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Departamento de Lenguajes y Ciencias de La Computación
Escuela Técnica Superior de Ingenieria Informática
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Carrera, pasando por el Máster ISIA, la colaboración con el Hospi-

tal Costa del Sol y, finalmente, el doctorado. Gracias a Rafael, que

me ha guiado siempre al objetivo, ayudándome en todo lo posible, y
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me gustaŕıa agradecer a José del Campo, trabajar y compartir todo

este tiempo con él ha sido un placer. Y a João Gama, Albert Bifet,

Jessie Read, y tantos otros, de los que tanto he aprendido sobre
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UNIVERSITY OF MÁLAGA

Abstract

Departamento de Lenguajes y Ciencias de La Computación

Escuela Técnica Superior de Ingenieria Informática
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by José Maŕıa Carmona Cejudo

In the last few years there has been a rapid increase in the amount

of electronically available data. This has fostered the emergence of

novel data mining and machine learning applications able to extract

information and knowledge. A significant proportion of these data

sources are in the form of natural text, something which involves

difficulties not present in other domains, such as their unstructured

nature and the high dimensionality of the datasets. Natural text

has to be preprocessed so that it can be analyzed by computers,

and learning algorithms have to be able to cope with such high-

dimensional feature spaces. Text mining techniques are invaluable

to extract knowledge from natural text, as well as from other types

of unstructured, alphabet-based data such as DNA strings.

Many of these data sources are not available as closed-ended datasets,

but rather as data streams of examples that arrive in a sequence

over time. This includes many text data sources, such as web pages,

emails or blog posts. Given the unbounded nature of these datasets,

it is important to work with scalable algorithms that use reduced

time and memory. Additionally, it is important for the algorithms

to be able to adapt to changes in the underlying statistical distri-

butions governing the data. This is especially difficult in the case

of data streams, because of their high dimensionality. In order for

text streams to be computationally tractable, it is necessary to pre-

viously reduce the dimensionality of the datasets, employing only

the most relevant terms in the learning algorithms. However, the
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importance of the terms change over time, which in practice means

that it is necessary to work under the assumption of a dynamic fea-

ture space. Keeping track of this evolving high-dimensional feature

space is an intrinsically complex problem, since the importance of

each feature depends on the others.

Such challenges are tackled in this thesis. We present GNUsmail, a

framework for text stream classification in the domain of electronic

email, and use it to study the nature of concept drift in text streams.

We introduce a framework for adaptive classification, ABC-DynF,

which is able to adapt to dynamic feature spaces, incorporating new

features and labels to previously existing models. We also study

the problem of summarization in text streams, and propose TF-

SIDF / BM25, an approach for approximate weighting function ap-

proximation which makes it possible to extract keywords and con-

struct word clouds from text streams in an efficient way. Finally,

we present STFSIDF, an incremental approach for online feature

selection which minimizes the number of weight recalculations while

keeping continuously updated lists of the most relevant features.

STFSIDF uses approximate algorithms to reduce the space com-

plexity derived from the high dimensionality of the data sources.
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NB Näıve Bayes

NLP Natural Language Processing

NN-ge Nearest Neighbours with Generalized Exemplars

OLIN Online Information Network

PHT Page-Hinkley Test

PPT Pruned Problem Transformation

RAkEL Random k-Labelsets

ROC Receiver Operating Characteristic

SANSPOS String ANalysis by Sliding POsitioning Strategy

SPC Statistical Process Control

STR Short Tandem Repeat

SVD Singular Value Decomposition

SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency

TF-SIDF Term Frequency - Sketched Inverse Document Frequency

VFDT Very Fast Decision Trees

WEKA Waikato Environment for Knowledge Analysis

UFFT Ultra Fast Forest of Tress



Chapter 1

Introduction

Everything must have a beginning . . . and that beginning

must be linked to something that went before

Mary Shelley, Frankenstein

1.1 Introduction and motivation

In the last few years there has been a rapid increase in the amount of

available data, largely due to Web 2.0 and mobile applications. This

data explosion has made possible novel applications such as product

recommendation [1], sentiment analysis [2], automatic spam detec-

tion [3], automatized analysis of medical literature [4], or personal-

ized business advertising [5], among others. These applications are

important not only because of their scientific challenges, but also for

their potential economic and social impact. Extracting previously

unavailable knowledge and patterns is of great importance for enter-

prises, since it allows them to be in a better position to undertake

the right measures to successfully continue their growth.

For these reasons, it is becoming more and more important to de-

velop computational techniques able to exploit this vast amount of

data, helping to extract previously unknown information in order to

1
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make better informed decisions. Making sense of large amounts of

data is a non-trivial task that involves fields such as statistics, artifi-

cial intelligence, database technologies and, needless to say, domain

knowledge about the specific problems. Making data useful involves

a deep understanding of the problem and data. It is necessary to

explore and improve the quality of data (which can be incomplete

and even inconsistent in its original form), to consolidate heteroge-

neous data sources, and to apply sound modelling techniques. It

is therefore a multidisciplinary task that requires participants with

different backgrounds. The fields of data mining and machine learn-

ing have proven themselves to be essential for making information

useful. They provide a large toolkit of effective techniques for data

preprocessing, information extraction, predictive analysis, and clus-

tering of data items. They are, at the end, the technologies that

have made possible the aforementioned applications.

Non-surprisingly, most information is nowadays stored as documents

in natural language [6]: news, articles from journals, forums, social

networks, blogs or speech records represent a vast source of informa-

tion that offers a unique opportunity to extract useful knowledge.

The application of data mining to text datasets is known as text

mining . Thanks to this technology, enterprises can mine blogs and

tweets to find out what the users think about their products, mail

clients can learn to differentiate spam and legitimate mail, search

engines can cluster pages or news articles according to its contents,

and so on. Other, somehow more controversial applications include

mining the contents of chats and email to identify terrorism or vio-

lence threats [7].

In order to provide a concrete example of the potential of text min-

ing, we refer to an influential early work by Don R. Swanson and

Neil R. Smalheiser [4]. This work showed that automated analysis

of the medical literature can lead to interesting hypotheses about

causes of rare diseases. For example, when investigating causes of

migraine headaches, they extracted various pieces of evidence that

suggested that magnesium deficiency plays a role in some kinds of

migraine headache, a hypothesis which did not previously exist in
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the medical literature. The point is that a new potentially plau-

sible medical hypothesis was derived from a combination of text

fragments by means of computational data analysis. The extracted

hypothesis was subsequently validated by medical experts [4]. This

shows to what extent text mining is a promising field of research.

In fact, text mining techniques are versatile enough to be applied to

non-linguistic data sources. For example, they have been used with

success to classify DNA strings [8], by extracting substrings from

nucleotide sequences.

Unfortunately, the computational analysis of unstructured informa-

tion such as free text is a extremely challenging task, since it involves

some kind of understanding of natural language by computers. We

have to remember that natural language understanding is in fact the

criterion proposed by the classical Turing Test to judge if a machine

exhibits intelligent behaviour [9]. This criterion depends on the abil-

ity of a ‘computing machine’ to impersonate a human sufficiently

well in a conversation. There are several reasons for the difficulty

of this task. Human language is ambiguous in terms of grammar

and vocabulary, and background knowledge is not always present,

or at least it is not easily accessible. In this thesis we assume that

no exogenous knowledge is available, in the form of metadata, se-

mantic annotations or others. That is, we only consider endogenous

knowledge extracted exclusively from text documents.

A particularly challenging aspect of text mining is the high dimen-

sionality associated to data sources. The large size of the vocab-

ularies makes it necessary to develop scalable techniques that can

deal with such a high dimensionality. In fact, text mining is a good

benchmark for checking whether learning algorithms can scale to

substantial sizes, as pointed out by Sebastiani [10]. This happens

because even moderately large text datasets contain a large collec-

tion of different words that can potentially be used as classification

features. This problem is intensified when more complex features

are considered, such as n-grams or phrases. Such a high dimen-

sionality leads to very sparse data, since most of the words of the

vocabulary do not appear in a given document. An undesirable con-

sequence is the so-called Hughes-effect [11]: given a fixed number of
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training examples, the predictive power reduces as the dimension-

ality increases. The models will be prone to have a large variance,

since they are too sensitive to the learning examples. In addition

to this, high dimensionalities are also prejudicial from the compu-

tational point of view, since there are more features to be examined

by the algorithms.

Multilabel classification is another kind of challenge which affects

text classification. The classical single-label classification task con-

sists in assigning a label from a predefined label-set to each docu-

ment. By contrast, in many text classification tasks, it seems rea-

sonable to assign more than one label to each document, which gives

birth to the multi-label classification paradigm. This is the case of

news classification. Let us think for example about a journal article

about the consequences of the Fukushima nuclear disaster in 2012.

It could be considered as an article about nuclear energy, about

the consequences of such disaster in the economy of Japan, or even

about its long-term health effects. Another example could be an

article about the celebrations of a football team. Such article would

be related to sport, but maybe also to street vandalism, if this was

the case. These examples illustrate the fact that, in many occasions,

it is desirable to produce learning models able to assign more than

one single category to each data example.

A different type of challenge in data mining in general, and text min-

ing in particular, is that of (theoretically) unbounded data sources,

giving birth to the paradigm of stream mining . Traditional data

mining problems involve a closed-ended dataset that contains a sta-

tionary collection of data examples. No new examples can be added

to the dataset, and each one of them can be analysed as many times

as necessary in order to preprocess the data and learn models for

classification or clustering. The obtained model is not modified any-

more. By contrast, new data sources have emerged where there is no

previously fixed dataset, but a stream of data examples that arrive

one after another. Such streams are highly dynamic and subject

to evolution of their properties over time. Data streams have strict

space and time requirements. Typically, data examples cannot be

stored for future reference, and they have to be processed on-the-fly.
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Each example can be analysed only once, or a very limited number

of times at most. Moreover, the learning model has to be ready to

make predictions at any given moment.

A particular difficulty associated with data streams is the emergence

of concept drift . In contrast with classical, stationary datasets, the

statistical distributions associated with data streams are subject to

evolution. The distribution of labels, as well as the relationship

between data and labels, changes over time. This means that the

learning models have to be able to detect and adapt to these changes.

A difficulty associated to text data streams corresponds to contextual

concept drifts [12], which basically means that the relevance of the

attributes changes over time. This is not an important issue in

datasets with few possible attributes. Nevertheless, in text data

streams, the features to be used for predictions are also subject

to change over time, as new words appear or fall out of use, or as

some words suddenly become more important for classification. This

requires, on the one hand, incremental feature selection methods

able to deal with text streams in an efficient way, and, on the other

hand, classification models that work under the assumption of a

dynamic feature space, that is, models that can vary the feature set

over time, without having to train the model from scratch.

Finally, as we mentioned before, data streams have strict space re-

quirements. Therefore, strategies to process high-dimensional data

streams in efficient space are a necessity. Scalability is an ineluctable

requirement for algorithms that work in a data stream scenario, and,

in particular, linear complexities are something to be avoided [13].

Algorithms able to compress the dimensionality of the problem by

projecting the data into a lower-dimensional space, such as sketch-

based algorithms, represent a promising solution for tasks such as

feature selection in sublinear size.

1.2 Objectives

The objectives that we pursue in this thesis are focused on text

stream mining with dynamic feature spaces and concept drift. We
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are interested in exploring techniques for tackling the challenges we

have mentioned in the previous subsection, and in comparing them

with the current state-of-art in text classification and data streams.

We are also interested in new applications of text mining to non-

linguistic sources. More specifically, in this thesis we pursue the

following objectives:

• Review of the state of art of different fields related to our main

topic: text classification, multilabel classification, data stream

mining, concept drift detection, evaluation of online classifiers,

and approximate algorithms. This will serve as the basis for

the development of our approaches and algorithms.

• Application of text classification techniques to DNA strings,

in order to select meaningful features to provide a word-based

representation of DNA that can be used for visualization and

classification into groups.

• Evaluation of different multi-label algorithms with respect to

different multi-label performance measures in the domain of

email classification, and study of relationships between mea-

sures. Exploration of the effect of feature selection regarding

the performance of multi-label algorithms, and study of the

best algorithms for this task. We plan to explore if our con-

clusions can be generalized to different multilabel performance

measures.

• Implementation and publication of an open-source, Java-based

extensible framework aimed at classification of streams of elec-

tronic mail with concept drift, including email extraction tools,

feature selection techniques and state-of-art classification algo-

rithms for stream classification and concept-drift detection.

• Use of statistical inference techniques to study the emergence

of different types of concept drift in email datasets.

• Implementation and publication of an adaptive learning frame-

work with dynamic feature space, to be used to compare sev-

eral incremental and adaptive strategies to cope with concept

drift and high-dimensional dynamic feature spaces.
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• Study of how feature ranking methods, concept drift monitor-

ing, adaptive strategies and the implementation of a dynamic

feature space can affect the performance of email classification

systems.

• Study of the effect of contextual concept drift in text streams

by tracking the relevance of previous and new features and up-

dating the feature space, using learning models able to include

new attributes and drop old ones.

• Comparison of different strategies for updating the feature

space.

• Study of sublinear approaches to incremental document vec-

torization, in order to comply with the space requirements

found in the context of data streams. Studying to what extent

these techniques affect the performance of the algorithms, and

exploration of the best configurations for the data structures.

• Using the aforementioned mechanism to efficient keyword ex-

traction and word cloud computation in text streams, in order

to offer a mechanism for online document summarization with

reduced space requirements.

• Introduction of a mechanism that allows time-efficient feature

selection for text streams using weighting functions, avoiding

continuous feature value update.

• Use of sketch-based algorithms for reducing the space require-

ments of the aforementioned mechanism, in order for the al-

gorithm to be suitable for data streams. Optimization of the

parametrization in order to obtain better approximations us-

ing less space.

In this thesis we use techniques from the fields of machine learning

and data mining, such as feature space reduction, classification tech-

niques and evaluation methodologies, as well as statistical inference

for hypothesis proving. More concretely, we study multilabel learn-

ing and data stream mining techniques applied to documents in nat-

ural text. We use only endogenous knowledge, that is, information
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included in the data, explicitly avoiding external knowledge such as

ontologies, since this kind of knowledge is not always available or

easy to collect. We use techniques from Information Retrieval and

Natural Language Processing for preprocessing the datasets when

necessary, although they are not the main topic of interest in this

dissertation.

1.3 Outline of this thesis

The rest of this thesis is structured as follows:

• Chapter 2: Fundamentals of Text Classification. This

chapter reviews the topic of text classification. The related

fields of machine learning, data mining, natural language pro-

cessing and information retrieval are put into relation with text

classification. The main phases involved in text classification

projects are discussed. This chapter justifies the importance

of the topic, its main challenges and the usefulness of machine

learning and data mining for dealing with this task.

• Chapter 3: Applying text mining techniques to DNA

strings. This chapter shows how text mining techniques can

be applied to non-linguistic domains (DNA strings), by using

appropriate feature selection procedures. We propose a par-

allel version of the SANSPOS algorithm to extract frequent

substrings, and an interestingness function to select the most

meaningful ones. Relevant DNA substrings of variable length

are used as features. This strategy is used for visualizing and

comparing DNA sequences, as well as for mitochondrial DNA

haplogroup classification.

• Chapter 4: Multilabel Text Mining. This chapter presents

the topic of multilabel text mining. The main theoretical con-

cepts are discussed, and an experimental evaluation of the im-

pact of feature selection for multilabel classification of an email

dataset is offered.
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• Chapter 5: Data Mining for Text Streams. This chap-

ter introduces the topic of data stream mining applied to text

streams. Data stream mining is basically the application of

data mining method to streams of data, where data items ar-

rive continuously and cannot be stored for future reference. We

present GNUsmail, a flexible framework for mining streams of

emails, and use it to study strategies for adaptation to changes

in the distribution of the data and labels (concept drifts). We

compare several classification algorithms that can be applied

to this field using state-of-art data stream evaluation tech-

niques.

• Chapter 6: Comparative Study on Feature Selection

and Adaptive Strategies for Email Foldering Using

the ABC-DynF Framework. This chapter presents ABC-

DynF, an adaptive learning framework with dynamic feature

space that we use to compare several incremental and adap-

tive strategies to cope with these two difficulties. Several

studies are carried out using datasets from the ENRON email

corpus and different configuration settings of the framework.

The main aim is to study how feature ranking methods, con-

cept drift monitoring, adaptive strategies and the implemen-

tation of a dynamic feature space can affect the performance

of Bayesian email classification systems.

• Chapter 7: Online Attribute Weighting for Document

Vectorization and Keyword Retrieval. This chapter is

devoted to the study of document vectorization in data streams.

The exceedingly high dimensionality of text data streams make

this problem too expensive in terms of the necessary space,

since statistics have to be collected for every word in the vocab-

ulary. Henceforth, a new approach for weighting function ap-

proximation using sketches, hash-based models able to project

the data into a space with a lower dimensionality, saving space

without losing effectiveness.

• Chapter 8: STFSIDF: Efficient Online Feature Selec-

tion for Categorization in Text Streams. This chapter

deals with incremental feature selection in combination with
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online classifiers accepting dynamic feature spaces. An ap-

proach is proposed for updating the set of used features in

efficient time and space.

• Chapter 9: Conclusions and Future Work: This chapter

provides our conclusions and proposes some possibilities for

future work.

• Appendix A: Resumen en español. This appendix con-

tains a summary of the thesis in Spanish.

• Appendix B: Conclusiones y trabajo futuro. This ap-

pendix is the Spanish translation of Chapter 9.



Chapter 2

Fundamentals of Text

Classification

2.1 Introduction

As we mentioned in Chapter 1, text classification is the application

of supervised learning techniques from the field of data mining and

machine learning to data sets that contain documents written in nat-

ural language. Given the unstructured nature of natural language

text, it is necessary to transform the documents into a machine-

understandable format, more suitable for computer processing. In

order to obtain suitable document representations that capture the

underlying semantics of the text, techniques from Information Re-

trieval and Natural Language Processing have to be employed. This

alone is generally not enough, since text documents suffer from prob-

lems such as their high dimensionality, which means that the doc-

uments have to be transformed into a more reduced feature space.

After that, this processed versions of the documents can be used for

learning and mining task, such as classification, using suitable algo-

rithms. Furthermore, it is important to evaluate the performance of

the algorithms, in order to select the best methods and parameters.

11
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In this chapter we introduce each of these areas of study, focusing

on the aspects more closely related to the problem of text catego-

rization. The rest of this chapter is organized as follows: Section 2.2

gives an introduction to machine learning and data mining in gen-

eral, which form the basis of text classification. Then, Section 2.3

introduces the key concepts of natural language processing, whereas

Section 2.4 explains information retrieval concepts, focusing on doc-

ument representation models. Section 2.5 is devoted to text mining,

showing the relationship with the concepts from the previous Sub-

sections are applied. Then, Section 2.6 explains the transformation

of unstructured text into more suitable representations, and Sec-

tion 2.7 discusses dimensionality reduction. Section 2.8 reviews the

main algorithms for text classification, and, finally, Section 2.9 is

devoted to techniques for evaluating text classifiers.

2.2 Data mining and machine learning

Progress in digital data acquisition, storage and processing has fos-

tered the emergence of huge databases in all kinds of domains, which

offer a vest amount of resources that can be analyzed in order to op-

timize systems, uncover valuable patterns or make scientific discov-

eries. The field of study within computer science which is devoted

to extracting useful information from such databases is known as

Data mining .

Data mining can be defined as the process of analyzing data from

different perspectives and summarizing it into useful information1.

