 0, no change of the phenotype is possible, which is not
of interest from the biological point of view. By the biological motivation, we are only interested in the

case of small λ, for instance λ =
1

100
. In the sequel we require 0 < λ ≤ 1

2
, which is sufficient from the

mathematical point of view to guarantee a low disruption.
The aim of the remaining part of this paper is the study of the sets LD(w,O, λ). We start with two

easy examples.

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1009

Let w = 10n for some n ≥ 2, 0 < λ <
1

2
and O = M∪A ∪ E . Then by Lemmas 4.2, 4.3, and

4.4, for any operator from O, we have D(w,O(w)) = (a, b) with a ≥ 1

2
or b ≥ 1

2
. Thus no word can

be obtained with a disruption at most λ using O from w. Since we allow that no operator has to be used,
LD(w,O, λ) = {w}.

Let w = 0n for some n ≥ 1, 0 < λ <
1

2
and O =M∪A ∪ E ∪ PC ∪ PE . It is easy to see that

operators fromM and of the form Ai,1 applied to w have a disruption at least
1

2
. Moreover, by operators

from PC and PE we can get all words only consisting of zeros with no disruption (see Corollary 4.2).
Hence LD(w,O, λ) = {0m | m ≥ 1}.

Obviously, the reason that in the first example no operator has low disruption comes from the very
small number of ones. If we change this situation, LD(w,O, λ) can be non-empty and contain infinitely
many words, as can be seen from the following theorem.

Theorem 5.1. Let w ∈ V + be a CUDFA and 0 < λ ≤ 1

2
such that

1

|w|1 + 1
< λ, and let O =

M∪A∪ E . Then

LD(w,O, λ) = {v | |v|0 > 0,
1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof:
Let us suppose |w|0 = t and |v|0 = q for some t, q ≥ 0 and let us consider the following finite sequence
of operators:

• By O1, O2, . . . , Ot ∈M we mutate all the zeros of w. Therefore,
Ot(Ot−1 . . . (O1(w)) . . .) = 1|w|.

• Let b = ||v| − |w||.

– If |w| ≤ |v|, we choose Ot+1, Ot+2, . . . , Ot+b ∈ A and get
Ot+b(. . . (Ot+1(1

|w|)) . . .) = 1|v|.

– If |w| > |v|, we choose Ot+1, Ot+2, . . . , Ot+b ∈ E and obtain
Ot+b(. . . (Ot+1(1

|w|)) . . .) = 1|v|.

• By Ot+b+1, Ot+b+2, . . . , Ot+b+q ∈ M we mutate all the positions in which 1|v| has a one and v
has a zero and get Ot+b+q(. . . (Ot+b+1(1

|v|)) . . .) = v.

Therefore, we have Ot+b+q(Ot+b+q−1(. . . (O2(O1(w))) . . .)) = v.
Let us calculate the disruption each time that we apply one of the operators given above.
If 1 ≤ j ≤ t, then Oj increases the numbers of ones by 1. Thus, for 1 ≤ i ≤ t, we have

|Oi−1(. . . (O2(O1(w))) . . .)|1 > |w|1 and hence

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0,
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
)

≤ (0,
1

|w|1 + 1
) < (λ, λ).

1010 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

Let |w| ≤ |v| = b. Then, for t + 1 ≤ i ≤ t + b, Oi ∈ A adds a one to a word 1k for some k. Thus Oi

can be interpreted as a partial copy. By Corollary 4.2,

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ).

Let |w| > |v| = b. Then, for t + 1 ≤ i ≤ t + b, Oi ∈ E can be interpreted as a partial elimination.
By Corollary 4.2,

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ).

For t + b + 1 ≤ j ≤ t + b + q, the operator Oi does not change the |v|1 ones of v. Thus
|Oi−1(. . . (O2(O1(w))) . . .)|1 ≥ |v|1 + 1 and hence

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
, 0)

≤ (
1

|v|1 + 2
, 0) < (λ, λ).

Therefore, for 1 ≤ i ≤ t+ b+ q, we have D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) < (λ, λ).

Thus it is shown that all words v with |v|0 > 0 and
1

|v|1 + 2
< λ or 1m, m ≥ 1 (in this case the

operators O1, O2, . . . , Ot+b are sufficient), can be obtained.
It remains to show that further words cannot be generated by iterated applications of operators from

O, i.e., that words v with v 6= w, |v|0 > 0 and
1

|v|1 + 2
≥ λ cannot be obtained.

Assume that LD(w,O, λ) contains a word v with v 6= w, |v|0 > 0 and
1

|v|1 + 2
≥ λ. Let Z be the

set of all such v. We introduce a partial order on Z by v1 ≺ v2 if and only if
– |v1| < |v2| or
– |v1| = |v2| and |v1|1 < |v2|1. Let v be a minimal word with respect to ≺ in Z. Let O1, O2, . . . , Op be
the operators from O such that Op(. . . O2(O1(w)) . . .) = v and
D(Oj , Oj−1(. . . O2(O1(w)) . . .)) ≤ (λ, λ) for 1 ≤ j ≤ p. We consider the step v = Op(x) where
x = Op−1(. . . O2(O1(w)) . . .). Let m = |x|1.

We discuss some cases for Op.
Case 1. Op = Ai,0 for some i. If x 6= 1m for all m ≥ 1, then |x| < |v| and |x|0 > 0 in contrast to

our choice of v. Therefore x = 1m for some m ≥ 1. Then |x| = |x|1 = m and

D(Op, x) = (1− m

m+ 1
, 1− m

m
) = (

1

m+ 1
, 0) ≥ (

1

m+ 2
, 0) ≥ (λ, 0),

i.e., the last step does not satisfy the requirement for a disruption at most λ.
Case 2. Op = Ai,1. Then x satisfies |x| < |v| and |x|0 > 0 which contradicts our choice of v.
Case 3. Op = Ei for some i.
If we cancel a letter 1, then m = |v|1 + 1 and |x|0 ≥ 1 and |x| ≥ |x|1 + 1 = m+ 1.

Because m(|x| − m − 1) > −1 or equivalently 1 − m− 1

|x| − 1
>

1

m+ 1
, the first component of

D(Op, x) satisfies

1− m− 1

|x| − 1
>

1

m+ 1
=

1

|v|1 + 2
> λ

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1011

in contrast to the choice of the operators.
If we cancel a zero, then |x|0 ≥ 2 and hence |x| ≥ m + 2. Furthermore, |v|1 = m. Because

m(|x| −m− 2) ≥ −|x| or equivalently 1− m

|x|
>

1

m+ 2
, the second component of D(Op, x) satisfies

1− m

|x|
>

1

m+ 2
=

1

|v|1 + 2
> λ,

which contradicts our assumption again.
Case 4. Op = Mi. By the choice of v, we have to change a one into a zero. Hence m = |v|1 + 1.

Moreover, the first component of D(Op, x) satisfies
1

m+ 1
=

1

|v|1 + 2
> λ. We have a contradiction,

again.
Since we got a contradiction in each case, Z = ∅. ut

From a biological point of view, the tendency of the complexity through the evolution has been a
increasing tendency. For that reason, we could think that in order to find a parallelism with biology, it is
logical that we have to increase the length of the words. Therefore we give the following corollaries.

Corollary 5.1. i) Letw ∈ V + be a CUDFA and 0 < λ ≤ 1

2
such that

1

|w|1 + 1
< λ, and letO =M∪A.

Then
LD(w,O, λ) = {v | |w| < |v|, |v|0 > 0,

1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

ii) Let w ∈ V + be a CUDFA and 0 < λ ≤ 1

2
such that

1

|w|1 + 1
< λ, and let O =M∪PC. Then

LD(w,O, λ) = {v | |w| < |v|, |v|0 > 0,
1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof:
i) For|w| < |v|, we have used only operators fromM∪A in the proof of Theorem 5.1.

ii) The addition operators used add a 1 to a word only consisting of ones. Hence, there is an operator
from PC which has the same effect. ut

If we allow operators of PE in addition to those fromM∪PC, we get a case where all words of interest
(i.e., all words describing a CUDFA which accepts a non-empty language) can be obtained with low
disruptions from a given word w.

Theorem 5.2. Let w ∈ V + be a CUDFA and 0 < λ ≤ 1

2
, and let O =M∪PC ∪ PE . Then

LD(w,O, λ) = V + \ {0m | m ≥ 1}.

Proof:
Let w ∈ V + be a word with |w| = m and |w|1 = r > 0 and let v ∈ V + be a word with |v| = n and
|v|1 = s > 0.