Data mining systems analyze large quantities of data in order to ex-

tract previously unknown patterns. Data sets can be very large, in

contrast with smaller ones that are used in the classical exploratory

data analysis. Often the problem in data mining is to find general-

izations of the data, that is, models that explain why the data is the

way it is, and what are the hidden relationships in the data. Such

1
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
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Outlook Temperature Humidity Wind Play

sunny 85 85 false no
sunny 80 90 true no

overcast 83 78 false yes
rain 70 96 false yes
rain 68 80 false yes
rain 65 70 true no

overcast 64 65 true yes
sunny 72 95 false no
sunny 69 70 false yes
rain 75 80 false yes

sunny 75 70 true yes
overcast 72 90 true yes
overcast 81 75 false yes

rain 71 80 true no

Table 2.1: An example of dataset: The Golf dataset

models are used to discover similar groups of data, to find underly-

ing association rules or to make predictions about previously unseen

data examples.

Data mining works with datasets, sets of measurements taken from

some environment or process [14]. Datasets contain a collection of n

objects, known as instances or examples, and for each one of them

there are p measurements available, which are known as features or

attributes. A well-known example of artificial dataset which is of-

ten used in introductory data mining courses is the golf dataset . In

this dataset, each example represents a day in a golf club, and each

attribute represents an atmospheric characteristic (outlook, tempera-

ture, humidity and wind). There is another, special attribute, play,

which indicates whether it was possible to play given the atmo-

spheric conditions. This kind of special attributes are known as

supervising variable, class or labels, and are the attributes of inter-

est because we want to use the atmospheric conditions to predict

whether, giving those conditions, is it possible to play. Datasets

can be represented in tabular form. For example, the golf dataset is

represented in Table 2.1:
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In data mining terminology, there are different tasks that can extract

different kinds of patterns:

• Classification: automatic assignment of items into one from

within a finite set of categories. The category is the objective

or supervising variable. Classification is an example of super-

vised learning , which means that there is a specific variable of

interest, such as in the case of the golf dataset.

• Regression: automatic assignment of numeric values to items.

It is conceptually similar to classification, but the objective

variable is continuous instead of discrete. Regression is an-

other example of supervised learning. A possible example of

regression could be to forecast the temperature given other

weather indicators.

• Clustering : search of groups of similar data records, according

to some similarity measure. In contrast with classification and

regression, there is no objective variable to be predicted. Thus,

clustering is an example of unsupervised learning . An example

of clustering could be finding homogeneous groups of clients

of a supermarket.

• Association rule discovery between features of the data. Asso-

ciation rule learning is another example of unsupervised learn-

ing (although is can also be used for supervised learning). An

often cited example of a situation where association rules can

be useful is shopping cart analysis, to discover rules such as

‘clients that buy beer usually buy chips too’, which can be used

by the supermarket manager to place the products accordingly

in order to maximize sales.

Data mining is a non-trivial task, as we have previously mentioned.

Nevertheless, for toy datasets such as the golf example we have men-

tioned, it can be carried out by hand. For example, in Table 2.1 it

can be seen that when overcast=true, that is, when the day is

overcast, it is always true that play=true. Else, if its raining, it is

possible to play as long as it is not windy. Finally, if it is sunny, it is
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Figure 2.1: Relationship between KDD, data mining and ma-
chine learning

possible to play if the humidity is low. This kind of rules, that can

be extracted by manual inspection, allow us to predict if it will be

possible to play, given the weather forecast, and can be potentially

useful for golf players and golf resort managers. These rules can be

summarized in a decision tree, which is a particular kind of model

used in data mining, as it is shown in Figure 2.2.

Of course, in non-toy datasets it is not possible to discover patterns

by manual examination: learning algorithms have to be used to

extract patters from data automatically.

Some authors define data mining as the analytic step of a Knowl-

edge Discovery in Databases (KDD) process, while for others it is

synonym for such process [15]. Broadly speaking, a generic KDD

process can be divided in the following stages:

• Data selection and preprocessing, that is, assembling a suitable

target data set, large enough to contain the sought patterns,

while being small enough to allow the data to be analyzed in

an acceptable time. The participation of domain experts is key
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Outlook

sunny

Humidity

> 75

Y es

< 75

No

overcast

Y es

rain

Wind

False

Y es

True

No

Figure 2.2: Example of a decision tree to decide if it is possible
to play golf given the weather conditions

in this process, since they are familiar with the data sources

and the information contained in them.

• Data transformation, in order to clean the data and deal with

noise and missing data. Real-world data is frequently incom-

plete, contains noise and even inconsistencies. Think of a

dataset containing information about the patients of a hos-

pital. It would not be surprising to find typos (for example,

patients with ‘900’ years instead of 90 years due to a typing

mistake), patients with missing birth date, incomplete histo-

ries or similar issues. It is important for data mining methods

to be able to deal with such problems in order to provide well-

founded results.

• Modeling, which involves the application of algorithms for clas-

sification, regression, clustering, association rule mining or

others. This is the step where machine learning algorithms is

applied to datasets in order to extract knowledge from them,
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which will be used for classification, prediction, clustering and

understanding of trends and patters present in the data.

• Evaluation of the models, in order to be able to state to which

extent the learning algorithms have been able to generalize

from the training data set. There are a big number of algo-

rithms that can be used for the different data mining tasks.

Furthermore, algorithms have several parameters that have to

be tuned. It is important to try different algorithms and tune

the parameters accordingly in order to obtain models that gen-

eralize the data as well as possible.

• Deployment of the models in a production environment, al-

lowing the user to apply the models to new data and extract

conclusions from them. For example, in the case of the golf

dataset, this could consist in a web page which can access

weather information and feed this data to a learning model

(for example, the decision tree in Figure 2.2) to predict if it is

possible to play today.

The KDD process has been formalized and standardized. A popular

standard is CRISP-DM [16]. CRISP-DM defines an iterative work

flow with the phases represented in Figure 2.3.

1. Business understanding. During this phase, the objectives and

requirements are decided, and the main tasks are defined.

2. Data understanding. The data is collected, and the quality

problems it may have are studied and solved.

3. Data preparation. Instances and attributes are selected or cre-

ated, according to necessity.

4. Modeling. Different data mining algorithms are executed and

tuned on the data, and the best combination is selected.

5. Evaluation. The evaluation of the obtained models helps to

decide to what extent they are usable.
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Figure 2.3: CRISP-DM standard. Source:
http://bit.ly/h1gQPy

6. Deployment. The obtained and evaluated models are inte-

grated in other information systems.

A field of study which is closely related to data mining is machine

learning . Machine learning is a branch of artificial intelligence that

aims to develop algorithms that generalize statistical phenomena, in

order to make predictions on future data. The objective of a machine

learning system is to generalize from experience. Mitchell provided

the following commonly used definition of Machine Learning in [17]:

Definition 2.1. A computer program is said to learn from experi-

ence E with respect to some class of tasks T and performance mea-

sure P, if its performance at tasks in T, as measured by P, improves

with experience E

The objective of machine learning is to recognize complex patterns

and make intelligent decisions based on data. It allows computer

programs to ‘learn for themselves’ to carry out tasks that would be

too difficult to be programmed as a fixed set of rules, such as face
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recognition, automatic car driving, and other complex tasks where

the experience helps to improve the performance of the algorithms.

Data mining and machine learning are overlapping terms, since data

mining uses machine learning methods, while machine learning em-

ploys data mining methods, such as the preprocessing steps. This

overlapping is graphically represented in Figure 2.1. KDD and data

mining focus on discovering knowledge from data, including data

storage and access, scalability issues, results interpretation and vi-

sualization [15], whereas machine learning includes fields not neces-

sarily related to data mining, such as the theory of learning, com-

putational learning theory and reinforcement learning.

Data mining and machine learning have been applied to a vast num-

ber of different fields, amongst them documents in natural language.

Nevertheless, natural language is not directly processable by ma-

chine learning algorithms, given its unstructured nature. It is thus

necessary to transform the documents into a format that can be used

by learning algorithms to extract information. This transformation

is not a trivial task, since the obtained representation has to retain

the semantics of the original text. In consequence, specialized tech-

niques from Natural Language Processing and Information Retrieval

have to be applied in order to deal with textual documents. Both

fields of study are introduced in the next sections.

2.3 Natural language processing

Natural language processing (NLP) is a multidisciplinary discipline

concerned with the interaction between computers and human lan-

guages.

Texts usually contain information at different granularity, from words

or tokens to rich hierarchical syntactic representations, which means

that many different algorithms have to be employed for different

tasks. NLP aims to building software able to analyze, understand

and generate natural language contents.
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During the 60s and 70s, most successful NLP systems, such as

SHRDLU and ELIZE, worked with restricted domains and vocab-

ularies, including ontological information for structuring real-world

knowledge. At this stage of development, NLP systems were based

on more or less complex sets of hand-written rules. The introduc-

tion of machine learning during the 80s meant a break-through in

the development of NLP, taking advantage of statistical modeling of

existing large-scale textual corpora.

Some of the main tasks NLP deals with are the following:

• Speech recognition: phoneme recognition and transcription of

spoken audio clips into text. This is commonly applied in the

field of telephony, for example, where machines can understand

the words of the user in order to automatically redirect the user

to the most adequate operator.

• Natural language generation: generation of information in hu-

man language. This task is frequently used to automatically

provide textual descriptions of computer databases, and has

been applied to provide written weather forecasts from rela-

tional databases. A successful application in this line is ARNS

(http://www.cogentex.com/solutions/arns/index.shtml),

designed to provide human-understandable summaries of ob-

servations and predictions of water levels, coastal currents and

other meteorological and oceanographic data.

• Machine translation: transformation of texts from one human

language to a different one. Machine translation has played an

important role in the history of NLP. The Georgetown exper-

iment in 1954 consisted in automatically translating a dataset

of Russian sentences into English, using a simplified grammar

and a rather modest vocabulary [18]. Although the results

were promising, the ALPAC report in 1966 found that the

research on automatic translation had not fulfilled the initial

expectations, resulting in a reduction of funding for research

in this field [19]. Although machine translation is still an open

problem, some successful applications exist, such as Google

http://www.cogentex.com/solutions/arns/index.shtml
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Translate, a free multilingual translation platform based on

statistical techniques.

• Automatic summarization: produce a summary of a longer

text, in order to avoid information overload. This can be

achieved simply by extracting the most important keywords

for the meaning of the text, or by producing coherent sentences

that describe the essential contents of the objective text.

• Named entity recognition: recognition of proper names in-

side texts. State-of-art named entity recognizers use linguistic

grammar-based techniques and statistical models, and have

a near-human performance [20], although they are designed

for specific domains [21]. This task is related to relationship

extraction, the extraction of relationships between named en-

tities appearing in texts.

• Part-of-Speech Tagging : given a sentence, determination of

the part of speech (verb, noun, etc.) for each word. Different

approaches have been used historically for this task, such as

hidden Markov models or dynamic programming methods [22].

Triviño-Rodŕıguez et al. [23] use Multiattribute Prediction Suf-

fix Graphs, a model similar to multiattribute Markov chains,

for part-of-speech tagging in Spanish texts. Named entity

recognition is a difficult task, since the ambiguities in natural

language make it difficult to decide the actual role of a word

in a sentence. A paradigmatic example that demonstrates this

difficulty is the valid English sentence Buffalo buffalo Buffalo

buffalo buffalo buffalo Buffalo buffalo, meaning ‘Buffalo-origin

bison that other Buffalo bison intimidate, themselves bully

Buffalo bison’ [24]. Although this is an artificial example, it

illustrates the challenges faced by Part-of-Speech tagging ap-

plications.

• Sentiment analysis: extract subjective information from text

(that is, discovering the attitude of the writer about what he

or she is writing about). The rise of social media and networks

has boosted interest in sentiment analysis, given its potential



Fundamentals of Text Classification 22

economical impact. For example, enterprises can search Twit-

ter examples that talk about them, and discover if the attitude

towards their products or services is positive or negative [25].

• Information Retrieval : storing, searching and retrieving infor-

mation. It is actually a separate field within computer science

(see section 2.4): storing, searching and retrieving information.

The last one, information retrieval, is key to text mining, since it

provides tools for document representation. It is expanded in the

next Section.

2.4 Information retrieval

Information retrieval (IR) can be broadly defined as an area of study

within computer science concerned with searching for documents

with certain characteristics, as well as for information and metadata

within them. Typically, an IR process involves entering a query into

the system (for example a search string), in order for the system to

return the most closely related documents to the user.

In origin, IR could be viewed as a subfield of NLP, although nowa-

days it is considered as an independent field of study. In fact, IR

does not only involve textual documents, but also multimedia con-

tent such as images and videos. Nevertheless, we restrict our expo-

sition to the textual domain.

Some of the applications or IR are the following:

• Document ranking with respect to query. That is, given a

query, retrieving related documents ordered by relevance. This

is what web search engines typically do: they are given a search

query, and a set of documents related to it is shown in order

of relevance.

• Information filtering : removing redundant or unwanted infor-

mation from an information stream. Only the most important
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or relevant pieces of information are returned. This is related

to the aforementioned field of automatic summarization, as its

goal is management of information overload. A particular kind

of information filtering systems that has gained popularity in

the context of Web 2.0 are recommender systems, which aim

at presenting to the user the items (products, movies and so

on) that he or she is likely to be more interested in. Machine

learning plays an important role in learning to distinguish im-

portant from unimportant information.

• Topic detection and tracking. This task consists in detecting

and tracking emerging events or activities in text streams, such

as breaking news topics.

• Question answering : providing an answer to a question pro-

vided by the user. This task requires a considerable volume of

background information in order to be successful.

2.4.1 Document Representation Models

In IR, documents are not typically stored in their raw form. As

anticipated in Section 2.1, they are transformed into a suitable rep-

resentation model that enables efficient processing. There are differ-

ent types of models for this purpose, that can be divided into three

main types: set-theoretic models, vector space models and probabilis-

tic models.

The first kind of models, Set-theoretic models, represents documents

as sets of words or sentences. In order to measure the similarity

between a document and a query (or another document), set oper-

ations such as intersection are used.

The second type corresponds to the Vector Space Model . In this

approach, a document is represented by a vector of terms (typically

words and phrases). Each term corresponds to an independent di-

mension in a high dimensional vector space, and each document is

mapped into a point in this space. The similarity between a docu-

ment and a query can be measured using a distance measure in the
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multidimensional space, such as the cosine or Euclidean distance.

The cosine distance is the most commonly used, given its simple

mathematical form, equivalent to the dot product. If D is the vec-

tor corresponding to a document and Q the vector corresponding to

a query, the similarity can be computed as follows:

Sim(D,Q) =
∑

ti∈Q,D
wtiQwtiD (2.1)

A key component in the Vector Space Model is term weighting , that

is, assigning weights (real values) to terms. This weights can be

calculated using different formulations, but in general they depend

on term frequency (words that appear frequently are considered im-

portant), document frequency (words that appear in many docu-

ments are considered common and not very indicative) and doc-

ument length, mainly used to normalize weights. Two common

weighting functions are TF-IDF and Okapi BM25 , which will be

explained in later Sections.

In the Vector Space Model, the dimensions need not be words or

phrases. There are approaches, such as the Latent Semantic Index-

ing (LSI) in which linear combinations of terms originating from a

Singular Value Decomposition analysis are used as dimensions. Such

techniques uncover the underlying latent semantic structure in the

corpora vocabularies.

The third type of document representation models are the probabilis-

tic models, in which document retrieval is modeled as a probabilistic

inference, and similarities are computed as the probabilities that a

given document is relevant for the corresponding query. A prominent

example of the type of models is the Latent Dirichlet allocation [26].

So far, data mining and machine learning have been introduced, as

well as information retrieval and natural language processing, which

provide tools for learning algorithms to deal with natural language.

In the next Section the interaction of these elements in the context

of text mining is explained.
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2.5 Text mining

Text mining consists in the application of data mining to textual do-

mains. Its objective is thus to derive relevant, novel and interesting

information from text. An important application of data mining is

text classification, that is, the automatic assignment of documents to

predefined categories, based on their contents. The classification can

be supervised, where information on the correct classification of the

documents is provided externally, or unsupervised document classi-

fication (document clustering). In the research community the dom-

inant approach for text categorization is based on machine learning

[10].

Until the late ’80s the most popular approach was based in manually

defining a set of rules that encoded expert knowledge (knowledge

engineering) [10]. In the ’90s, this approach lost popularity in favour

of the machine learning paradigm, based on an inductive process

that automatically learns a classifier from a set of already classified

examples.

2.5.1 Text categorization

Let D be a domain of documents containing |D| documents. Let

C = {c0, c1, . . . , c|C−1|} be a set of symbolic labels. Let f : D → C

be a classification function, that assigns a category to each doc-

ument. The objective of text categorization is to approximate a

target function f̂ : D → C which approximates f as well as pos-

sible, according to some similarity measure. f (and thus f̂) need

not be functions, but can also be general relations. In this case we

talk of multilabel classification in contrast with single-label classifi-

cation. Chapter 4 is devoted to multilabel learning. In this Chapter

we restrain ourselves to single-label classification.

Some applications of text categorization include automatic indexing,

document organization, text filtering or hierarchical categorization

of web pages.
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2.5.2 Machine learning for text categorization

The origins of text categorization can be traced back to the work of

Maron [27], where a statistical technique is developed to determine

certain probability relationships between document words and cat-

egories. During the ’80s, the most popular approach to text catego-

rization was based on knowledge engineering techniques: expert sys-

tems consisting of a set of manually defined rules were developed. An

early successful system that used this strategy was the CONSTRUE

system [28]. The results obtained were promising (both precision

and recall were about 90% for the Reuters collection). Neverthe-

less, the rules in CONSTRUE were tailored for specific domains, so

adapting the system to different ones would be costly. This is known

in the experts systems literature as the knowledge acquisition prob-

lem.

Machine learning has been the dominant approach since the early

’90s. In this approach there is an inductive process (the learner) that

automatically builds a classifier using a set of previously classified

documents (the training set), such that it is able to predict the

category of a previously unseen document. This approach offers far

more flexibility than the Knowledge Engineering-based approach,

since the inductive process can cope with an updated category set,

and can be used in different domains [10].

Text Mining involves various phases: indexing (Section 2.6), dimen-

sionality reduction (Section 2.7), learning (Section 2.8) and evalua-

tion (Section 2.9).

2.6 Indexing

The first step when dealing with natural text for machine learn-

ing is to transform the documents into a format that can be inter-

preted by the learning algorithms. This is called document index-

ing , and IR techniques are used for this task (see Section 2.4). A

typical approach is based in representing each document as vector

dj = (w1, . . . , w|T |) of weighted terms or features, where T is the
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vocabulary (the set of terms that occur in the documents), and wk
is a value that represents the weight of that term to document dj .

Broadly speaking, the most important a term is for the semantics of

a document, the larger weight it is assigned. Each term or feature

usually corresponds to one word. In this case, we say we are em-

ploying the bag-of-words approach. Nevertheless, features can also

correspond to n-grams, phrases or more sophisticated representa-

tions.

Differences among the different indexing approaches are based on

the following:

• Defining what a term is. If each term corresponds to one

word, we say we are employing the bag-of-words approach.

Nevertheless, features can also correspond to n-grams, phrases

or more sophisticated representations based on latent factors.

• Deciding how to compute weights. A trivial approach to this

is to assign wjk = 1 if tj appears in document dk, and 0 in

other case. Another frequent weighting function is the term

frequency. In this function, the most frequent a word is in a

document, the highest weight it is assigned. The problem of

term frequency is that terms that appear in most documents

are not very representative of the semantic contents. Let us

think about the case of prepositions (to, from, in...). Such

words are very frequent inside documents, but at the same

time appear in most documents, so their discriminative power

is small. That justifies the introduction of functions like TF-

IDF. This function is defined as follows:

TF-IDF(i, j) =
ni,j∑
k nk,j

log
|D|

|{d : ti ∈ d}|
(2.2)

where ni,j be the number of occurrences of the word ti in

document dj , |D| the cardinality of D, and |{d : ti ∈ d}| is the

number of documents where the term ti appears.