1012 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

For a multiple y = lcm(m,n)z, z ∈ N+, of the lowest common multiple ofm and n, we set z′ =
y

m

and z′′ =
y

n
. We choose y sufficiently large, i.e., z sufficient large, such that

1

rz′
< λ and

1

sz′′
< λ. We

construct the following finite sequence of operators.

• We choose O1, O2, . . . , O y

m
−1
∈ PC such that any Oi adds a copy of w. Therefore we obtain

O y
m
−1(O y

m
−2 . . . (O1(w)) . . .) = wz′ .

• Let t be the number of positions in which wz′ has a zero and vz
′′

has a one. We choose the
operators O y

m
, O y

m
+1, . . . , O y

m
+t−1 ∈ M, such that such zeros are changed into ones. Thus we

obtain w = O y
m
+t−1(. . . (O y

m
(wz′)) . . .).

• Let q be the number of positions in which w has a one and vz
′′

has a zero. We choose the operators
O y

m
+t, O y

m
+t+1, . . . , O y

m
+t+q−1 ∈ M such that such ones are mutated into zeros and obtain

vz
′′
= O y

m
+t+q−1(. . . (O y

m
+t(w)) . . .).

• We chooseO y
m
+t+q, O y

m
+t+q+1, . . . , O y

m
+t+q+ y

n
−2 ∈ PE such that any operatorO y

m
+t+q+j can-

cels one copy of v. Obviously, then v = O y
m
+t+q+ y

n
−2(. . . (O y

m
+t+q(v

z′′)) . . .).

Therefore, O y
m
+t+q+ y

n
−2(O y

m
+t+q+ y

n
−3(. . . (O2(O1(w))) . . .)) = v.

Let us calculate the disruption each time that we apply one of the previous operators. For 1 ≤ i ≤
y

m
− 1, D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ) by Corollary 4.2.

Since any operator Oj ,
y

m
≤ j ≤ y

m
+ t− 1, changes a zero into a one, i.e., we add only ones, and

|wz′ |1 = rz′, we get |Oi−1(. . . (O2(O1(w))) . . .)|1 ≥ rz′ and

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0,
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
)

< (0,
1

rz′
) < (λ, λ)

for
y

m
≤ i ≤ y

m
+ t− 1.

Since Oj ,
y

m
+ t ≤ j ≤ y

m
+ t+ q−1, changes a one into a zero, but sz′′ ones of w are not changed,

we have |Oi−1(. . . (O2(O1(w))) . . .)|1 ≥ sz′ and

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
, 0)

< (
1

sz′′
, 0) < (λ, λ)

for
y

m
+ t ≤ j ≤ y

m
+ t+ q − 1.

For
y

m
+ t+ q ≤ i ≤ y

m
+ t+ q+

y

n
− 2, D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ) by

Corollary 4.2.

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1013

Therefore, we have D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) < (λ, λ) for 1 ≤ i ≤ y

m
+ t+ q +

y

n
− 2.

It remains to show that we cannot obtain words 0m for somem. If we assume the contrary, then there
is a number k such that there are operators O1, O2, . . . , Op ∈ PC ∪ PE ∪M with

0k = Op(Op−1 . . . (O2(O1(w))) . . .)

and
D(Oi, Oi−1(. . . (O2(O1(w)) . . .)) < (λ, λ) for 1 ≤ i ≤ p. (2)

Without loss of generality we can assume that Oj(Oj−1 . . . (O2(O1(w))) . . .) /∈ {0m | m ≥ 1}
holds for 1 ≤ j < p (otherwise the word Oj(Oj−1 . . . (O2(O1(w))) . . .) ∈ {0m | m ≥ 1} is
considered instead of 0k). Therefore Op is a mutation operator which replaces a 1 by a zero and
Op−1(Op−2 . . . (O2(O1(w))) . . .) contains exactly once the letter 1. Therefore, we have the relation

D(Op, Op−1(Op−2 . . . (O2(O1(w))) . . .) = (
1

2
, 0) by Lemma 4.2 which is a contradiction to (2). ut

We note that the operators of PE are not so common in biology as the edit operators and those from PC.
Thus we now look for a result where we only use the edit operators together with that of PC.