Note that all of these weighting functions disregard the order

in which documents appear.
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April is the cruellest month, breeding
Lilacs out of the dead land, mixing
Memory and desire (. . .)

[’april’, ’is’, ’the’, ’cruellest’, ’month’,
’breeding’, ’lilacs’, ’out’, ’of’, ’the’,
’dead’, ’land’, ’mixing’, ’memory’, ’and’,
’desire’]

[’april’, ’be’, ’the’, ’cruel’, ’month’,
’breed’, ’lilac’, ’out’, ’of’, ’the’, ’dead’,
’land’, ’mix’, ’memory’, ’and’, ’desire’]

[’april’, ’cruel’, ’month’, ’breed’, ’lilac’,
’dead’, ’land’, ’mix’, ’memory’, ’desire’]

Figure 2.4: Example of indexing, using the first verses of The
Waste Land, by T.S. Eliot. The first node represents the raw
text. The second node represents the tokenized text. The text
is stemmed (only the word root is kept). In the final step, stop-
words are removed. The result can be used in a bag-of-word

representation.

A step frequently performed during the indexing is the deletion of

stop words, that is, structural words with no semantic information,

such as prepositions or articles. Additionally, stemming is frequently

carried out. Stemming consists in removing word suffixes in order to

use only the root, which is the part carrying semantic information.

A prominent indexing approach in the literature is the Darmstadt

Indexing Approach, used in the AIR/X system [29]. This approach

is based on the idea of using a much wider set of features, where

properties build the dimensions (of terms, documents, categories or

relationships) of the learning space. This approach allows to take

into account features such as the location of a term within a docu-

ment, which is not possible with the classic bag-of-words approach.
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A simple example of document indexing is shown in Figure 2.4.

In this example, the original text is converted into lower case and

tokenized (that is, the terms are extracted), then the words are

stemmed, and finally stopwords are removed, obtaining a vector of

words that represent the document.

2.7 Dimensionality reduction

Many algorithms used for text classification typically suffer from

high dimensionality, hence it is often necessary to reduce the size

of the vector space T and work with a reduced space T ′. Such

reduction is also useful to reduce overfitting, since noisy attributes

are removed.

Two main strategies for dimensionality reduction can be defined:

• Dimensionality reduction by term selection: T ′ is a subset of

T

• Dimensionality reduction by term extraction: the terms in T ′

are not of the same type of the ones in T (for example, they

are obtained by transforming the original terms).

Regarding term selection, two main approaches can be found in

the literature: the wrapper approach and the filtering approach, al-

though hybrid models have been proposed too [30]. Wrapper meth-

ods involve a search procedure where a classification performance

measure is optimized in the space of possible feature subsets [31].

Their applicability in text classification is limited because they are

very computationally intensive: they require building a classification

model for each of the evaluated feature sets. Moreover, wrappers

have a higher risk of overfitting.

Filtering methods, on the other hand, allow a fast and scalable com-

putation. The resulting feature set is not adjusted to a specific

classifier model. They use the intrinsic properties of the data to as-

sess the relevance of features for the classification task. The easiest
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way is to rank the features by the value of some score according

to a weighting function that measures the relevance of each feature

[10] and then choose the features with the highest scores. Among

the most widely used weighting functions are document frequency,

chi-squared, information gain, mutual information, etc. Previous

works [32, 33] present a good overview and some results from em-

pirical studies aimed at comparing several feature selection metrics

for text classification

A simple scoring function is chi-squared, based on the common sta-

tistical test for independence that measures the divergence from the

distribution expected if we assume that feature occurrence is in-

dependent of the category [33]. Given a dataset D, the local chi-

squared function for a feature tk in a category ci can be calculated

as follows:

χ2(tk, ci) =
|D|[P (tk, ci)P (t̄k, c̄i)− P (tk, c̄i)P (t̄k, ci)]

2

P (tk)P (t̄k)P (ci)P (c̄i)
(2.3)

The chi-squared function assumes binary features, so it is appropri-

ate for the bag-of-words representation of text datasets: tk is true

in a document x if term tk appears in x, and false otherwise. Then,

the chi-square score for a feature tk is calculated as the sum of the

chi-square scores for each category [10]: χ2(tk) =
∑|C|

i=1 χ
2(tk, ci),

where |C| is the total number of categories.

Dimensionality reduction by term extraction is based on replacing

the set of original terms with a different set of synthetic terms that

maximize effectiveness [10]. The rationale behind this is that the

original terms may not be optimal dimensions for document repre-

sentation, because of the problems of homonymy and polysemy. The

idea is to create artificial terms that do not suffer from these prob-

lems. Two important techniques in this sense are term clustering

and Latent semantic indexing .

• Term clustering is based on the idea of grouping semantically

similar terms into term clusters, and employing the centroid

of the clusters instead of the original terms.
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• Latent semantic indexing is a technique with roots in IR doc-

ument classification. It is based on compressing documents

into a lower-dimensionality space via a linear transformation,

based on co-occurrent patterns. This is achieved using matrix

factorization techniques such as Singular Value Decomposition

(SVD). LSI is able to correlate semantically related terms that

are latent in a collection of text, and it is a method able to

deal with polysemy and synonymy. The main disadvantage of

LSI is its high computational cost.

Other techniques for term extraction have their origin in the field

of soft computing [34], such as Ant Colony Optimization, used in

the work of Aghdam et al. [35]. Evolutionary algorithms have also

be used, for example in the work of Freitas [36]. In the rest of this

thesis we focus on dimensionality reduction by term selection.

2.8 Algorithms for text classification

A large number of different machine algorithms have been used for

classifying text; in this Section we review the most relevant ones.

2.8.1 Probabilistic classifiers

The first group of classifiers that we study are probabilistic clas-

sifiers [37]. They are based in estimating the probability that a

document dj projected into a vector space model with D different

words 〈w1, w2, . . . , w|D|〉 belongs to category ci, that is p(ci|d). For

categorization purposes, the category with the highest probability is

considered to be the category corresponding to the document. This

probability can be derived from the distribution of words in classes

by using Bayes’ theorem:

p(ci|dj) =
p(ci)p(dj |ci)

p(dj)
(2.4)
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The probability p(dj |ci) is difficult to calculate, because of the high

number of possible word vectors. Therefore, it is frequent to make

the assumption that the features of the vector space are independent,

that is, p(dj |ci) =
∏
k p(wk|ci). That is:

p(ci|dj) =
p(ci)

p(dj)

∏
k

p(wk|ci) (2.5)

The resulting classifier is called Näıve Bayes [37], due to the ‘näıve’

assumption of feature independence. Log-likelihood ratios are used

in order to avoid underflow due to multiplication of a large number

of small probabilities:

log p(ci|dj) = log
p(ci)

p(dj)

∑
k

log p(wk|ci) (2.6)

In order to estimate probabilities, maximum-likelihood estimators

approaches (MLE) are usually avoided due to the impact of non-

appearing words, which would transform the product of probabilities

into 0. Laplacian estimators are a frequently used alternative to

MLEs. Despite the independence assumptions of Näıve Bayes, this

algorithm has been experimentally found to perform reasonably well

in text categorization [38].

2.8.2 Linear classifiers

Another important family of algorithms for text classification are the

ones based on regression. A prominent example is logistic regres-

sion [39], which, despite its name, is actually a classification method.

Logistic regression is based on linear regression, and it is used for

binary classification, that is, deciding if an instance corresponds or

not to a given category. Logistic regression returns the probability

p(ci = True|dj) that a document dj belongs to a category ci. In the

case of having more than one scenario, a logistic regression model

can be used for each category, and the category with the highest

probability for a given instance is chosen as the assigned category
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Figure 2.5: Example of Logistic Regression

for it (that is, the One-versus-All (OVA) binarization strategy is

used). The objective of logistic regression is to approximate a func-

tion f that maps each instance into 1 (if the instance belongs to the

class) or 0 (if it does not belong to the class). To this end, a logistic

function gc(x) is fitted for each class c to the data, where:

gc(d) =
1

1 + e−(θT d)
(2.7)

where θT is the vector of parameters to learn in order to adjust

the function, at the reason of one parameter for each word in the

vocabulary. The parameters can be learnt using an optimization

procedure, such as gradient descent. The value of gc(d) is between 0

and 1, and thus can be interpreted as the probability that d belongs

to category c.

From a geometrical point of view, what logistic regression does is

to find a hyperplane that separates positive and negative examples:

for example, a threshold of g(d) = 0.5 can be established, that is,

the classifier decides that the category of document dj is ci if and

only if gci(dj) > 0.5. This is shown in Figure 2.5.

The idea of finding a hyperplane that separates positive and nega-

tive examples is also exploited by Support Vector Machines (SVM)
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Figure 2.6: Maximum-margin hyperplane and margins for a
SVM to distinguish between two classes. The instances on the

margins are called the support vectors.

algorithms. If the training data are linearly separable , the objec-

tive is to select two parallel hyperplanes that separate the negative

and positive examples, trying to maximize the ‘margin’ (that is, the

distance between the hyperplanes). See Figure 2.6. If the data are

not linearly separable, hyperplanes are selected such that they split

the data as cleanly as possible (that is, minimizing the number of

misclassified examples). This basic version of SVMs are a type of lin-

ear classifier. It is possible to use SVMs for non-linear classification

using the so-called kernel trick , which consists in replacing the dot

products associated to the geometrical equations of the hyperplanes

with non-linear kernel functions, such as polynomial functions or the

Gaussian radial basis function. Although the kernel trick is a pow-

erful concept, the basic linear version of SVMs usually works well

for text classification [10]. The reason is that the kernel trick has

the effect of augmenting the dimensionality of the problem. Text is

already highly dimensional, which means that applying the kernel

trick has the effect of augmenting the error due to variance in the

bias-variance trade-off. In other words, the models become prone to

overfitting to the training set. For this reason, linear kernels (that
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is, the basic linear version of SVM) are commonly used for text

classification.

2.8.3 Neural networks

Another common algorithm for text classification are neural net-

works. In a neural network text classifier, there are some input

units that represent terms, some intermediate units (the hidden lay-

ers) and some output units that represent categories. The weights

on the edges connecting units represent dependence relation. For

classifying a document dj , its term weights wk are loaded into the

input units, the activation of these units (according to a given activa-

tion function) is propagated, and the activation value of the output

units determines the categorization decision. Neural networks are

frequently trained using the backpropagation algorithm. The sim-

plest kind of neural network is the perceptron algorithm [40], in

which the architecture consists only of an input layer, where each

input node represents a word, and an output layer where each node

represents the output for a given category. The perceptron is a linear

algorithm, since the output depends on a lineal combination of the

input values. The weight of each term can be interpreted as the rel-

evance of that term with respect to the category. In the perceptron

algorithm, each time a new document arrives, the weights are mod-

ified if and only if the classification was not correct. In that case,

the weights of the terms that occur in the document are increased,

while the weights for the other terms are decreased. This means

that the perceptron algorithm can be seen as a sort of ‘on-the-fly’

feature selection mechanism [41].

The inclusion of internal or ‘hidden’ layers allows neural networks to

learn more complicated functions. See a representation of a typical

neural network with one hidden layer in Figure 2.7.
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Figure 2.7: Example of a neural network architecture with one
hidden layer

2.8.4 Example-based learners

A completely different family of text classifiers are the example-

based classifiers [42]. Example-based classifiers do not build an

explicit representation of categories, but rely on the categories of

training instances with are similar to the test instance to be clas-

sified. These methods are also known as lazy learners, since they

‘defer the decision on how to generalize beyond the training data un-

til each new query instance is encountered ’ [17]. An example of such

algorithms is the Nearest Neighbor algorithm, which stores all the

training data in memory. When a unlabelled item has to be clas-

sified, the algorithm computes the distance to all the stored items,

using a similarity function, and determines the nearest neighbor (or

the k nearest neighbors) [43]. Examples of similarity functions are

the Euclidean distance or the cosine similarity, which is often used in

the vector space representation. Lazy learners are fast to train, but

they require a large space to store the entire dataset and are slow to

evaluate. The use of example generalization helps to reduce these

problems; an example of example-based algorithm which generalizes

similar examples is NN-ge [44].
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2.8.5 Decision trees and association rules

A further commonly-used family of algorithms are those based on

decision trees. A decision tree classifier consists in a tree data

structure, where each internal node ni represents a feature fi, and

branches departing from ni represent tests on fi. Each leaf node

represents a category. An example of decision tree is shown in Fig-

ure 2.2. In order to classify a given document, its features are re-

cursively checked until a leaf node is reached, which indicates the

category. Decision tree learners are based on recursively partition-

ing the training data into subgroups, following a top-down strategy,

by checking the value of a given attribute, which is selected in order

to maximize some criterion, such as expected information gain. The

training data is recursively partitioned until all the examples in a

node have the same value, or until splitting no longer improves the

performance. Examples of decision trees learners are ID3 and its

successor C4.5 [45]. The main advantage of decision trees is their

easy interpretability, since their model is easily interpretable by hu-

mans, regardless of their predictive accuracy.

This easy interpretability is also a property of inductive rule classi-

fiers. An inductive rule classifier consists in a set of rules, each one

of them consisting in a premise (a Boolean test over a set of features)

and a clause head, which represents he category a document should

be classified into if the premise is true. Inductive rule learners are

usually built in a bottom-up fashion, beginning with very specific

rules and generalizing them by simplifying or merging clauses. A

prominent example of inductive rule learners for text classification

is RIPPER [46], based on recursive data partitioning that supports

multi-valued attributes. RIPPER has been successfully applied to

email classification [46].

2.8.6 Ensemble learning

Finally, Ensemble learning is a technique for combining a set of

weaker learners in order to obtain a stronger learner. It has been

empirically shown that the performance of ensembles is better when
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the models are diverse enough [47]. Ensemble learners try to pro-

mote diversity. In the specific case of text classification, this means

either using different indexing strategies, and thus different feature

space, or using different learning algorithms (or both). In general,

ensemble methods involve the simultaneous use of different learning

models, which partial results have to be aggregated into the final

result.

A simple example of ensemble learning is the majority vote strategy

[48], where k independent classifiers propose a class for a document,

and the class with the most votes is selected. Another important

ensemble method is boosting [49]. In this method, we have k learners

Φ0,Φ1 . . . ,Φk−1, all of them learnt sequentially using the same base

algorithm. Each classifier Φi is tuned in order to solve the most

difficult documents to classify found so far. After all the k classifiers

have been built, their output is combined using a weighted linear

combination rule. The sub-classifiers are not trained in parallel, but

sequentially. Boosting algorithms have been proven successful for

the task of text categorization.

A different approach was proposed in the work of Ramos-Jiménez

al. [50], where the FE-CIDIM algorithm was presented. This algo-

rithm is based on a multiple classifier system that uses decision trees

(CIDIM) as the base algorithm. This approach is characterized by

the iterative induction of basic classifiers until none of the new ba-

sic classifiers improves the performance of the previous ones. It is

based on the E-CIDIM algorithm, which keeps a maximum number

of trees and induces new trees that may substitute the old trees in

the ensemble. The substitution process finishes when none of the

new trees improves the accuracy of any of the trees in the ensemble

after a pre-configured number of attempts. FE-CIDIM was designed

to speed up the convergence of the learning process. A two-layered

ensemble system was presented in the work of del Campo-Ávila et

al. [51]. This system has a layer with multiple classifiers, and a sec-

ond layer consisting of a single classifier that solves disagreements

among the classifiers in the first layer. A further type of ensemble

methods are correction filters [52], structures that learn which sub-

spaces of the global space is correctly learnt by each base classifier.
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YES is correct NO is correct

Assigned YES ai bi
Assigned NO ci di

Table 2.2: Contingency table for a category i

The results of the base classifiers are then combined according to a

voting scheme.

2.9 Evaluation

Evaluation of text classification systems is generally carried out in

an experimental fashion, since analyzing such systems analytically

would require a formal definition of the problem, while the task

of text classification is very difficult to formalise [10]. The main

objective of evaluation is to compare the performance of different

machine learning algorithms.

2.9.1 Evaluation measures

In the field of text classifiers, evaluation is more focused on effective-

ness rather than on efficiency. That is, the main point of interest is

if the system is able to take the correct classification decisions. Ef-

fectiveness measures are based on the observation that the category

assignments of a binary classifier can be evaluated using a two-way

contingency table for each category, as in Table 2.2.

Some important evaluation measures are the following:

• Precision and recall . Precision is the probability that, if a

decision has been taken to classify document d under category

c, this decision is correct, while recall is the probability that if

the correct category for document d is c, a decision has been

taken in favour of this classification. We have a contingency
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Figure 2.8: Precision and recall: graphical representation

table for each category, such as in Table 2.2. Estimates of

precision and recall for a category ci can be obtained as

precisioni =
ai

ai + bi
, recalli =

ai
ai + ci

(2.8)

The relationship between precision and recall is graphically

shown in Figure 2.8. In this figure, the documents are repre-

sented by points. The set of all examples is delimited by the

square area, where the set of documents retrieved by a query

is delimited by the oval area. The actual relevant items are at

the left side of the straight line. The errors are represented in

gray. More specifically, the items at the left of the straight line

that are not within the oval are false negatives (because they

should have been retrieved, but were not), whereas the items

at the right side of the straight line that are within the oval

are false positives, since they were retrieved, but should have

not been. Precision is the recall of the white region within the

oval by the whole oval, and recall is the quotient of the white

region within the oval and the left region.

Precision and recall are binary measures in nature, that is,

they refer to a specific class. Nevertheless, in the case of mul-

ticlass problems, the binary measures can be averaged in or-

der to obtain a global evaluation for the set of all categories.

There are two ways for averaging these measures. The first

one is called microaveraging , and is based on summing over
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the individual decisions:

precisionµ =

∑|C|
i=1 ai∑|C|

i=1 ai + bi
, recallµ =

∑|C|
i=1 ai∑|C|

i=1 ai + ci
(2.9)

The second one is macroaveraging , and is based on first eval-

uating the result for each category, and then averaging these

values, that is:

precisionM =

∑|C|
i=1 precisioni
|C|

, recallM =

∑|C|
i=1 recalli
|C|

(2.10)

Microaveraging gives the same weight to all instances, whereas

macroaveraging gives the same weight to all categories.

• The Fβ measure summarizes precision and recall. More specif-

ically, it is a weighted average of precision and recall. Its most

traditional version is the F1 score (the harmonic mean of pre-

cision and recall):

F1 = 2
precision recall

precision+ recall
. (2.11)

The general form of this measure is

Fβ = (1 + β2)
precision recall

β2precision+ recall
(2.12)

When β = 1, this measure is maximized if precision = recall.

• Error and accuracy , as well as precision and recall, can be

calculated from the contingency table 2.2:

accuracyi =
a+ d

a+ b+ c+ d
, errori =

b+ c

a+ b+ c+ d
(2.13)

These measures are not widely used in text categorization,

since the large value of the denominator makes them insensi-

tive to variations in the number of correct decisions [53].

• 11-points average precision. A text classification system can be

tuned to balance between precision and recall. The 11-points
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average precision is computed by allowing the recall to take

values 0.0, 0.1, . . . , 1.0, and averaging the 11 corresponding

precisions.

• AUC (Area under curve) is the area under the ROC curve,

and is equal to the probability that a classifier will rank a ran-

domly chosen positive instance higher than a randomly chosen

negative one.