Theorem 5.3. For any word w with |w|1 > 0 and any λ with 0 < λ <
1

2
,

LD(w,PC ∪M∪A ∪ E , λ) = {v | |v|0 > 0,
1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof:
Let |w|1 = m ≥ 1, and let v be a word with

1

|v|1
< λ. Then there is a number r ∈ N+ such that

1

mr
≤ λ. Using r − 1 times operators from PC which copy w, we get wr. Moreover, |wr|1 = mr and

thus
1

|wr|1
< λ. All the disruptions of these operators are (0, 0) by Corollary 4.2.

Starting from wr, by Theorem 5.1, we can construct a sequence of operatorsO1, O2, . . . Op such that

• v = Op(Op−1 . . . (O2(O1(w
r))) . . .) and

• D(Oi, Oi−1(. . . (O2(O1(w)) . . .)) < (λ, λ) for any 1 ≤ i ≤ p.

This proves v ∈ LD(w,PC ∪M∪A ∪ E , λ). As in the part of the proof of Theorem 5.1, we can show
that no further words can be generated (in the notation from that proof, the operators from PC cannot be
used for Op by the choice of v). ut

Thus, in this section, we have proven that the expressive capability of the set of operators {M,PC,PE}
while keeping a low disruption, is higher than the expressive capability of {M,A, E}, {M,A}, {M,PC}
and {M,A, E ,PC}. This is because with the set of operators {PC,PE} any length can be obtained with-
out disruption, and then with the operatorsM, that in the most of cases have a very low disruption, we
get the symbols in the right position.

1014 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

6. Comparing the operators with respect to disruption

In the preceding section, for two given word w and v and a given set of operators, we have constructed
a sequence of operators O1, O2, . . . Ot such that Ot(Ot−1(. . . (O2(O1(w)) . . .)) = v and, for each op-
erator Oi, 1 ≤ i ≤ t, the disruption of Oi over Oi−1(Oi−1(. . . (O1(w)) . . .)) is limited. From an
algorithmic point of view one can be interested in short such sequences. Ignoring the lowness of the
disruption, there are some nice algorithms which determine a shortest sequence O1, O2, . . . Ot of opera-
tors fromM∪A ∪ E such that Ot(Ot−1(. . . (O2(O1(w)) . . .)) = v (see e.g. [6]). Obviously, a greedy
algorithm, which also considers the disruption, chooses an operator with a disruption as large as possible
in each step. In this section, we show that our choices of operators do the converse, i.e., we mostly
choose operators with almost minimal disruption on the current intermediate word. Hence it seems that
our choices are not optimal with respect to the length of sequence of operators which transform a word
w into a word v with limited disruption in each step.

In order to show the above mention aspect of our choices, we compare the operators with respect to
disruption.

Definition 6.1. Given two operators O and P over a CUDFA w, let D(O(w)) = (a, b) and D(P (w)) =
(c, d) with a, b, c, d ∈ R, we say that O is more disruptive than P over w if a ≤ c and b ≤ d, and we
write D(O(w)) < D(P (w)).

In the sequel, let M , A and E any operators inM, A and E , respectively.

Theorem 6.1. For any CUDFA w ∈ V + with |w| > 2 and |w| 6= m = |w|1, D(M(w)) < D(A(w))
and D(M(w)) < D(E(w)).

Proof:
Let us assume that |w|1 = m.

Let M be an operator which mutates a zero into a one. By Lemmas 4.2, 4.3, and 4.4, we know that

D(M(w)) = (0,
1

m+ 1
), D(A(w)) = (1− m+ y

|w|+ 1
, 1− m

|w|
), and D(E(w)) = (1− m− y

|w| − 1
, 1− m

|w|
)

where y ∈ V is the added or eliminated symbol.

It is trivial that 0 ≤ 1 − m+ y

|w|+ 1
and 0 ≤ 1 − m− y

|w| − 1
. Moreover,

1

m+ 1
≤ 1 − m

|w|
if and only if

|w| ≥ m+ 1.

Let M be an operator which mutates a one into a zero. Then we have D(M(w)) = (
1

m+ 1
, 0).

It is trivial that 0 ≤ 1− m

|w|
. Moreover, since

1

m+ 1
≤ 1− m+ y

|w|+ 1
if and only if |w| ≥ (1 +

y

m
)(1 +

1

m
)− 1,

1

m+ 1
≤ 1− m− y

|w|+ 1
if and only if |w| ≥ (1− y

m
)(1 +

1

m
)− 1

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1015

and
max
y∈V

0<m<|w|

((1 +
y

m
)(1 +

1

m
)− 1) = max

y∈V
0<m<|w|

((1− y

m
)(1 +

1

m
) + 1) = 3,

the inequalities hold for any CUDFA w ∈ V + with |w| > 2.
Therefore the inequalities D(M(w)) < D(A(w)) and D(M(w)) < D(E(w)) hold for any CUDFA

w ∈ V + with |w| > 2 and |w| 6= m.
ut

Theorem 6.2. For any CUDFA w ∈ V +, we have
i) D(E(w)) < D(A(w)) if the eliminated and the added symbol is a zero, and

ii) D(A(w)) < D(E(w)) if the eliminated and the added symbol is a one.

Proof:
Let us assume that |w|1 = m.

i) Because 0 is the added and eliminated symbol, by Lemmas 4.3 and 4.4, we have the disruptions
D(A(w)) = (1− m

|w|+ 1
, 1− m

|w|
) and D(E(w)) = (1− m

|w| − 1
, 1− m

|w|
).

Since 1 − m

|w| − 1
≤ 1 − m

|w|+ 1
if and only if 0 ≤ 2m and 0 ≤ m ≤ |w|, the inequality of the

statement holds.
ii) Because 1 is the added and eliminated symbol, by Lemmas 4.3 and 4.4, we have the relations

D(A(w)) = (1− m+ 1

|w|+ 1
, 1− m

|w|
) and D(E(w)) = (1− m− 1

|w| − 1
, 1− m

|w|
).

Since 1− m+ 1

|w|+ 1
≤ 1− m− 1

|w| − 1
if and only if m ≤ |w| and 0 ≤ m ≤ |w|, the inequality holds. ut

By the previous theorems, we can conclude the next corollary.

Corollary 6.1. For any CUDFA w ∈ V + with |w| > 2 and |w| 6= m = |w|1,

• if the eliminated and the added symbol is a zero, we have D(M(w)) < D(E(w)) < D(A(w)).

• if the eliminated and the added symbol is a one, we have D(M(w)) < D(A(w)) < D(E(w)). 2

By Theorem 6.1 or Corollary 6.1, to ensure low disruption mutation operators have to be preferred
to addition and elimination operators. This justifies the choices in the proof of Theorem 5.1. The fol-
lowing statements show it is natural to use partial copies before mutations and partial eliminations after
mutations (see the proof of Theorem 5.2).

Theorem 6.3. For any CUDFA w ∈ T (n, p), n ≥ 1 and p > 0,

• D(M(PCp(w))) < D(M(w)).

• D(E(PCp(w))) < D(E(w)) if the eliminated symbol is a one and D(E(PCp(w))) > D(E(w))
if the eliminated symbol is a zero.

• D(A(PCp(w))) < D(A(w)) if the added symbol is a zero and D(A(PCp(w))) > D(A(w)) if
the added symbol is a one.

1016 J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata

Proof:
We know D(PCp(w)) = (0, 0). Let us suppose w = vp for some v ∈ V + and p > 0 and let us assume
|v| = n and |v|1 = m. Then |w| = np, |w|1 = pm, |PCp(w)| = np+ n and |PCp(w)|1 = pm+m.

Since |w|1 < |PCp(w)|1, it is trivial that D(M(PCp(w))) < D(M(w)).

Let the eliminated symbol be one. Since 1 − pm+m− 1

np+ n− 1
≤ 1 − m− 1

|w| − 1
if and only if m ≤ |v|,

the inequality D(E(PCp(w))) < D(E(w)) holds.

Let the eliminated symbol be zero. Because 1 − pm+m

np+ n− 1
≥ 1 − m

|w| − 1
if and only if m ≥ 0,

the inequality D(E(PCp(w))) > D(E(w)) holds.

Let the added symbol be zero. Since 1 − pm+m

np+ n+ 1
≤ 1 − m

|w|+ 1
if and only if m ≥ 0, the

inequality D(A(PCp(w))) < D(A(w)) holds.