2.9.2 Three scenarios for comparing text classification

algorithms

There are three main different scenarios where text classification

algorithms (and data mining methods, in general) may be com-

pared [15]:

• Two algorithms on a single problem

• Two algorithms on multiple problems

• Several algorithms on multiple problems

A frequently used technique for comparing two algorithms in a single

domain, with solid foundations in statistics, is cross-validation . One

round of cross validation consists on partitioning the dataset into k

disjoint subsets, using k− 1 subsets to induce a learner, and the re-

maining subset to measure the performance, using some of the eval-

uation measures presented in Subsection 2.9.1. This is repeated for

each one of the k subsets, using the average of the obtained results.

The main advantage of cross-validation is that all the instances are

used for both training and evaluation. In order for cross-validation

to provide meaningful results, the validation and training sets have

to be extracted from the same population.

When we are interested in comparing the performance of two al-

gorithms on multiple problems or datasets, a common statistical

technique is the Wilcoxon test [54]. This statistical test can be
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seen as a non-parametric alternative to the paired Student’s t-test.

Non-parametric tests are usually preferred in machine learning and

data mining, as discussed in the work of J. Demšar [55], because

of the lack of normality and homogeneity of the distributions of

datasets. The Wilcoxon test works by ranking the performance of

two algorithms on the datasets, and can be used to state whether an

algorithm is significantly better that other over the used datasets.

Finally, when we are interested in comparing the performance of two

algorithms on multiple problems or datasets, a common statistical

technique is the Friedman test, which is a non-parametric equivalent

of the two-way ANOVA [15]. The Friedman test is used to check if

the rankings of the algorithms are significantly different. If the result

of the test is positive (that is, if the null hypothesis is rejected), a

post-hoc test such as the Nemenyi of Bonferroni-Dunn test [55] has

to be used.

2.9.3 Benchmarks for text categorization

Finally, we cite some of the several publicly available datasets (or

benchmarks) for experimental evaluation of text classification sys-

tems. Some of the most commonly used ones are the following:

• Reuters consists of a set of economy-related stories. It contains

21578 manually labelled Reuters news documents from 1987.

There are 672 categories. The data was originally collected

and labelled by Carnegie Group, Inc. and Reuters, Ltd. in

the course of developing the CONSTRUE text categorization

system [28]. In 1990, the documents were made available by

Reuters and CGI for research purposes to the Information Re-

trieval Laboratory of the Computer and Information Science

Department at the University of Massachusetts at Amherst.

It has been a very often used dataset for text categorization.

Nevertheless, there are up several different versions of this col-

lection, which makes it difficult to use this dataset for compar-

ison. In this thesis we have used the Reuters-21578 collection.
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• OHSUMED contains titles and abstracts from medical jour-

nals [56]. The categories are terms of the MESH thesaurus.

• 20 Newsgroups. Consists of messages posted to Usenet news-

groups. The categories are the newsgroup where each message

has been posted [57].

• RCV1 is an archive of over 800,000 manually categorized newswire

stories recently made available in 2003 by Reuters, Ltd. for

research purposes. The dataset is thoroughly described in the

work of Lewis et al. [58].

• The Enron dataset contains emails from about 150 users of

Enron, organized into folders. The corpus contains about 0.5M

messages. This data was originally made public by the Federal

Energy Regulatory Commission during a investigation.



Chapter 3

Applying Text Mining

Techniques to DNA

Strings

3.1 Introduction

Our objective in this Chapter is to show how text mining tech-

niques can be applied to non-linguistic domains, specifically to DNA

strings, by using appropriate feature selection procedures. Our base

hypothesis is that DNA strings contain meaningful substrings or

words, that is, there are especially informative subsequences within

whole DNA strings. We aim to extract these words from DNA

strings and use them to summarize DNA strings as collections of

words, that is, as documents. This representation allows, for ex-

ample, to provide a visual representation for DNA strings in the

form of a word cloud, as well as to apply text mining techniques

to DNA strings for tasks such as mitochondrial DNA haplogroup

classification.

Representing DNA strings as documents (word collections) is an in-

tuitive possibility, since DNA strings can be viewed as very long se-

quences of symbols. Extracting words from most natural languages

45
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is generally a straightforward task, since words are separated by

spaces and other punctuation signs that delimit them. This task is

noticeably more difficult in languages such as Chinese or Japanese,

where there is no sign to indicate word separation. In such cases, dif-

ferent algorithmic techniques have been used to identify meaningful

units, of heuristic [59] or statistical [60] nature.

Extracting statistically meaningful substrings from DNA strings is a

challenging task, given the length of the string and the low number

of symbols that constitute the alphabet. It has been shown that the

problem of finding frequent non-overlapping factors in a string has

a general complexity of O(n2/k2) [61], where n is the length of the

string and k is the minimum frequency that a substring must have

to be considered frequent. Efficient algorithms are of paramount

importance to solve this task. In this Chapter we propose a parallel

version of the SANSPOS algorithm, and use it as a basic tool to

extract words from DNA strings.

The SANSPOS algorithm retrieves all the frequent factors present

in a string. However, it has to be taken into account that not every

factor is necessarily relevant enough to be considered a word. The

reason is that, if a given factor is frequent, all its subfactors are

going to be frequent too. To illustrate this, we can think in terms

of natural language: if the string process is frequent in a document

corpus, strings such as proce, roc or ocess are frequent too. But

the only actual meaningful word is process. The other substrings

are frequent only because they are contained in process. The same

is true for DNA sequences: we are only interested in actual words,

that is, in interesting substrings, not in substrings that are frequent

only because they are included in a larger word. In order to be able

to identify actual, meaningful words, we have to use interestingness

functions, similar to the interestingness functions used in association

rule learning [62].

In this Chapter we show how to represent DNA strings as docu-

ments, using relevant substrings of variable length as features, and

two uses of this representation. The first one is the possibility of

offering a concise visual representation of the DNA string, showing
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the most interesting substrings. The second advantage is the possi-

bility of applying well-tested text classification techniques to DNA

strings, using the succinct word-based representation we propose.

This chapter is partially based on the following publication in which

the author has participated:

• Baena-Garćıa, M.; Carmona-Cejudo, J.M.; Morales-Bueno,

R.: “String analysis by sliding positioning strategy”, Journal

of Computer and System Sciences Available online 19 March

2013, ISSN 0022-0000, 10.1016/j.jcss.2013.03.004

The rest of the Chapter is organized as follows. In Section 3.2 we

put this Chapter in the context of bioinformatics and data mining.

In Section 3.3 we review the related work. Then, in Section 3.4

we explain our parallel SANSPOS algorithm for frequent substring

extraction. In Section 3.5 we explain how to use this algorithm to

extract features and represent documents as words. Finally, in Sub-

section 3.6 we apply our proposal to mitochondrial DNA haplogroup

classification.

3.2 Background

Bioinformatics is an interdisciplinary field that provides automated

methods for analyzing biological data. A major research area within

bioinformatics is biological sequence analysis, including sequence

storage and compression [63], sequence search [64], sequence visual-

ization [65], sequence alignment [66] or sequence classification [67].

The key challenge in this area is the huge size of DNA strings. Effi-

cient algorithms able to deal with this are of paramount importance.
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Bioinformatics involve technologies such as artificial intelligence, soft

computing and data mining.

In particular, an important topic is DNA analysis. DNA stands for

deoxyribonucleic acid. It is the molecule that encodes the genetic

instructions that describe the development and functioning of living

organisms [68]. DNA contains four different types of nucleotides:

guanine, adenine, thymine and cytosine. These nucleotides are gen-

erally abbreviated as G, A, T, C, and can be thought of as the four

symbols that compose the alphabet of DNA. DNA is organized as

a double helix with two complementary strands. Each nucleotide in

one strand is paired with another nucleotide from the other strand.

This configuration is known as base pairs [68]. Guanine is always

paired to cytosine, and adenine to thymine.

DNA is organized in chromosomes, and the set of chromosomes

present in a cell compose its genome. The size of the genome is

different in different species. For example, the human gnome has

about 3 billion base pairs of DNA arranged into 46 chromosomes.

DNA is converted to proteins in two steps. The first one (or tran-

scription) converts DNA to messenger RNA. In the second step

(translation), proteins are obtained. There are specific stretches of

DNA, the genes, corresponding to a unit of inheritance and associ-

ated with some specific function. Genes influence the phenotype of

an organism, that is, the organism’s observable characteristics. The

complete set of genes is called the genotype of the organism.

Mitochondrial DNA (or mtDNA) is the name given to the portion of

DNA located in mitochondria within eukaryotic cells. In human be-

ings, mtDNA is the smallest chromosome. It encodes 37 genes and

contains around 16600 base pairs. It has the peculiarity that, in

most species, it is inherited from the mother only. The comparison

of different mtDNA sequences allows to study the evolutionary re-

lationships between species and populations. Differences in human

mtDNA sequences conform haplogroups, which can be organized ac-

cording to their genealogical relationship, conforming a phylogenetic

tree.
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Haplogroups are basically genetic population groups, and they are

composed of people who share a common ancestor on their maternal

lineage.

The field from data mining that aims to find relevant information in

symbolic sequences is known as sequence mining, and has a direct

application to DNA strings, given that they can be represented as

very long sequences of symbols. Pattern discovery in strings can

be classified as a special case of pattern discovery in databases [61].

The main peculiarity of pattern discovery in strings is that we have

a big string over a small set of symbols, instead of a database of

small transactions over a big set of items. Therefore, there is a high

number of patterns to analyze. The problem of finding frequent

patterns in strings has been studied extensively in the literature

(see Subsection 3.3)

3.3 Related work

As previously stated, in this Chapter we apply data mining to mi-

tochondrial DNA haplogroup classification. Wong et al. [67] present

a comparison of different data mining algorithms for classifying

mtDNA sequences into their haplogroups. More specifically, they

use random forests with principal component analysis for feature se-

lection, nearest neighbours and support vector machines with RBF

kernel. The conclude that SVM outperforms the other algorithms

for this task. They use the dataset that was published as a re-

sult of the Genographic Project [69], which means that they do

not work with raw DNA sequences, but with a set of predefined

features, provided by experts and related to some specific coding

regions. They found that class imbalance was a relevant problem.

Less frequent haplogroups were more difficult to classify correctly.

MtDNA haplogroup classification is also discussed in the work of

Kloss-Brandstätter et al. [70], where they examine polymorphisms

and use them as features. HaploGrep goes through all polymor-

phisms within a given sequence range from the human mtDNA hap-

logroup tree starting at a reference sequence. For every possible
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haplogroup and sample, a rank is calculated according to the likeli-

hood that the sample belongs to the haplogroup.

These approaches have in common that they use predefined features

provided by biologists. In contrast, our proposal does not rely on any

specific features. We use text mining techniques in order to automat-

ically find interesting features. Text mining is one of the tools that

aid bioinformatics researchers to cope with the information overload

associated with DNA strings, although the main field of application

until now has been analysis of biomedical literature [71, 72]. In con-

trast, we propose to apply these techniques to DNA strings directly.

Some authors have used text mining techniques for DNA classifica-

tion, using whole nucleotide sequences. A notable example is the

work of Gadia and Rosen [8], which compute the frequency of all

N-grams and then select the most relevant N-grams using the TF-

IDF weighting function in order to classify genomic fragments. A

distance-based classifier was used in their work. They experiment

with different N-gram sizes, finding that with N > 9 there is a dra-

matic performance increase. They hypothesize that this is due to

the increased probability of N-gram uniqueness.

The work of Gadia and Rosen has the disadvantage that a fix N-

gram size has to be chosen beforehand, and the counts for all the

different N-grams have to be kept. In contrast, string mining algo-

rithms do not require to fix a size beforehand, and look for frequent

substrings regardless of their lengths (although length constraints

can be posed).

A popular tool that can solve the problem of finding frequent factors

are suffix trees [73, 74], data structures that represent the suffixes

of a given string. The use of suffix trees for locating frequent fac-

tors was first proposed in the work of Sagot [75]. Arguably, the

most influential algorithm for constructing suffix trees from strings

is Ukkonen’s algorithm [74], which uses linear time for constructing

suffix trees. Parallel construction of suffix trees has been recently

explored in the work of Mansour et al. [76]. Their proposed ERa

algorithm optimizes dynamically the use of memory and amortizes

the I/O cost. A suffix tree-based genetic programming algorithm
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for frequent pattern discovery was proposed by Sætrom [77]. De

Rooij [78, 79] also uses Ukkonen algorithm to construct suffix tress,

adding some contextual information to the tree nodes.

There is a problem with suffix tree usage for discovering interest-

ing patterns: only the frequent part of the suffix tree will be used.

That is, there are unnecessary nodes in the structure. A different

data structure for finding frequent patterns are tries [80], ordered

tree structures where each edge represents a symbol and each node

is associated with a given pattern. In order to obtain the pattern

corresponding to the n-th node, the symbols in the path from the

root to n are concatenated. Bodon, in his survey of frequent itemset

mining [81], defines two ways to implement tries: compact and non-

compact representation. The compact representation uses an array

of pointers to node structures. This has high space requirements,

which makes the structure inefficient. The non-compact represen-

tation uses a linked list or binary search tree to link the sons of a

node. Its disadvantage is that it has a higher search cost.

Vilo defines SPEXS [82], a new algorithm that avoid the problems

associated with suffix trees. This algorithm generates a pattern trie

with information summaries about the occurrences of each pattern.

Nodes of frequent patterns are expanded incrementally to incorpo-

rate new patterns. This guarantees that only frequent patterns are

constructed. SPEXS does not add every word to the tree but instead

builds it on all possible words in breadth-first order. This algorithm

has O(n2) time complexity, but can outperform simple solutions em-

pirically [82]. Nevertheless, it has some limitations processing short

tandem repeats.

The SANSPOS algorithm [61] is an Apriori-like algorithm that does

a multiple-pass candidate generation and test approach. The al-

gorithm uses the SP-Trie data structure and Positioning Matrices

as positioning strategy, which allows to apply prune heuristics with

low computational cost and calculate interestingness measures. A

description of SANSPOS is provided in Section 3.4.
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Regarding DNA visualization, several different approaches can be

found in the literature. Some authors propose to view DNA se-

quences as paths in a three-dimensional space [83]. This repre-

sentation has been used to compare the genome of human beings

and chimpanzees. Another approach is to use spectral analysis [84].

Spectral analysis makes it easier to discover regular patterns in DNA

strings. In this line, Berger et al. [85] also propose to apply frequency

domain transformations to visualize and analyze DNA sequences.

They propose to track the evolution of DNA sequence as a language.

Artemis [65] is a popular Java free software for DNA visualization

and annotation. It allows visualisation of sequence features and the

results of analyses within the context of the sequence. There are

some other representation that focus on specific features of DNA se-

quences. An example are GC-skew graphics. GC-Skew is calculated

in a sliding windows as (G - C) / (G + C), where G is the number

of G’s in the window, and C is the number of C’s. GC-Skew graphs

are useful to analyze DNA replication. There are also visualization

techniques, such as PIP plots [86], specifically designed for showing

the differences between DNA strings.

3.4 Parallel SANSPOS algorithm

SANSPOS (String ANalysis by Sliding POsitioning Strategy), first

introduced in the work of Baena-Garćıa et al. [61], is an algorithm

to find frequent patterns in strings by constructing a data structure

called SP-Trie. This algorithm is based on multiple passes over the

input string. In every pass, the algorithm generates and tests new

and longer patterns, using the fact that any super-pattern of a non-

frequent pattern cannot be frequent. In this sense, the SANSPOS

approach bears relation to the APriori algorithm for association rule

learning. To reduce the disadvantage of iterations, an iterative ap-

proach that performs multiple-level expansions of a trie in every it-

eration is used. In SANSPOS, the number of levels to expand grows

exponentially in every iteration over the string. Hence, the number

of iterations to perform is a logarithm of the trie’s maximum depth.
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Figure 3.1: Trie with compressed representation for the string
“eeaeaeeacacaec”. The number in a node represents support.

The aforementioned SP-Trie structure is a variation of a trie struc-

ture that represents all frequent factors of the input string. This

structure has a node organization and routing strategy that uses

auxiliary structures called Positioning Matrices, which allow to lo-

cate patterns in the trie efficiently. The Positioning Matrices allow

SANSPOS to efficiently detect short tandem repeats (STRs), that

is, patterns that are repeated a high number of times at adjacent

positions. This capability turns out to be of paramount importance:

as we have previously stated, the space complexity of discovering fre-

quent factors is quadratic in general. Nevertheless, it can be reduced

to linear by detecting STRs [87].

In Section 3.3 we have mentioned that two basic ways to implement

tries are compact and non-compact representations. There is a third

option, which is used by the SP-Trie data structure: the compressed

representation. This representation uses arrays as children of a node.

An example of a trie with compressed representation is depicted in

Figure 3.1.

Along with SP-Tries, another important aspect of the SANSPOS

algorithm are Positioning Matrices. Let p be a pattern, the Po-

sitioning Matrix C of a string p is an upper triangular matrix of

nodes, where each position of C (cij) represents the node in the

SP-Trie corresponding to the substring pi . . . pj . This is the value
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of pos(pi . . . pj). This matrix can be used to locate the position of

a pattern within a SP-Trie [61]. The Positioning Matrices can be

regarded as a dynamic programming strategy to locate nodes. An

important advantage of Positioning Matrices is that they can be

reused to locate nodes of two contiguous overlapped patterns by di-

agonally shifting the matrix. Positioning Matrices allow to apply

interestingness rules and to detect STRs.

The initialization procedure of the SANSPOS algorithm creates a

SP-Trie structure which contains the frequency of every pattern of

length 1 (that is, the support of each symbol σ in the alphabet Σ).

For each character in the input sting, its frequency has to be updated

in the SP-Trie, using Positioning Matrices to locate their position.

Once the trie has been initialized, the input string is transversed

several times, analyzing exponentially longer patterns each time. In

each iteration, there is a sliding window of a given length which se-

quentially checks and updates all the patterns of this same length.

For each analyzed pattern, we can reuse the indexes calculated for

the previous position of the Positioning Matrix. Short tandem re-

peats (STRs) can be pruned at this stage, as well as factors which

frequency is lower than a given threshold (recall that a superfactor

of a non-frequent factor cannot be frequent). The objective is to ob-

tain a compressed SP-Trie at the end of each iteration. The output

of the SANSPOS algorithm is a SP-Trie structure which contains

the frequencies of all the frequent patterns in the input string.

DNA strings are typically very long, something that we can exploit

in order to parallelize the process of transversing them. More specif-

ically, if we have an input string of length l, and want to use t dif-

ferent threads to concurrently update the shared SP-Trie structure,

we divide the input string into t substrings. The patterns checked in

the borders of the substrings are overlapped, so that all the possible

patterns are transversed exactly once.

In order to synchronize write access to the shared SP-Trie structure,

spinlocks have been used. Spinlocks are basic primitives for locking
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access to the mutual exclusion zone, in our case, writes into the SP-

Trie, and are available in the Linux Kernel from version 2.2. Spin-

locks have been used instead of other synchronization mechanisms

because, in our case, context switching would be more expensive

than waiting a few CPU cycles, since the threads we use are likely

to be blocked for only a short period of time .

3.4.1 Parallel SANSPOS: experimental evaluation

In this section we evaluate the speed-up resulting from using the

parallel version of the SANSPOS algorithm. More specifically, we

compare the effect of using different numbers of threads. We have

tested a parallel version of SANSPOS in a HP 9000 Superdome

server with 128 cores and 128 GB of memory. In table 3.1 we show

results of speed-up, time average, and efficiency. The speed-up is

calculated as the ratio of the time needed by the parallel and the

sequential algorithm. It can be calculated as shown in Eq. 3.1, where

Tseq is the time needed by the sequential algorithm, while Tt is the

time needed by the parallel version with t threads.

speedupt =
Tseq
Tt

(3.1)

Efficiency is the ratio of the actual speed-up and the maximum pos-

sible (ideal) speed-up (that is, the time needed by the sequential

algorithm divided by the number of threads), as shown in Eq. 3.2.

efficiencyt =
speedupt

t
=
Tseq
tTt

(3.2)

We have used the English version of The Ingenious Gentleman Don

Quixote de la Mancha by Miguel de Cervantes, as downloaded from

Project Gutenberg (http://www.gutenberg.org/ebooks/996) for

evaluation. For this string, the optimum number of threads is found

to be 33, as shown in the results of the experiment in Table 3.1. It

can be observed that, until this value, the speed-up increases with

http://www.gutenberg.org/ebooks/996
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the number of threads, but, for larger number of threads, the over-

head caused by managing the high number of threads causes the

speedup to drop down. This is due to the workload or each thread

being too small in comparison with the number of synchronizations.

This is graphically depicted in Figure 3.2. From this, we can con-

clude that the number of threads has to be optimized so that the

workload for each one is big enough.

Threads Time (s) Speedup Efficiency

1 58.63 1.00 1.00
2 33.46 1.75 0.88
4 20.48 2.86 0.72
8 13.79 4.25 0.53

17 8.64 6.79 0.40
30 7.17 8.18 0.27
33 6.94 8.45 0.26
39 7.23 8.11 0.21
54 8.39 6.99 0.13
79 10.65 5.51 0.07

Table 3.1: Efficiency of parallel version of SANSPOS (time in
seconds)

3.5 Using Parallel SANSPOS for DNA fea-

ture selection

In this section we explain our procedure to extract words from DNA

strings, using the parallel version of the SANSPOS algorithm to

retrieve all the frequent factors, and the Added Value (AV) measure

to select the most meaningful factors (the words). The result of the

procedure is the representation of DNA strings as collection of words

associated with a given frequency.

This procedure can be directly applied to DNA string visualization

using a word cloud, where the size of each word corresponds to its

frequency. This graphical tool can also be used to visually compare
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Figure 3.2: Speedup of the parallel version of SANSPOS in
string #2

different DNA strings. A further use of this document-like represen-

tation of DNA is the application of text classification techniques to

DNA.

An important parameter that we have to set for the SANSPOS algo-

rithm is the minimum word length. We have found a value between

6 and 10 to be suitable: there are too many frequent substrings with

a length lower than 6, and too few with a bigger length.

After its execution, the SANSPOS algorithm returns all the frequent

factors present in the DNA string. But recall that, if a given factor is
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frequent, all its substrings will be frequent too. For this reason, it is

necessary to select only factors that are considered to be interesting,

and not their substrings. There are many different interestingness

functions available. It has been shown that AV works acceptably

well in the domains of DNA analysis and natural language [62]. The

AV function is used for calculating association rules interestingness.

Given an association rule X → Y , its AV can be calculated as

follows:

AV (X → Y ) = P (Y |X)− P (Y ) (3.3)

where X and Y are the antecedent and consequence of the associ-

ation rule, and P (X) is the probability of observing X in a given

dataset. This concept can be applied to a given string W if we divide

W into two adjacent substrings: W = W1W2.

More specifically, we use Algorithm 1 to transform a DNA string

into a word-based representation:

Algorithm 1 DNA String to document
Require: A DNA nucleotide sequence σ as input
Ensure: A multiset of relevant words found in σ (that is, a document-like representa-

tion), in the form of a frequency mp
SPTrie← Parallel SANSPOS(σ)
taboos← ∅
words with frequency ← list words(SPTrie)
for word ∈ extract unique words(words with frequency) do
taboos this word← ∅
for i ∈ [1, . . . , |word|] do
X ← word1...i
Y ← wordi+1...|word|
av prefix← calculate AV (X,Y,word, words with frequency)
av suffix← calculate AV (Y,X,word, words with frequency)
if av prefix < AV THRESHOLD then
taboos this word← taboos this word ∪ {X}

end if
if av suffix < AV THRESHOLD then
taboos this word← taboos this word ∪ {Y }

end if
end for
taboos← taboos ∪ taboos this word

end for
final frequency map← {(w, f) ∈ word frequencies|w /∈ taboos}
return final frequency map

In Algorithm 1 we use the following functions:
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• Parallel SANSPOS algorithm, that returns an SP-Trie struc-

ture corresponding to an input sequence σ,

• list words, which takes an SP-Trie as input and returns a list

of pairs of the form (w, f), where w is a substring present in

σ and f is its associated frequency,

• extract unique words, which takes a list of pairs (w, f) and

returns the list of different words, and

• calculate AV (X1, X2, X,words with frequency), which calcu-

lates the AV value of the rule X1 → X2 given X, using the fre-

quencies provided by words with frequency to calculate the

needed probabilities.

After this, we have a list of the interesting frequent factors present

in the original DNA string, as well as their frequency. That is, we

have a representation of the DNA string consisting of a multiset of

words.

The first application is the graphical representation of the words

contained in a DNA string. For this, we propose to use a word

cloud, where words are represented used different sizes, according to

their frequency. See Chapter 7 for a discussion of word clouds to rep-

resent documents. We have used the a python library, PyTagCloud

(https://github.com/atizo/PyTagCloud) to produce the clouds.

In Figure 3.3 we show the word clouds corresponding to the genomes

of two different kinds of bacteria: M. Genitalium and M. Pnaumo-

niae, identified by the NBCI accession numbers NC 000908.2 and

NC 000912.1, respectively. Mycoplasma Genitalium is a small par-

asitic bacterium that lives on the ciliated epithelial cells of the pri-

mate genital and respiratory tracts, while Mycoplasma Pneumoniae

causes a form of atypical bacterial pneumonia.

The aforementioned word clouds show the most frequent words in

the genomes of each one of these organisms. We can also use word

clouds to underline differences between organisms. For example Fig-

ure 3.4 depicts the words that differentiate one genome from the

other one, using bigger labels for strings that are very frequent in

https://github.com/atizo/PyTagCloud
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(a) M. Genitalium

(b) M. Pneumoniae

Figure 3.3: Word clouds corresponding to M. Genitalium and
M. Pneumoniae. For the sake of visualization, the nucleotide
substrings are represented by a compressed sequence of symbols
(A, C, G or T) and numbers, which represent the number of times
the last nucleotide is repeated. For example, A2GT3 corresponds

to AAGTTT
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one gnome and not in the other. This gives us a graphic represen-

tation of the differences between two given DNA sequences.

3.6 Application to mtDNA haplogroup clas-

sification

In this Section we apply text mining techniques to mtDNA hap-

logroup classification, using the document-like representation of DNA

strings discussed in the previous sections. We use a dataset of

1306 human mitochondrial DNA from the FamilyTreeDNA project

(http://www.familytreedna.com/). Each sample is labelled with

its correct haplogroup, provided by human experts. We transform

each string into a word-based document, using the previously pro-

posed methodology. Using this representation, we apply text mining

techniques to classify each sample into its corresponding haplogroup.

This is a difficult problem for data mining algorithms, due to two

main reasons:

• It is a multiclass problem, with a high number of labels (14)

• The classes are unbalanced: there are haplogroups that cor-

respond to many samples, while some other haplogroups are

scarcer.

There are some haplogroups that are represented by one or two

samples only. We have ignored them, since the number of samples

in that haplogroup is too low to allow learning.

We have used SVM with linear kernel as classifier, and a 5-fold cross

validation to evaluate its performance. For each of the folds, we use

the training set to select the attributes (that is, the words that

appear in the test set, but not in the training set, are not used).

The results in terms of precision, recall and F1 by haplogroup are

shown in Table 3.2. As expected, the performance varies according

http://www.familytreedna.com/
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(a) M.Genitalium vs. M.Pnaumoniae

(b) M.Pnaumoniae vs M.Genitalium

Figure 3.4: Word clouds corresponding to the difference be-
tween the genomes of M.Genitalium and M.Pnaumoniae, and vice
versa. Bigger labels correspond to words that are frequent in one
genome scarce in the other one. The bigger the label, the bigger
the difference. The nucleotide strings are represented using the

same compressed representation as in Figure 3.3
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Haplogroup Number of samples Precision Recall F1
A 16 0.812 0.765 0.788
C 12 0.917 0.846 0.880
H 412 0.964 0.990 0.977

HV 35 0.829 0.707 0.763
I 22 0.864 0.826 0.845
J 92 1.000 0.989 0.995
K 207 0.981 0.990 0.986
L2 8 1.000 0.727 0.842
N1 6 1.000 0.667 0.800
T 158 1.000 0.994 0.997
U 213 0.953 0.976 0.964
V 20 0.950 0.864 0.905
W 43 0.953 0.932 0.942
X 25 0.880 0.957 0.917

Table 3.2: Accuracy: 0.962, Micro F1: 0.963

to the specific haplogroup. For example, it works better for hap-

logroup J (F1 = 0.995) than for HV (F1 = 0.763). The accuracy

of the classifier is 0.962, and the micro-F1 0.963. We depict the

confusion matrix of the classifier in Figure 3.5.

Our results are similar to the results found in the literature, such

as the work of Wong et al. [67]. Nevertheless, they use a differ-

ent dataset that does not contain whole sequences, but predefined

features, so we cannot directly compare our results to theirs.
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Figure 3.5: Confusion matrix for the mitochondrial DNA clas-
sification. Darker colours represent higher values



Chapter 4

Multilabel Text Mining

4.1 Introduction

Traditionally, classification tasks deal with single-label datasets, where

every example is associated with a single label λ from a set of disjoint

labels L. Nevertheless, multilabel datasets are emerging and gain-

ing interest due to their increasing application to real problems [88].

Multilabel datasets emerge when the examples are associated with

a set of labels Y ⊆ L, as occurs with image annotation, genomics

and our main topic, natural text.

When classifying documents written in natural language, it is of-

ten too restrictive to assign only one category to each document.

For example, a newspaper article about the reaction of the Catholic

church authorities to a new abortion law could be classified under

Politics, Religion or even Healthcare, since readers interested in pol-

itics, religion or healthcare are possibly going to be interested in

this article. For that reason, when dealing with text documents in

natural language, multilabel learning has to be considered.

This chapter is based on the following publication in which the au-

thor has participated:

65
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• Carmona-Cejudo, J.M., Baena-Garćıa, M., del Campo-Ávila,

J., Morales-Bueno, R.: Feature extraction for multi-label

learning in the domain of email classification. CIDM 2011:

30-36

The rest of this chapter is organized as follows. In Section 4.2 we

introduce the multilabel learning problem and present related tasks,

methods and evaluation measures used in this field. Then, in Sec-

tions 4.3 and 4.4 we apply multilabel learning to email classification,

comparing the results obtained by different algorithms comparing

different metrics.

4.2 Multi-label learning

The continuously growing number of applications of multilabel learn-

ing has recently attracted an increasing interest from researchers.

Categorisation of textual data is probably the most common appli-

cation tackled by multilabel learning, and an important volume or

multilabel learning work is devoted to text classification.

For instance, McCallum et al. [89] employ a Bayesian model based

on mixtures for multilabel text classification. Schapiro and Singer [49]

propose two extensions to the the Ada-Boost boosting algorithm in

order for this ensemble method to be applicable to multiclass and

multilabel contexts, using the Reuters dataset for the evaluation.

Ueda and Saito [90] present a multilabel learning algorithm which

uses parametric mixture models in opposition to the binary clas-

sification approach, applying the resulting algorithm to Web sites

categorization. Rousu et al. [91] present an optimized kernel-based

algorithm for hierarchical multilabel text classification, again using

the Reuters dataset as well as the patents database WIPO-alpha for

evaluation.
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Apart from text categorization, multilabel learning has been applied

to some other domains. For example, in the work of Boutell et

al. [92] it is applied to semantic annotation of images, while Qi and

al. use multilabel learning for video tagging [93]. Other applications

include genomics [94] or music classification [95]. Nevertheless, such

domains are out of the scope of this thesis.

4.2.1 Learning: tasks and methods

In the literature on multilabel, learning two different, albeit related

tasks can be found:

• Multilabel classification (MLC) is devoted to finding a subset

of labels to be associated with a given example. That is, for

each dataset instance, the label set is divided into two disjoint

sets: labels that are relevant, and labels that are not.

• Label ranking (LR) consists in finding an ordering of the set

of all the labels according to their relation with each example.

That is, the most relevant tags will be first in the list, while

labels that bear no relation to the instance will be last.

There is a third task, called multilabel ranking (MLR), which com-

bines of MLC and LR. That is, it finds an ordering of the labels

and additionally finds a bipartition between relevant and irrelevant

labels. As a consequence, the methods that solve this new task can

be used for both classification and ranking, if they are conveniently

adapted. The most straightforward adaptation consists in using a

given threshold, so that the labels above that threshold can be in-

cluded in a relevant subset and the other ones in a irrelevant subset,

obtaining a bipartition.

This chapter is mainly devoted to the MLC task. There are different

methods that can be used for this learning task, a categorization of

which is depicted in Figure 4.1. Roughly speaking, these methods

can be divided into two disjoint categories [88]:



Multilabel Text Mining 68

Multilabel
Learning
Algorithms

Problem
Transfor-
mation

LP and
derivatives

LPPPT

EPPT RAkEL

Copy

Based on
binarization

BR

CLR

Algorithm
Transfor-
mation

MLkNN

MMAC

Other
algorithms

Figure 4.1: Classification of multilabel learning algorithms

Instance Labels

i0 b, c
i1 a, b
i2 a, c
i3 a,
i4 a, b

Table 4.1: Example multilabel dataset Dex

• Problem transformation methods transform the original mul-

tilabel dataset into one or several single-label datasets, and

apply standard machine learning algorithms. The results of

the single-label problems are combined in order to obtain the

multilabel result.

• Algorithm adaptation methods extend standard algorithms in

order to be able to cope with multilabel datasets directly.

The main advantage of problem transformation methods reside in

their flexibility, given that they allow to use any existing single-label

machine learning algorithm. In order to illustrate the application

of these methods, we use an example multilabel dataset, depicted

in Table 4.1. Some of the most common problem transformation

methods are the following [88]:

• Copy or copy-weight transformation: each multilabel example

is copied as many times as different labels are associated to
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Instance Label

i0 b
i0 c
i1 a
i1 b
i2 a
i2 c
i3 a
i4 a
i4 b

Table 4.2: Dataset resulting from applying the copy transfor-
mation to the example dataset Dex

(a) Label a

Instance Label
i0 False
i1 True
i2 True
i3 True
i4 True

(b) Label b

Instance Label
i0 True
i1 True
i2 False
i3 False
i4 True

(c) Label c

Instance Label
i0 True
i1 False
i2 True
i3 False
i4 False

Table 4.3: Datasets resulting after applying the Binary Rele-
vance transformation to the example dataset Dex

such example. Weights can optionally be used. After applying

this transformation to the multilabel dataset in Table 4.1 we

obtain the single-label dataset shown in Table 4.2.

• Binary Relevance (BR): as many binary classifiers are learnt

as there are labels (D = |L|). The original data are trans-

formed into D new datasets that contain all examples of the

original dataset labelled with a binary label, which is positive

if the corresponding label is present, or false otherwise. This

means that this method produces |D| binary classifiers, each

one of them responsible for learning a single label. The classi-

fiers are independent, which means that label dependencies are

not taken into account. If we use this method for processing

the example multilabel dataset, we obtain three single-label

datasets, depicted in Figure 4.3.
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Instance Label

i0 bc
i1 ab
i2 ac
i3 a
i4 ab

Table 4.4: Dataset resulting from applying the Label Powerset
transformation to the example dataset Dex

• Calibrated Label Ranking (CLR) [49]: CLR, as BR, is based

on constructing binary datasets. But, unlike BR, a classifier

is produced for every pair of labels. This algorithm faces com-

plexity problems when the number of different classes grows.

CLR uses a virtual label, which is used as a breaking point

between relevant and irrelevant labels.

• Label Powerset (LP): if this method is used, every set of labels

that is assigned to an example is considered as a new class

of a single-label classification problem. Thus, there will be

as many new single-labels as different sets of labels appear in

the dataset. This method models label dependence explicitly.

The basic label powerset method faces computational com-

plexity problems, since the number of different labels can be

very high. The number of possible combinations is bounded

by min(m, 2|L|) (where m is the number of examples and L

the set of different labels). Moreover, this method is prone to

overfitting. See Table 4.4 for the application of this method

to the original example dataset.

• Pruned Problem Transformation (PPT) [96]: it is an extension

of LP that attempts to deal with the aforementioned problems.

PPT breaks the original sets of labels into smaller and more

frequently occurring subsets. Therefore, it reintroduces new

examples in the dataset and learns different labels (smaller and

more common). Using this approach, an ensemble variation

can be built by combining different PPT models: the Ensemble

Pruned Problem Transformation (EPPT).
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• Random k-Labelsets (RAkEL) [97]: this method is another

derivative of Label Powerset. In this method, the original

dataset is sampled and different small subsets are created.

Each new subset is used in the training phase to induce differ-

ent LP classifiers that will be combined to form an ensemble.

This ensemble will rank the labels for a concrete observation

(example without labels) and later a bipartition of the label-

set could be carried out by selecting a threshold.

LP and its derivatives (RAkEL, PPT and EPPT) have the advan-

tage of overcoming the label independence assumption, and are thus

able to take advantages from of the relationships between labels.

Such transformations can model the fact that some labels are more

likely to occur in combination with others. The original LP trans-

formation had the problem of having to take into account an over-

whelming number of rarely occurring label sets. RAkEL, PPT and

EPPT were designed in order to alleviate this disadvantage using

pruning and meta-learning.

We briefly refer to some remarkable algorithm transformation ap-

proaches. The C4.5 has been adapted in [6], modifying the formula

used to calculate entropy, so that it is able to cope with multilabel

scenarios. More specifically, the formula of entropy is modified as

follows:

Entropy(D) =

q∑
j=1

(p(λi)logp(λj) + q(λj)logq(λj)) (4.1)

where p(λj) is the relative frequency of class λj , and q(λj) = 1 −
p(λj). Boosting models have also been adapted for multilabel data,

driving the learning process by optimization of different multilabel

measures [49]. AdaBoost.MH is designed to minimize Hamming

loss, while AdaBoost.MR is designed to place the right labels in the

top of the ranking. Probabilistic generative models are proposed in

the works of McCallum [98], Ueda and Saito [90], or Daelemas et

al. [99]. Neural network variations have been proposed in a paper by
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Zhang and Zhou [100], where BP-MLL, an adaptation of the back-

propagation algorithm for multilabel learning, was presented, as well

as in the work of Cramer and Singer [101], who proposed the MMP

model (multiclass multilabel perceptron). There are also methods

based on k Nearest Neighbours, such as ML-kNN. An algorithm

based on association rules is MMAC [102]. See also the work of

Veloso et al. [103], where a lazy multilabel approach is presented.

4.2.2 Evaluation measures for multilabel learning

There is a large number of measures that can be used to evaluate

the performance of multilabel methods. In general, they cannot

be simultaneously optimized for the same dataset and algorithm,

since they measure different aspects of the performance. In fact,

minimization of a given metric can result in a high regret for another

metric, as pointed out by Dembczyński et al. [104].

Two main classes of evaluation measures exist, which correspond to

the two main tasks previously mentioned: multilabel classification

(MLC) and label ranking (LR). We have thus measures to assess if

the bipartition between relevant and irrelevant labels is correct, and

measures to evaluate the appropriateness of the calculated ranking.