Let the added symbol be one. Because 1− pm+m+ 1

np+ p+ 1
≥ 1− m+ 1

|w|+ 1
if and only if m ≤ |v|, the

inequality D(A(PCp(w))) > D(A(w)) holds.
ut

Theorem 6.4. For any CUDFA w ∈ T (n, p), n ≥ 1 and p > 1,

• D(M(PEp(w))) > D(M(w))).

• D(E(PEp(w))) < D(E(w)) if the eliminated symbol is a zero andD(E(PEp(w))) > D(E(w))
if the eliminated symbol is a one.

• D(A(PEp(w))) < D(A(w)) if the added symbol is a one and D(A(PEp(w))) > D(A(w)) if
the added symbol is a zero.

Since the proof of this theorem is similar to the proof of the previous one, it is left to the reader.

7. Discussion

In this paper we started the investigation of iterated applications of some bioinspired operators with the
additional requirement that the disruption is (very) small in each step. In one case (Theorem 5.2) we
were able to generate all words which correspond to non-empty regular languages. However, from a
biological point of view, the other results are also satisfactory because the genotypes have to contain a
lot of information, i.e., the words under consideration have to be long and to contain a sufficiently large
number of ones. This means that the assumptions of Theorem 5.1 are satisfied and all words of biological
interest can be obtained by Theorems 5.1 and 5.3.

In the literature one can find nice algorithms to determine the minimal number of edit operators which
transform a given word w into another given word v. It remains to search for good algorithms where the
additional requirement of limited disruption in any step is satisfied. Note that the sequences proving the
existence of such transformations with limited disruptions (constructed in the proofs of Theorems 5.1,
5.1, and 5.1) seem to be not optimal by Section 6.

Finally, a future research line will be to study whether the results presented in this paper are also
satisfied for more complex devices than CUDFA.

J. Dassow, G. M. Martı́n and F. J. Vico / Low Disruption Transformations on Cyclic Automata 1017

References
[1] Alhazov, A., Dassow, J., Martı́n-Vide, C., Rogozhin, Yu., Truthe, B.: On Networks of Evolutionary Proces-

sors with Nodes of Two Types, Fundamenta Informaticae 91 (2009) 1–15.

[2] Castellanos, J., Martı́n-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete Problems with Networks of
Evolutionary Processors, Proc. IWANN, Lecture Notes in Computer Science 2084, Springer-Verlag, Berlin,
2001, 621–628.

[3] Csuhaj-Varjú, E., Mitrana, V.: Evolutionary Systems: A Language Generating Device Inspired by Evolving
Communities of Cells, Acta Inf. 36 (2000) 913–926.

[4] Dassow, J., Martı́n, G. M., Vico, F. J.: A Similarity Measure For Cyclic Unary Regular Languages, to appear
in Fundamenta Informaticae.

[5] Davey, M., Mackay, D.: Reliable Communication over Channels with Insertions, Deletions, and Substitu-
tions, IEEE Transactions on Information Theory 47 (2001) 687–698.

[6] Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology.
Cambridge University Press, New York, 1997.

[7] JÜRGENSEN, H., KONSTANTINIDIS, S., Error Correction for Channels with Substitutions, Insertions, and
Deletions, Lecture Notes in Computer Science 1133, Springer-Verlag, Berlin, 1996, 149–163.

[8] Messer, P., Arndt, P., Lässig, M., Solvable Sequence Evolution Models and Genomic Correlations, Phys. Rev.
Lett. 94(13) (2005) art. no. 138103.

[9] Ohno, S., Evolution by Gene Duplication. Springer-Verlag, Berlin, 1970.

[10] Oommen, B., String Alignment with Substitution, Insertion, Deletion, Squashing, and Expansion Operations,
Information Sciences 83 (1995) 89–107.

[11] Oommen, B., Loke, R., Pattern Recognition of Strings with Substitutions, Insertions, Deletions and General-
ized Transpositions, Pattern Recognition 30 (1997) 789–800.

[12] Rozenberg, G., Salomaa, A., Handbook of Formal Languages. Springer-Verlag, Berlin, 1997.

[13] Saakian, D., Evolution Models with Base Substitutions, Insertions, Deletions, and Selection, Phys. Rev. 78(6)
(2008) art. no. 061920.

[14] Zhang, J., Evolution by Gene Duplication: An Update, Trends in Ecology and Evolution 18 (2003) 292–298.