In addition to the previous categorisation of evaluation measures, a

different distinction can be noted for multilabel classification mea-

sures: example-based and label-based measures. The former calcu-

lates the metrics based on all the examples in the evaluation data,

while the latter decomposes the calculation into separate evaluations

for each label.

In the first group, example-based, several measures can be defined.

The following notation is used: let N be the size of the dataset, D

the number of labels, Ŷ (i) the vector of predicted labels for the i-th

example, Y (i) the set of actual labels for the same example, and ∆

the symmetric difference operator. Some commonly used metrics

are the following [88]:
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Instance Actual labelset (Y (i)) Predicted labelset (Ŷ (i))

i0 {a, c} {a, d}
i1 {b, d} {b, d}
i2 {a, d} {a, d}
i3 {b, c} {b}
i4 {a} {a, d}

Table 4.5: Example dataset with actual and predicted labelsets
(adapted from [105])

Figure 4.2: Graphical representation of Hamming Loss calcu-
lation for a given instance

• Hamming Loss is the average binary classification error. It

can be calculated as:

Hamming Loss =
1

D

1

N

N∑
i=1

|Ŷ (i)∆Y (i)|

If the example in Table 4.5 is considered, the Hamming Loss

is 1
4

1
5(2 + 0 + 0 + 1 + 1). See Figure 4.2 for the graphical

representation of this calculation for instance i0.

• Precision, the average of predicted labels that are correct. The

corresponding formula is:

Precision =
1

N

N∑
i=1

|Ŷ (i) ∩ Y (i)|
|Ŷ (i)|

For the example in Table 4.5, the precision is 1
2(1

2 + 2
2 + 2

2 +
1
1 + 1

2). See Figure 4.3.
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Figure 4.3: Graphical representation of precision calculation for
a given instance

Figure 4.4: Graphical representation of Recall calculation for a
given instance

• Recall is the average proportion of correct labels that were

predicted. Its formula is:

Recall =
1

N

N∑
i=1

|Ŷ (i) ∩ Y (i)|
|Y (i)|

For the example in Table 4.5, the recall is 1
2(1

2 + 2
2 + 2

2 + 1
2 + 1

1).

See Figure 4.4.

• The F1 measure is the harmonic mean of precision and recall.

Its formula is:

F1 =
1

N

N∑
i=1

2 · |Ŷ (i) ∩ Y (i)|
|Ŷ (i)|+ |Y (i)|

The F1 measure for Table 4.5 is 1
52(1

4 + 2
4 + 2

4 + 1
3 + 1

3). Precision

and recall are somehow contradictory measures, and tuning
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Figure 4.5: Graphical representation of accuracy calculation for
a given instance

the parameters of a given learning algorithm can favour one

against the other. The F1 value is maximized when precision

and recall have similar values.

• Accuracy , which can be calculated as follows:

Accuracy =
1

N

N∑
i=1

|Ŷ (i) ∩ Y (i)|
|Ŷ (i) ∪ Y (i)|

In the case of Table 4.5, the accuracy would be 1
5(1

3 + 2
2 + 2

2 +
1
2 + 1

2). Accuracy is more restrictive than recall, since the large

value that their denominator makes the measure more insensi-

tive to variations in the number of correct decisions [53]. The

accuracy calculation for instance i0 is depicted in Figure 4.5.

In the second group, label-based, the different measures can be grouped

into macro-averaged and micro-averaged [53]. We use the following

notation: let tpλ, fpλ, tnλ, fnλ be the number of true positives,

false positives, true negatives and false negatives; and let B be a

binary evaluation measure (accuracy, precision, recall, etc.). The

macro-averaged and micro-averaged measures are defined as:

Bmacro =
1

D

D∑
i=1

B(tpλ, fpλ, tnλ, fnλ)
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Bmicro = B
( D∑
i=1

tpλ,
D∑
i=1

fpλ,
D∑
i=1

tnλ,
D∑
i=1

fnλ

)

The micro measures average values by giving the same weight to

each instance, whereas their macro versions give the same weight to

each instance, as we saw in Subsection 2.9.1.

4.3 Experimental evaluation

We have conducted an experimental evaluation with the objective of

studying the effect of feature space reduction and different problem

transformation methods in a specific dataset on different multilabel

evaluation measures in the domain of multilabel email foldering.

Specifically, our objectives are:

• To study whether reducing the feature space yields statistically

significant improvements for different measures.

• To study which problem transformation methods provide bet-

ter results for different evaluation measures for email classifi-

cation.

We now describe the datasets and experimental setup of the men-

tioned evaluation.

4.3.1 Datasets

Two multilabel versions of the well-known ENRON dataset have

been used for our experiments. The first one (which we will call

original dataset from now on), comprises a selection of 1702 emails

from the original ENRON dataset, labelled by hand using a set of

53 labels, to classify coarse genre topics (such as company strategy,
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personal mail or logistic arrangements), included/forwarded infor-

mation (newsletters, legal documents, and more), primary topics

(regulations, internal projects, company image and more) and even

emotional tone. Each of the examples contains 1054 attributes. This

dataset can be obtained from the University of Berkeley 1.

The second one (preprocessed dataset), contains the same messages

and labels as the first one, but with different features. Specifically,

we use the ability of the GNUsmail framework (see Subsection 5.3.2)

to create a dataset from raw email messages by extracting the 500

most relevant words, following the methodology described in [106];

that is, we have applied stemming to the words, and select 500

most relevant terms according to the TF-IDF metric. We have used

this dataset to evaluate the impact of linguistic operators such as

stemming, not used in the first dataset, which produce a dataset

with less attributes, albeit more powerful ones. In order to produce

this dataset, the following procedure has been applied to the raw

messages:

• Deletion of stop words

• Stemming of the remaining words

• Weighting of the obtained terms, using the TF-IDF metric:

TF − IDFi,j =
ni,j∑
k nk,j

log
|D|

|{d ∈ D : ti ∈ d}|

where ni,j is the number of occurrences of the term ti in doc-

ument dj , and D the set of emails.

• Selection of 500 terms with the highest weight

Additionally, this preprocessed dataset also takes mail metadata into

account. Specifically, the From and To fields of the email are bina-

rized and included in the dataset. The less frequent senders and

receivers are left out in order to further reduce the number of at-

tributes. We have obtained 827 attributes in this version of the

1http://bailando.sims.berkeley.edu/enron email.html
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Table 4.6: Summary of datasets

Dataset Number of attributes

Original dataset 1054
Preprocessed dataset 827

dataset. See table 4.6 for a summary of the datasets used in this

study.

4.3.2 Experimental setup

In order to compare the performance of the distinct multilabel meth-

ods for the domain of email classification. We employ some of the

metrics described in Subsection 4.2.2.

We have selected the following multilabel methods for our empirical

evaluation:

• Binary Relevance (BR)

• Calibrated Label Ranking (CLR)

• Label Powerset (LP)

• RAkEL

• Pruned Problem Transformation (PPT) and

• Ensembles of Pruned Problem Transformation (EPPT)

We use the approach explained in the work of Katakis et al. [107]

for parameter optimization.

Regarding internal classification methods, the following ones have

been used:

• Support vector machines with linear kernel, using SMO, a

Weka [108] implementation of support vector machines.
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• Support vector machines with polynomial kernel. We have

used LibSVM, a well-known implementation of support vector

machines. Following [88], we have optimized the parameters

for this dataset using the F1 measure, finding that the best

option was to use a polynomial kernel of degree g = 3, and the

cost parameter C = 1.

• NNge, a nearest-neighbour-based algorithm, that was shown

in a previous work [109] to perform well in this domain.

• J48, the Weka implementation of the well-known C4.5 algo-

rithm for induction of decision trees.

• Näıve Bayes, a simple probabilistic classifier based on the

Bayes theorem.

• IBk, a k-Nearest Neighbour classifier.

We are interested in classification performance. Furthermore, we

are interested in the effect of the attribute selection described in

subsection 4.3.1. We employ the Wilcoxon statistical test in order

to study if the obtained differences are significant, using 30 paired

2-fold cross validations over each combination of dataset, internal

algorithm and multilabel method. We have established the results

obtained for the original dataset as the reference value, and labelled

the differences in the following manner: ⊕ means that the result

using the preprocessed dataset is significantly better, and 	 means

that it is significantly worse.

We provide the scripts and datasets used in the experiments on the

Web 2, so that the experiments are reproducible.

4.4 Results and discussion

Having described the experimental evaluation, in this Section we

present the results and summarize the most relevant aspects of our

study.

2http://code.google.com/p/gnusmail
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In Table C.1 in Appendix C we show the results (median values)

achieved by different combinations of algorithms and problem trans-

formation methods attending to different measures. We examine if

the preprocessed dataset favours the learning process. Some obser-

vations:

• For the performance measures, the results are usually better

when using the preprocessed dataset. In addition, those differ-

ences are significant in most cases, as the statistical tests show.

Therefore, we could say in a broad sense that the preprocess-

ing methodology applied to the original dataset has provided

a new framework that favours the learning task.

• The improvement observed can vary depending on the mea-

sure and the algorithm (and problem transformation method),

being very small for some measures, like Hamming Loss, or

bigger others, like micro-averaged Recall.

In Tables C.2 and C.3 in Appendix C we show the ranking produced

by different combinations of algorithms and problem transformation

methods. We search the best combination, and we also test if the

preprocessing is appropriate for that combination. The ranking has

been calculated independently for every measure and then all the

measures have been combined to get an average ranking. It can be

observed that the results achieved by SVM with polynomial (cubic)

kernel are uniformly better than for any other algorithm. The best

multilabel methods are RAkEL and CLR for both datasets.

Overall, the best combination is RAkEL over SVM with cubic ker-

nel. This combination is especially beneficial for the Example Recall

measure, where it obtains the best result for both datasets: 0.55 on

average for the original and 0.65 for the processed dataset. The

difference is even larger for the micro-averaged recall (0.52 for the

original dataset and 0.63 for the processed one). This represents a

remarkable difference between the datasets, and shows how a careful

attribute selection can improve classification performance. On the

other hand, if we consider the Hamming Loss and micro-averaged
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H.Loss. Ex. Accuracy Ex. Recall Micro Precision Micro Recall
H.Loss 1.000 ⊕ 0.737 ⊕ -0.640 ⊕ 0.895 ⊕ -0.625 ⊕

Ex. Accuracy 0.737 ⊕ 1.000 ⊕ -0.036 0.772 ⊕ -0.042
Ex. Recall -0.640 ⊕ -0.036 1.000 ⊕ -0.546 ⊕ 0.993 ⊕

Micro Precision 0.895 ⊕ 0.772 ⊕ -0.546 ⊕ 1.000 ⊕ -0.526 ⊕
Micro Recall -0.625 ⊕ -0.042 0.993 ⊕ -0.526 ⊕ 1.000 ⊕

Table 4.7: Mutual correlations between Hamming loss,
example-based accuracy, example-based recall, micro-averaged
precision and micro-averaged recall. Statistically significant re-

sults are marked with ⊕

precision measures, we observe that RAkEL over SVM with cubic

kernel works better for the original dataset. The difference is espe-

cially noticeable in the case of micro-averaged precision (0.61 for the

original dataset and 0.55 for the preprocessed one).

Nevertheless, it must be underlined that this combination, despite

working well for most measures, obtains a relatively poor perfor-

mance for micro-averaged precision. If we select a combination that

optimizes this measure, such as CLR over J48, we see that the results

are still better for the preprocessed dataset than for the original one.

The same applies for the Hamming Loss. If we consider the runner-

up combination, CLR over SVM with cubic kernel, we see that the

results are always better for the preprocessed dataset, except again

in the case of micro-averaged precision, where no statistically signif-

icant difference can be found.

The results intuitively show that there are groups of measures that

can be optimized simultaneously, while worsening the performance

of another groups of measures. If we take Table C.2 and calculate

the correlations table for the different measures, we obtain the re-

sults shown in Table 4.7. From this table we observe the following.

There is a high correlation between Hamming loss, example accuracy

and micro-averaged precision, as well as between example accuracy

and micro-averaged precision. Nevertheless, the correlation between

these measures and the recall-based ones is negative. On the other

hand, the recall-based measures are mutually correlated. This intu-

itively draws two measure clusters

C1 = {Hamming Loss,Example Accuracy,Micro Precision}
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C2 = {Example Recall,Micro Recall}

In Tables 4.8 and 4.9 we show the rankings of the algorithm and

method combinations for C1 and C2. In Table 4.8 it can be seen

that the best combination is CLR with SVM. In general, SVM-

based classifiers obtain a good performance. The tree-based classifier

J48 obtains also good results when used together with binarization-

based problem transformation methods (BR and CLR). We see also

that RAkEL over SVM benefits measures from C1, whereas EPPT and

RAkEL over J48 favours measures from C2.

We observe that SVM-based algorithms obtain good accuracies, re-

gardless of the multilabel problem transformation method that has

been used. We can also see that the CLR transformation method

offers good Hamming loss and micro-averaged precision results, re-

gardless of the underlying single-label algorithm. Additionally, CLR

does not penalize recall measures when used together with SVM-

based algorithms (this is also true for RAkEL), which is an advan-

tage. In any case, it can be observed that methods and algorithms

using binarization (CLR and BR, as well as SVM, which internally

uses binarization when dealing with multiclass problems) obtain the

best results for C1.

Regarding recall, we see in Table 4.9 that EPPT over J48 is the best

method for recall. It can be seen that binarization-based approaches

do not obtain good recall results in general. EPPT, on the other

hand, is quite successful. This shows that label dependence (which

is only modelled in LP-based transformation methods) is more im-

portant for recall optimization than for other measures.
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(a) Original dataset

Method Algorithm Av. Ranking
CLR LibSVM 2.67
RAkEL LibSVM 3.67
CLR J48 5.0
BR LibSVM 5.33
CLR SMO 6.33
PPT LibSVM 6.33
PPT SMO 6.67
RAkEL SMO 9.0
BR J48 9.33
CLR NNge 10.33
LP SMO 10.33
BR NNge 11.67
LP LibSVM 12.0
BR SMO 14.67
PPT NB 15.67
EPPT LibSVM 17.0
RAkEL NNge 17.0
LP NNge 17.33
PPT NNge 18.33
LP NB 18.33
EPPT SMO 19.0
PPT J48 20.33
EPPT NB 20.33
RAkEL J48 22.0
RAkEL IBk 25.33
PPT IBk 25.33
LP IBk 27.0
BR IBk 27.67
CLR IBk 27.67
LP J48 28.33
EPPT NNge 30.67
EPPT IBk 31.33
EPPT J48 31.67
RAkEL NB 32.67
BR NB 35.0
CLR NB 36.0

(b) Preprocessed dataset

Method Algorithm Av. Ranking
CLR LibSVM 3.0
CLR J48 4.667
BR LibSVM 6.0
CLR SMO 6.0
PPT LibSVM 6.0
BR J48 6.667
PPT SMO 8.0
RAkEL LibSVM 8.0
CLR NNge 9.0
LP LibSVM 10.67
LP SMO 11.0
BR NNge 11.67
RAkEL SMO 13.33
BR SMO 14.33
PPT NB 15.0
LP NNge 16.0
PPT NNge 17.33
EPPT LibSVM 17.67
PPT J48 17.67
LP NB 18.67
RAkEL NB 19.0
EPPT NB 19.67
EPPT SMO 20.33
RAkEL NNge 24.0
PPT IBk 25.0
LP IBk 26.33
BR IBk 26.67
CLR IBk 26.67
LP J48 27.0
RAkEL IBk 28.33
EPPT NNge 29.0
EPPT IBk 30.33
RAkEL J48 31.67
EPPT J48 34.33
CLR NB 34.67
BR NB 35.0

Table 4.8: Rankings for the first cluster of measures (Hamming
loss, example accuracy, micro-averaged precision
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(a) Original dataset

Method Algorithm Av. Ranking
EPPT J48 1.0
EPPT NNge 2.0
BR NB 3.0
CLR NB 4.0
EPPT SMO 5.0
EPPT LibSVM 6.0
RAkEL J48 7.5
RAkEL NB 7.5
RAkEL SMO 8.5
CLR SMO 10.0
RAkEL LibSVM 11.0
EPPT IBk 12.0
CLR LibSVM 13.0
BR SMO 14.5
RAkEL NNge 14.5
PPT SMO 16.5
BR LibSVM 17.5
PPT LibSVM 17.5
LP SMO 19.0
EPPT NB 19.5
PPT NNge 21.5
BR J48 23.0
LP LibSVM 23.0
LP NNge 23.5
CLR J48 24.0
PPT J48 26.5
CLR NNge 27.5
LP J48 27.5
BR IBk 30.0
CLR IBk 30.0
PPT NB 30.0
BR NNge 31.0
RAkEL IBk 32.0
LP IBk 34.0
LP NB 35.0
PPT IBk 36.0

(b) Preprocessed dataset

Method Algorithm Av. Ranking
EPPT J48 1.5
RAkEL J48 1.5
EPPT NNge 3.0
EPPT SMO 4.0
RAkEL SMO 5.0
EPPT LibSVM 6.0
RAkEL LibSVM 7.0
RAkEL NNge 8.0
CLR NB 9.0
BR NB 10.0
RAkEL NB 11.0
CLR SMO 12.0
EPPT IBk 13.0
CLR LibSVM 14.0
BR SMO 15.0
BR LibSVM 16.5
PPT LibSVM 16.5
PPT SMO 18.0
EPPT NB 19.5
LP SMO 20.0
PPT NNge 21.0
LP LibSVM 22.0
BR J48 23.0
CLR J48 23.0
LP NNge 24.5
RAkEL IBk 26.0
PPT J48 27.5
CLR NNge 28.5
LP J48 28.5
BR IBk 29.5
CLR IBk 29.5
BR NNge 33.0
PPT NB 33.0
LP IBk 33.0
LP NB 35.5
PPT IBk 35.5

Table 4.9: Rankings for the second cluster of measures (Exam-
ple Recall, Micro Recall)



Chapter 5

Data Mining for Text

Streams

5.1 Introduction

This chapter is devoted to text stream mining [110], that is, the ap-

plication of data stream mining to text data sources. Text streams

consist of great amounts of documents that arrive continuously and

must be processed only once, using limited time and space resources.

In this online setting, the nature of examples belonging to a given

class may change over time. This chapter presents relevant algo-

rithms for data stream classification, and discusses different propos-

als to evaluate and compare data stream mining methods, including

approaches such as sliding windows and fading factors [111] applied

to the classical prequential error. These concepts are applied to the

specific case of email foldering.

The main contribution of this chapter is GNUsmail , a framework

for email foldering which uses stream mining capabilities, including

statistical tests to detect significant differences between the perfor-

mance of online algorithms. We empirically study several dynamical

aspects of email datasets, such as the presence of different kinds of

concept drift, and the effect of this on classifiers.

85
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This chapter is partially based on the following publications in which

the author has participated:

• Carmona-Cejudo, J.M.; Castillo, G.; Baena-Garćıa, M.;

Morales-Bueno, R.: “A comparative study on feature selec-

tion and adaptive strategies for email foldering”, 11th Inter-

national Conference on Intelligent Systems Design and Appli-

cations (ISDA) [112]

• Carmona-Cejudo, J.M., Baena-Garćıa, M., del Campo-Ávila,

J., Bifet, A., Gama, J., Morales-Bueno, R.: “Online Evalua-

tion of Email Streaming Classifiers Using GNUsmail”. IDA

2011 [113]

• Carmona-Cejudo, J.M., Baena-Garćıa, M., del Campo-Ávila,

Bifet, A., Morales-Bueno, R.: “GNUsmail: Open Framework

for On-line Email Classification”. ECAI 2010 : 90-100 [106]

The rest of this chapter is organized as follows: in Section 5.2, the

subject of stream mining is introduced, including algorithms and

evaluation approaches. Section 5.3 is devoted to the application

of these concepts to the case of electronic mail mining. This Sec-

tion presents GNUsmail, a framework for text categorization which

incorporates stream mining capabilities that will be used in the ex-

perimental setup. Then, we apply state-of-art evaluation metrics to

compare data stream mining algorithms over time, using the GNUs-

mail framework and several datasets from the ENRON corpus.
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5.2 Stream mining

5.2.1 Introduction to data streams

Traditional machine learning algorithms were designed to obtain

accurate models from a limited number of training examples. Most

machine learning and data mining approaches assume examples gen-

erated from a stationary distribution, which fit in main memory [114].

Nevertheless, the quantity of available data is growing continuously,

as we have discussed in Chapter 2. The amount of information cre-

ated or captured is estimated to have exceeded available storage for

the first time in 2007 [115]. There are increasingly more data sources

that produce unbounded streams of non-stationary data, which, in

many cases, are of transient nature, and not necessarily stored in a

permanent way. Web 2.0 and the emergence of small devices such

as smartphones are some of the reasons for this change of paradigm.

As consequence, there is an emerging necessity for algorithms able

to deal with this huge amount of evolving information in an compu-

tationally efficient way. This bears a relationship with the field of

green computing , the study and practice of using computer resources

in an efficient and environmentally sustainable way [116].

Another emergent aspect of current data sources is their continuous

nature, giving birth to the data stream paradigm: the data exam-

ples arrive in one by one as a high speed stream. The data are not

available for random access from disk or memory. Each example is

processed only once, using limited space and time resources. The

model has to be incrementally updated by the algorithm as each new

example is inspected. The learning algorithms should have a addi-

tional property, the so-called anytime property, which means that

the model has to be ready to be applied anytime between training

examples. Due to time and space limitations, the computation of

exact results will not always be possible [117], which means that it

is often necessary to settle for approximate results in order to save

system resources, as long as the resulting errors can be controlled

and do not affect the effectivity of the learning system.



Data Mining for Text Streams 88

Figure 5.1: Data Stream classification cycle. The model re-
ceives data instances and uses them to improve the learning
model. Additionally, the system is able to make predictions at

any time. Source of the Figure: [115]

Figure 5.1 illustrates the typical use of a data stream classification

algorithm. The following steps are iteratively followed:

1. The next available example from the stream is fed to the al-

gorithm (Requirement 1 )

2. The example is processed by the algorithm, updating its re-

lated data structures. Memory bounds have to be respected

(Requirement 2 ), as well as time bounds (Requirement 3 )

3. The algorithm is ready to accept the next available example.

The model has to be usable to predict the class for unseen

examples (Requirement 4 )

Examples of data streams include computer network traffic, phone

conversations, ATM transactions, web searches, sensor data and the

main topic of this thesis, text streams.
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Figure 5.2: Evolution of Google look-ups for ’Spain’. The vol-
ume of look-ups grows suddenly when Spain gets involved in some
relevant event, such as winning a football tournament or a serious

terrorist attack (Source: Google Trends)

5.2.2 Concept change

Data streams evolve over time, which means that either the target

variable or the data distribution change over time. Machine learn-

ing algorithms can learn incorrect models if they suppose that the

underlying concept is stationary, when in fact it is changing. The

rationale for concept drift tracking is the assumption that the most

recent data is more relevant to the model than old examples, which

should be eventually forgotten over time. Concept drift is frequent

in systems dealing with user preferences. For example, a hypo-

thetical system that recommends scientific articles to a researcher

has to cope with changes in the researcher’s interests and lines of
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study. Another example of domain which is subject to concept drift

are news classification systems, since new informative topics emerge

continuously. Let us think about the Fukushima nuclear disaster in

2011. Before the disaster, news containing references to Fukushima

were not necessarily related to nuclear energy. Nevertheless, during

the crisis, news about Fukushima were very likely to be about the

nuclear disaster. Other example of this phenomenon is depicted in

Figure 5.2, where it can be observed that from time to time, the

term Spain is associated with some relevant news (terrorist attacks

or winning the Football World cup), which leads to an increase in

the number of searches of the term Spain. Learning methods should

thus be able to track this kind of changes.

Depending on how abrupt the concept change is, we can talk of

concept shift (sudden change) or concept drift (gradual change). For

example, a system that predicts air temperature given atmospheric

conditions is subject to gradual change, while a system dealing with

news can be facing an abrupt change when a hot topic emerges, such

as the mentioned Fukushima crisis. In general, it is easier to deal

with concept shift, since abrupt changes lead to a quickly noticeable

deterioration of the model performance, which is easier to detect

than when the change is gradual.

In Figure 5.3, extracted from the work of Žlobaitė [118], an illus-

tration of the main types of concept change is given, assuming one-

dimensional data, characterized by its the mean. Data from only

one class is depicted.

Transversely to this differentiation between concept drift and shift,

two types of concept drift are described in the literature [119]: real

concept drift and virtual concept drift. Real concept drift refers to

changes in the data distribution that eventually lead to changes in

the target concept, whereas virtual concept drift is mostly associated

with changes in the distribution of the input space, for example when

the order of training instances is skewed. Nevertheless, in practice,

virtual and real concept drift can appear together, for example when

both the user’s interest and document contents distribution change

over time.
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Figure 5.3: Graphical representation of the types of concept
change. (Based on a work by I. Žliobaitė [118])

A different type of concept drift that appears in text data streams

consists in the appearance of new highly relevant features (words)

that do not belong to the original feature set [120]. This is some-

times known as contextual concept drift, and it is typical in text

data sources [121]. We will deal with contextual concept shift in

Chapter 6.

5.2.3 Learning algorithms for data streams

The data stream mining paradigm implies that learning algorithms

must be incremental, that is, after a new example arrives, the current

model has to be updated using only this example (that is, not refer-

ring to old examples). Furthermore, algorithms have to be adaptive,

that is, they have to be able to adapt to a changing environment.

Broadly speaking, there are two strategies for using machine learn-

ing concepts applied to data streams. The first one is the wrapper

approach, in which already existing batch (offline) algorithms are

reused. The incoming training examples have to be stored into batch

collections, and the obtained batch models have to be combined to

provide the final prediction. In such an approach it is important to

select a suitable size for the training batches. Very small sizes will

result in poor accuracy, while very large sizes could make it difficult

to process the stream at an acceptable speed. The main drawback
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of this approach is that it consistently discards old information, re-

gardless of whether it is still relevant or not for classification. The

second approach is the adaptation approach: methods are designed

specifically for the data stream setting. Such methods offer a greater

control over processing times and memory management.

Arguably, the most influential algorithm in this field is VFDT, pro-

posed by Domingos et al. [122]. VFDT is an online decision tree

learning algorithm based on the Hoeffding bound. Typically, when

learning decision trees in a batch scenario, the attribute with the

highest information gain is used for split decisions. In the stream

setting, Domingos proposes to use the Hoeffding bound, which states

that, with probability 1− δ, the true mean of a random variable of

range R will not differ from the estimated mean after n independent

observations by more than

ε =

√
R2 ln(1/δ)

2n
(5.1)

This bound is true regardless of the data distribution, being for

this reason more conservative than distribution-based bounds. In

order to decide on which attribute to split when learning a tree,

the random variable being estimated is precisely the information

gain. Hence, two parameters have to be tuned: 1 − δ (confidence)

and ε (error). The details of the learning process can be checked in

[122]. The main advantage of VFDT are its theoretical properties:

Domingos and Hulten [122] prove that its strong guarantees of high

asymptotic similarity to the corresponding batch trees. In order to

extend VFDT to be able to work with concept drift, Domingos et

al. propose CVFDT (Continuous Very Fast Decision Trees) [123],

which is based on the idea of growing alternatives subtrees which

replace subtrees with a worse quality. UFFT (Ultra Fast Forest of

Trees) is an extension of CVFDT which allows handling numerical

attributes [124]. Another decision tree learning algorithms has been

proposed by Ding et al. [125], based on the Peano count tree data

structure.

Aside from decision tree algorithms, other proposals have appeared

in the literature. Some of the most relevant ones are the following:
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• Wang et al. [126] have proposed a general framework for min-

ing data streams based on weighted classifier ensembles. The

weight of each component of the ensemble depends on the ex-

pected prediction accuracy.

• Another general framework that supports insertion and dele-

tion of data records has been proposed by Ganti et al. [127].

This model has the advantage of being applicable to any in-

cremental data mining algorithms, that is, to any algorithm

that can include new information once it has been generated.

• Papadimitriou et al. have proposed AWSOM (Arbitrary win-

dow Stream modeling Method), which uses wavelet coefficients

for compact information representation [128]. AWSOM was

especially designed for handling data streams from sensor net-

works, and puts emphasis on automatic parameter tuning.

• A further method has been proposed by Aggarwal et al. [129],

based on micro-clusters, which can dynamically select the ap-

propriate window of past training data to build the classifier.

• Gaber et al. propose LWClass (Lightweight classification),

using K-nearest neighbors for updating the frequency of class

occurrence[130].

• Last proposes OLIN (Online Information Network), based on

building an info-fuzzy network based on a sliding window of the

latest examples. The system dynamically adapts the size of the

training window and the frequency of model reconstruction to

the current rate of concept drift [115], [131]. OLIN generates

a new model for every new sliding window. This approach

ensures accurate and relevant models over time. However, the

cost of generating new models is high.

• Another successful algorithms include SCALLOP, proposed by

Ferrer-Troyano et al. [132], a rule-based learner, as well as AN-

NCAD, proposed by Law and Zaniolo [133], based on nearest

neighbors.
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An important family of algorithms for data stream mining are en-

semble methods, which were introduced in Chapter 2. Ensemble

methods are based on the idea of combining several weaker models

in order to obtain a stronger classifier. An ensemble of classifiers will

provide better results than any of the individual members, as long as

every member is better than random guessing, and that the models

are sufficiently diverse (i.e., that the errors are not correlated) [115].

Such methods exploit instability of base learners to attain diversity.

For instance, random trees are good base learners, since they are

inherently unstable, because of the greedy local decisions.

Two important ensemble methods that can be applied for online

learning are bagging and boosting . Bagging (abbreviation of boot-

strap aggregating) involves giving each model in the ensemble a vote

with equal weight. In order to promote model variance, bagging

trains each model in the ensemble using a randomly-drawn subset

of the training set. Given a training set T of size N , batch bag-

ging creates M base models, each one of them trained by calling the

batch learning algorithms Lb on a bootstrap sample of size N cre-

ated by drawing samples with replacement [134]. Each base model’s

training set contains K copies of each example from the training

set. As N →∞, the distribution of K tends to a Poisson(1) distri-

bution. Bagging can also be performed online [134]: each time an

example arrives, it is replicated K Poisson(1) times, and the model

is updated using the base learning algorithm. An unweighted voting

setting is used for prediction [134].

Regarding boosting, it involves incrementally building an ensemble

by training each new model instance to emphasize the training in-

stances that previous models have misclassified. Oza also proposed

an online adaptation of the popular AdaBoost boosting algorithm,

AdaBoost.M1 [134]. AdaBoost works by generating a sequence of

base models h1, h2, . . . , hm using weighted training sets such that

the examples misclassified by hm−1 are given half the total weight

when generating hm, whereas the correctly classified examples are

given the remaining half of the weight. If the base model can not di-

rectly employ weights, samples with replacement can be generated.
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This strategy can equally be used for data stream scenarios, as it is

done in online bagging.

A general adaptive framework that can be used for online classifi-

cation and that contains the elements reviewed so far is the Adap-

tive Prequential Learning Framework (AdPreqFr4SL), proposed by

Castillo et al. in [135]. Its main assumption is that observations ar-

rive sequentially, which allows the environment to change over time.

Without loss of generality, it can be assumed that at each time point

data arrives in batches so that perform model adaptation can be per-

formed in jumps when there is some accumulated experience. These

batches are assumed to be of equal size. We provide more details

about AdPreqFr4SL in Chapter 6

5.2.4 Change drift detection algorithms

As previously mentioned, data streams are inherently non-stationary,

which means that concept drift can occur in them. Strategies for

handling concept drift can be classified into two major groups [118]:

• The model learner regularly evolves, independently of alarms

or detectors

• The model adaption is initiated by a trigger (change detector)

For the first group, no change detection algorithm is needed, because

the learner itself deals with concept drift. For the second group, we

need change detection algorithms such as the following[118]:

• Statistical Process Control (SPC) is based on controlling the

probability of error. A warning and drift level are defined.

When the monitored error exceeds the warning threshold, the

system is said to be in warning mode, and the time stamp

tw is stored. If the error exceeds the drift level at time td, the

method considers that a change has occurred, and the classifier

is retrained using the examples from tw to td [136].
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• Adaptive Windowing (ADWIN) keeps a sliding window W and

compares the distribution of two subwindows of W (W0 and

W1). If the distributions are distinct enough, a change in the

distribution is declared [137]. This method is based on main-

taining a sliding window of variable length, which is used for

the following tasks:

– To detect concept change (comparing different subwin-

dows)

– To obtain updated statistics from recent examples

– To rebuild or revise the model

The Hoeffding bound is used for adjusting the size of the slid-

ing window.

• Fixed Cumulative Windows Model (FCWM) is based on com-

paring histograms corresponding to the distribution observed

in the past and the current distribution, using the Kullback-

Leibler divergence [138].

• The Page Hinkley Test (PHT) is based on tracking the ac-

cumulated difference between the observed values and their

mean, comparing it with its minimum value [139]. The accu-

mulated difference, UT , is modeled as

UT =
T∑
t=1

(xt − xT − δ) (5.2)

where δ represents the allowed deviations, and xT = 1/
∑T

t=1 xt.

For detecting increases, the minimum value of this variable is

computed: mT = min(Ut, t = 1, . . . , T ) and the difference

UT −mT is monitored. Concept drift is signaled if this differ-

ence is bigger than a threshold λ. λ can be tuned for sensitivity

(in order to avoid false alarms at the expense of real changes

detection).

• Drift Detection Method (DDM): compare statistics of two win-

dows: one with all the data, and another with data from the

beginning until the number of errors increase [140]. For each
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point i in the stream there is a probability pi that the pre-

diction is incorrect (the error rate), which standard deviation

is given by si =
√
pi(1− p1)/i. Since for a sufficiently big

number of examples the underlying binomial distribution can

be approximated by a normal, the 1 − α/2 confidence inter-

val is approximately pi ± α ∗ si. The drift detection method

manages two registers during the training of the learning algo-

rithm, pmin and smin. For each new example, these variables

are updated if pi + si < pmin + smin. The warning level is

reached if pi + si ≥ pmin + 2 ∗ smin, whereas the drift level

is reached if pi + si ≥ pmin + 3 ∗ smin. DDM shows a good

performance for detecting abrupt changes, as well as gradual

changes provided that the gradual change is not very slow.

• EDDM (Early Drift Detection Method) is similar to DDM,

but is based on comparing distances between classification er-

rors [141]. It was designed to improve the detection in case

of slow gradual change, measuring distances between errors

rather than error rates.

• COC (Change of Concept), proposed by Lee and Magoules [142]

uses correlation between consecutive batches of examples to

discover concept drift in a data stream: if there is the change

between two batches of examples, the value distribution of one

batch does not correlate with that of the other. This approach

uses a user-fixed window size.

5.2.5 Evaluation of stream mining methods

Data stream methods can be evaluated from the point of view of

space complexity, learning time and, naturally, generalization power.

In this section we deal with the evaluation of generalization power.

Time and space complexity are also important factors, although the

non-stationary nature of data streams does not have such a direct

impact on them.

In data stream scenarios, neither cross-validation nor other sampling

procedures are suitable for evaluation, since data are potentially
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infinite: there is no ‘closed-ended’ dataset available. Evaluation in

non-static dataset is still an open problem, and, quoting the words

of Gama et. al [111], “there is no golden standards for assessing

performance in non-stationary environments”. Sequence analysis

methods, like holdout or the prequential evaluation procedures, are

more appropriate. Sequential analysis is a subfield of statistics where

the sample size depends randomly on the accumulating data [111].

When using holdout, an independent set (the holdout set) is selected.

The current decision model is applied to the test set at regular time

intervals or number of examples. When using the prequential mea-

sure [143], a prediction is made for each new example (i-th example)

using the current model. Once the real class is known, we can com-

pute the loss function L(yi, ŷi), where L is a loss function (such as

the 0− 1 loss function), yi is the real class and ŷi is the prediction,

and a cumulative loss function Si is updated: Si =
∑i

j=1 L(yj , ŷj).

After that, the model is updated using that example. Thus, we can

evaluate the performance of the system (which is influenced by the

increasing number of examples that are constantly arriving) and the

possible evolution of the models (because of concept drift). Using

the previous cumulative loss function Si, we can estimate the mean

loss at every moment i: Ei = Si/i.

The prequential error is a pessimistic estimator, since the early poor

performance of the algorithms is never forgotten and influences the

calculated average. Nevertheless, it can be made more realistic by

using forgetting mechanisms, such as sliding windows or fading fac-

tors, and additionally overcome other problems that are present in

the holdout approach, coming from the non-stationary properties of

data streams [111]. The error estimates using forgetting mechanisms

converge to the holdout estimator.

The method based on sliding window is based on considering only

the last examples. Therefore, not all the examples are used to eval-

uate the performance: the oldest ones are forgotten and the most

recent ones are stored in a window of size w. Those w examples in

the window are the examples used to calculate different performance
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measures. On the other hand, using fading factors, which is the pre-

ferred method according to [111], allows to decrease the influence of

the examples in the measure as they get older. For example, if we

compute the loss function L for every single example, the prequen-

tial error at moment i using fading factors is defined as Ei = Si/Bi,

where Si = L(yj , ŷj) + α · Si−1 and Bi = 1 + α ·Bi−1 (α < 1).

Different ways of comparing the performance of two classifiers exist;

the McNemar test [114] is one of the most used tests. This test needs

to store and update two quantities: a (the quantity of the examples

misclassified by the first classifier and not by the second one) and b

(the quantity of the examples misclassified by the second classifier

and not by the first one). The McNemar statistic (M) rejects the

null hypothesis (the performances are the same) with confidence

level of 0.99 if its value is greater than 6.635, since it follows a χ2

distribution. The statistic is calculated as

M = sign(a− b)× (a− b)2

a+ b
(5.3)

In order to extend its usage to the prequential approach, we have

two options. If we consider a sliding window context, we only need

to use the examples in the window. But if we consider the usage of

fading factors, we should adapt the definition as follows:

Mi = sign(ai − bi)×
(ai − bi)2

ai + bi

where ai = fi + α · ai−1 and bi = gi + α · bi−1, being fi = 1 if and

only if the i-th example is misclassified by the first classifier and not

by the second one (fi = 0 otherwise) and gi = 1 if and only if the

i-th example is misclassified by the second classifier and not by the

first one (gi = 0 otherwise).
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5.3 An application: stream mining for elec-

tronic mail

In this section, data stream mining concepts are applied to a specific

case of document classification: email foldering , that is, categoriza-

tion of emails into folders. Note that this is more specific than spam

detection (detection of fraudulent emails), where there are only two

classes actually: spam and not-spam emails. In Subsection 5.3.1 we

review previous work in relation with email classification, while in

Subsection 5.3.2 we introduce a framework which we use for email

classification. Later on, in Subsection 5.3.4 we present a study to

explore different aspects of data stream mining on several email

datasets from the Enron collection.

5.3.1 Background: classification of electronic mail

Email is an extremely fast, cheap and ubiquitous means of communi-

cation that can be used in personal computers, smart phones, tablets

and other electronic gadgets. The task of handling large volumes

of emails poses significant challenges for text mining and machine

learning. One of the most challenging tasks is email foldering - the

automatic categorization of emails into folders. This problem can

be modeled as a multinomial classification problem concerned with

learning a classifier that maps examples (emails) into classes (cate-

gory folders). As pointed out in the pioneer work of Bekkerman et

al. [144], “email foldering is a rich and multi-faceted problem, with

many difficulties that make it different from traditional topic-based

categorization”. One of these difficulties, that we discuss in this

section, is the dynamic, non-stationary nature of email streams.

Most of the systems that try to classify emails in an automatic way

have been implemented using a batch approach [38], which, at best,

can be updated only at regular intervals [145]. RIPPER [46] was

one of the first algorithms used for email classification, making use

of TF-IDF weighting (term frequency - inverse document frequency)

to produce if-then rules. RIPPER was an influential rule-induction
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algorithm, being able to perform efficiently in large noisy datasets.

An advantage of RIPPER was that it produces easy-to-understand

rules as a result, which allows users to change them as necessary.

A common algorithm for email foldering is Näıve Bayes, which has

been used for instance in ifile [38] for the purpose of general email

classification, or in SpamCop [146] for specific spam filtering. An-

other popular algorithm for email foldering systems is Support Vec-

tor Machines, which was used in MailClassifier [147] (an extension

for Thunderbird). In general, as pointed out in a work by Brutlag

and Meek that compared SVM, Näıve Bayes and k-NN across sev-

eral datasets [148], different email datasets cause more variation in

the performance that using different classification algorithms.

With regard to online learning, little effort has been devoted to ap-

plying stream mining tools [149] to email classification. For exam-

ple, Manco et al. [150] have proposed a framework for adaptive mail

classification (AMCo), but they admit that their system does not

actually take into account the updating of the model. Another sys-

tem that incorporates incremental learning is the one proposed by

Segal et al. Their system, SwiftFile [151], uses a modified version

of the AIM algorithm [152] to support incremental learning. Al-

though they have advanced in this line of research, they admit that

there are limitations, like few incremental algorithms for text clas-

sification or closed integration between email clients and classifiers.

Moreover, the classifier does not include concept drift detection.

Chang and Poon [153] use k-NN and Näıve Bayes incrementally, al-

though without explicitly taking into account concept drift. They

use the concept of shingles (sequences of consecutive words) as fea-

tures, selecting those with the biggest TF-IDF weight for reducing

the computational complexity. Katakis et al. [154] have proposed

an application of tracking recurrent contexts to spam detection, us-

ing clustering to discover concepts that reappear over time, and a

different incremental classifier for each of those concepts.
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5.3.2 GNUsmail: a framework for online email classi-

fication

GNUsmail [106], the main contribution of this chapter, is an open-

source framework for online adaptive email classification, with an

extensible text preprocessing module which is based on the concept

of filters that extract attributes from emails, and an equally exten-

sible learning module into which new algorithms, methods and li-

braries can be easily integrated. GNUsmail contains configurable

modules for reading email, preprocessing text and learning. In

the learning process, the email messages are analysed as an infi-

nite flow of data. The source code of GNUsmail is available at

http://code.google.com/p/gnusmail/ and it is licensed under the

GPLv3 license. We now explain in more detail the different modules

integrated in GNUsmail.

The reading email module can obtain email messages from different

data sources, such as a local file system or a remote IMAP server.

This allows the system to process datasets like the ones from the

Enron corpus or to process personal email messages from remote

servers like GMail.

The text preprocessing module is a multi-layer filter structure, re-

sponsible for performing feature extraction tasks. Non-topic folders

are skipped in the learning process. Every mail belonging to any

other folder goes through a pipeline of linguistic operators which

extract relevant features from it. GNUsmail performs a feature se-

lection process using different methods for feature selection [33].

Some ready-to-use filters are implemented as part of the GNUs-

mail core, and new ones can be incorporated, giving developers the

chance to implement their own filters, as well as to test and evaluate

different techniques. We have implemented a linguistic filter to ex-

tract attributes based on relevant words. It is based on the ranking

provided by the folder-wise TF-IDF weighting function. We have

implemented several filters to extract non-linguistic features such

as CC, BCC, sender, number of receivers, domain of sender, size,

http://code.google.com/p/gnusmail/
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number of attachments or body/subject length. We have also im-

plemented filters to extract metalinguistic features, such as capital

letters proportion, or the language the message is written in.

The learning module makes it possible to incorporate a wide variety

of stream-based algorithms, such as those included in the WEKA [155]

or MOA [116] frameworks. WEKA (Waikato Environment for Knowl-

edge Analysis) methods are used mainly with small datasets in en-

vironments without time and memory restrictions. MOA (Massive

Online Analysis) is a data mining framework that scales to more

demanding problems, since it is designed for mining data streams.

By default, GNUsmail offers three updateable classifiers from the

WEKA framework, although more can be easily added. The first

one is Multinomial Näıve Bayes, a probabilistic classifier which is

commonly used as a baseline for text classification. The other two

classifiers belong to the family of lazy classifiers, which store all or

a subset of the learning examples; when a new sample is given as

input to the classifier, a subset of similar stored examples is used

to provide the desired classification. IBk is one of these methods,

a k-nearest neighbours algorithm, to be precise, that averages the

k nearest neighbours to provide the final classification for a given

input. NN-ge (Nearest Neighbour with Generalised Exemplars) [44]

is another nearest-neighbours-like algorithm that groups together

examples within the same class. This reduces the number of classifi-

cation errors that result from inaccuracies of the distance function.

In the streaming scenario, GNUsmail uses MOA by including its

tools for evaluation, a collection of classifier algorithms for evolving

data streams, some ensemble methods, and drift detection meth-

ods. HoeffdingTree is the MOA implementation of VFDT. An

improved learner available in MOA is the HoeffdingTreeNB, which

is a HoeffdingTree with Näıve Bayes classifiers at leaves, and a more

accurate one is the HoeffdingTreeNBAdaptive, which monitors the

error rate of majority class and Näıve Bayes decisions in every leaf,

and chooses to employ Näıve Bayes decisions only where they proved

accurate in the past. Additionally, some ensemble methods from the

MOA framework are included, such as OzaBag and OzaBoost. For
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concept drift detection, we have included DDM [124] as the default

algorithm.

5.3.3 Exploratory analysis of the Enron email corpus

In our experiments we have used the Enron [144] email corpus, which

contains archived emails for 150 senior managements of the Enron

Corporation. We have used ten datasets in total: the correspond-

ing to the same seven former employees that were used in related

studies [112, 144, 156], and the mail datasets for three additional em-

ployees (rogers-b, germany-c and shapiro-r). During the data clean-

ing process we have removed the non-topical folders (Inbox, Sent,

Sent Items, Trash, All documents, Draft, Discussion threads

and Deleted). In addition, we have also eliminated those folders

that contain fewer than 10 email messages (not less than two as

proposed, for instance, in Bekkerman’s study [144]). Finally, each

email vector is attached to its category. The messages have been

arranged chronologically.

Table 5.1 summarizes the main characteristics of the datasets. We

have included statistics about the number of categories and mes-

sages, as well as descriptive statistics about the number of messages

by folder. The last two columns contain information that help us

measuring the degree of skewness of the category distribution. The

former shows the ratio between the major and minor categories.

Higher ratios result in more skewed category distributions. The lat-

ter shows the entropy values; higher values of entropy imply more

uncertainty in the distribution.

We can observe that there is a lack of balance in the number of

emails for each category. For example, for the user germany-c, the

biggest category is 181.98 times bigger than its smallest category.

In a previous work [106], we made some initial experiments with

a test and a training set, using the first 30% for training and the

remaining 70% of the stream for testing. These two scenarios were

designed to compensate for the lack of the implementation of an in-

cremental updating algorithm for feature selection. Such division is
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# of messages by folder
User Folders Messages Avg. Min Q1 median Q2 Max Max/Min Entropy

beck-s 56 1741 31.09 10 12.8 20.0 39.0 162 16.2 5.33
farmer-d 22 3572 162.36 10 14.8 31.5 160.0 1177 117.7 3.19

kaminski-v 24 2644 110.17 14 27.3 55.0 126.3 544 38.9 3.86
kitchen-l 40 3733 93.33 11 24.0 56.0 96.8 685 62.3 4.56
lokay-m 11 2473 224.81 15 37.5 126.0 210.5 1149 76.6 2.49
sanders-r 21 1153 54.91 10 22.0 25.0 48.0 419 41.9 3.49

williams-w3 21 2738 228.17 11 15.5 18.5 81.0 1398 127.1 1.72
rogers-b 12 3323 276.9 11 32.0 89.5 212.5 1946 176.9 2.12

germany-c 26 3372 129.7 11 17.5 34.0 56.2 1992 181.1 2.55
shapiro-r 52 2966 57.04 10 16.0 25.5 51.2 1135 113.5 4.22

Table 5.1: Statistics on Enron datasets after applying the clean-
ing process

first 30% Whole dataset
# Categories # Examples # Features # Categories # Examples # Features

5 lines 10 lines All lines 5 lines 10 lines All lines
beck-s 36 701 2877 3639 5596 56 1229 5291 6702 9874

farmer-d 14 2251 2983 3764 6400 22 2498 5889 7693 13253
kaminski-v 22 1776 3312 4548 6810 24 1856 6718 9524 12818
kitchen-l 28 1447 5029 6610 8491 40 2613 8856 12090 21933
lokay-m 8 1633 3132 4244 6270 11 1729 6786 9775 12009
sanders-r 15 608 2096 2868 4558 21 812 4868 6695 8723

williams-w3 11 531 3697 4788 6081 21 1929 4840 6287 7884
rogers-b 9 996 2023 2701 4770 12 3323 4207 5640 13079

germany-c 7 1011 1819 2226 3729 26 3372 4398 5703 10982
shapiro-r 40 889 2443 3363 8272 52 2966 5993 8070 19472

Table 5.2: Statistics on Enron datasets after applying splitting

useful because it demonstrates the necessity of incorporating mech-

anisms for updating the feature and category sets. In particular,

Table 5.2 shows statistics about the resulting number of categories,

messages and features from the whole dataset, as well as for the

first 30% of the stream. It shows that a large amount of features

and categories were not present in the first 30% of the stream.

Additionally, Figure 5.4 shows the category distribution for the first

30% and 100% of some datasets. As observed, for some users, such

as lokay-m, the distribution is very similar in the training and in

the test sets, while for most users, such as beck-s or kitchen-l,

the distribution is completely different. An interesting phenomenon

that can be observed in kitchen-l is that new categories emerge in

the test set that turn out to be majority categories. These obser-

vations lead us to the conclusion that new categories and features

appear, and that category distributions change over time, making it

necessary to introduce concept drift monitoring mechanisms.
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Figure 5.4: Differences in category distribution between the
first 30% and the 100% of the examples in the dataset
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5.3.4 Experimental study: online comparison of algo-

rithms

In this study we use the aforementioned prequential-based error met-

ric for online comparison of algorithms. This study takes into ac-

count how such measure evolves during run time. The rationale is

that the relative performance of a set of algorithms is subject to

change over time. Our objective is to use these measures to gain

further insight into the dynamics of email streams, focusing on the

effect of concept change.

GNUsmail has been used to carry out the comparisons. The GNUs-

mail source code incorporates an experimentation launcher that al-

lows to replicate the experimentation described here.

For both the incremental and the online approach, the messages are

analysed in chronological order, and they are given to the underlying

learning algorithms one by one. For each dataset, we compare the

online performance of the following algorithms:

• OzaBag over NN-ge , using DDM for concept drift detection

• Plain NN-ge. Recall that an incremental implementation of

NNge is provided in the Weka framework.

• Hoeffding Trees (VFDT).

• Majority class, used as a baseline for comparison.

Instead of using the classical prequential error, the launcher can be

configured to use sliding windows or fading factors. For each algo-

rithm and dataset, GNUsmail plots the prequential-based metrics,

to visually analyse the differences in performance. These plots also

show the concept drifts when there is a concept drift detector asso-

ciated with an algorithm. We carry out experiments with the DDM

detector, and report the point where a concept drift warning that

finally leads to an actual concept drift is detected.
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Table 5.3: Final MOA prequential accuracies with bagging of
DDM and NN-ge

Dataset Correct/Total Percentage
beck-s (101 folders) 1071/1941 55.18%

europe 131/162 80.86%
calendar 104/123 84.55%
recruiting 89/114 78.07%
doorstep 49/86 56.97%

kaminsky-v (41 folders) 1798/2699 66.62%
universities 298/365 81.64%
resumes 420/545 77.06%
personal 154/278 55.4%
conferences 163/221 73.76%

lokay-m (11 folders) 1953/2479 78.78%
tw commercial group 1095/1156 94.72%
corporate 345/400 86.25%
articles 152/232 65.51%
enron t s 86/176 48.86%

williams-w3 (18 folders) 2653/2778 95.5%
schedule crawler 1397/1398 99.91%
bill williams iii 1000/1021 97.94%
hr 74/86 86.05%
symsees 74/81 91.36%

farmer-d (25 folders) 2743/3590 76.41%
logistics 1077/1177 91.58%
tufco 588/608 96.71%
wellhead 210/337 62.32%
personal 211/320 65.94%

kitchen-l (47 folders) 2254/3790 59.47%
esvl 640/712 89.89%
hr 159/299 53.18%
east power 160/253 63.24%
regulatory 210/242 86.78%

sanders-r (30 folders) 887/1207 73.49%
iso pricecaps 404/420 96.19%
nsm 109/119 91.6%
senator dunn 43/83 51.81%
px 49/68 72.06%

In addition, we use the McNemar test because it can be easily

adapted to deal with the online characteristic [111]. Thus, graphics

are produced for each of the algorithm pairs, and the critical points

of the McNemar test for a significance of 99% are shown as horizon-

tal lines, while the zone where no significant difference is found is

shown on a gray background.

In Table 5.3, the final prequential accuracy with bagging of DDM

and NN-ge is shown for each folder. As can be seen in this table, the

classification results are similar to those in the works of Bekkerman

et al. [144] and Bermejo et al. [156]. The final results depend largely
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on each specific dataset, and, more precisely, on their folders. Fold-

ers with a big amount of messages and dealing with very specific

subjects are more likely to be correctly learnt by the models. There

are folders whose final prequential value goes beyond 90%, as in the

cases of farmer-d, kaminski-v, kitchen-l and lokay-m (see table

5.3). The results for this dataset are illustrative, since it can be

seen that the best-scored folders are precisely the ones that have a

specially large amount of messages in them.

When analysing these results, one should take into account that

we are dealing with a massive multi-class domain. As a result, it

is difficult to get good overall performance as some folders will be

learnt better than others. In the case of beck-s, for instance, we

have over 100 different values for the folder. Another difficulty is

that the classes are extremely unbalanced, which typically causes

problems for learning algorithms [157]: for williams-w3 there are

folders with more than one thousand mails (bill williams iii),

and folders with only a dozen mails (el paso). Furthermore, it

is less than obvious what the semantics of the folders intended by

the user is: both hr and human resources contain emails dealing

with human resources which makes it difficult to determine how the

messages should be classified. Another general problem is that some

folders contain mails which have little in common (let us think about

personal folders).

In Figures 5.5, 5.6, 5.7 and 5.8 the evolution of the prequential ac-

curacy is shown for two specific datasets, beck-s and kitchen-l,

plotting both the classical and the fading factors versions of the

prequential error. As a general observation, using fading factors

improves results, since the effect of poor initial performance is re-

duced because of the limited number of available messages at the

beginning.

It can be seen for both datasets that a concept change is detected by

DDM. This detection leads to the combination of DDM and OzaBag

over NNge to show a better performance that plain NNge. Never-

theless, in the case of beck-s this superiority is not found to be

statistically significant by the McNemar test, while, in the case of
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(a) Legend

(b) Prequential error

(c) Fading factors preq.

Figure 5.5: Prequential accuracies for beck-s. For the fading
factors graphics, α = 0.995 has been selected. The detection of
concept drift by the DDM algorithm is marked with a vertical

dashed line.
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(a) McNemar test: NNge vs. HoeffdingTree. Fading factors
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(b) McNemar test: OzaBag vs. NN-ge. Fading factors

Figure 5.6: McNemar test for beck-s, used to compare OzaBag
over NNge with DDM for concept drift detection
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(a) Legend

(b) Prequential accuracy

(c) Fading factors preq. accuracy

Figure 5.7: Prequential accuracies for kitchen-l. For the fading
factors graphics, α = 0.995 has been selected. The detection of
concept drift by the DDM algorithm is marked with a vertical

dashed line.
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(a) McNemar test: NNge vs. HoeffdingTree. Fading factors
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(b) McNemar test: OzaBag vs. NN-ge. Fading factors

Figure 5.8: McNemar test for kitchen-l, used to compare Oz-
aBag over NNge with DDM for concept drift detection
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kitchen-l the performance of the online learner that incorporates

concept drift detection begins to be significantly better than plain

NNge. This leads to the conclusion that concept drift is an impor-

tant issue in the case of kitchen-l, and its detection and adaptation

to it is important in order to obtain good results. Notwithstanding,

in the case of beck-s such significant improvement is not observed.

This can be caused by the concept drift being of the virtual type.

However, there is a significant difference between the combination of

OzaBag, DDM and NNge, and the plain version of NNge, although

for a short period of time. Since no concept drift has been signaled,

it can be concluded that the difference is due to the effect of the

ensemble method, OzaBag.

On the other hand, NN-ge outperforms other basic methods, whose

relative performance varies for every dataset. The performance ob-

tained by NN-ge is comparable with the best results obtained by the

aforementioned works [144, 156], which use SVM-based approaches.

Specifically, the methods based on HoeffdingTree have lower accu-

racy than the methods based on NN-ge when directly applied to

the domain of email classification. These streaming decision tree

methods frequently need millions of examples to start showing good

performance. The main problem of tree-based algorithms is that

once a decision has been made on a node, it cannot be undone.



Chapter 6

Comparative Study on

Feature Selection and

Adaptive Strategies for

Email Foldering Using the

ABC-DynF Framework

6.1 Introduction

As we have seen in previous chapters, high dimensional data are

inherently difficult to work with. In the context of supervised classi-

fication, this problem causes the number of examples needed to build

a classifier to grow enormously as the dimensionality of the feature

space increases. In particular, the problem of email foldering deals

with natural language, and thus potentially thousands of words can

be selected as features [158]. Moreover, the number of extracted

words often exceeds the number of messages by more than an order

of magnitude [33]. As a result, the classifier can become severely

biased, especially when it is induced from small training sets [159].

115
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Feature selection is often applied to high dimensional data as a pre-

processing step in order to overcome the so-called ‘curse of dimen-

sionality’ [31]. By removing irrelevant and redundant features, the

classification performance and construction time can be improved.

On the other hand, in Chapter 5 we saw that email is dynamic in

nature. Emails arrive in a stream over time. Users are constantly

creating new folders, and letting other folders fall out of use. Even

the topic associated with a folder can shift over time. Changes in

the learning environment are known as concept drift. Concept drift

scenarios require adaptive algorithms able to track such changes and

adapt to them.

An additional type of concept change is presented in this chapter:

contextual concept drift. Contextual concept drift corresponds to

situations where the set of relevant features shifts over time [120].

New terms appear, other fall out of use, and, in general, the relative

relevance of features changes evolves. This gives rise to dynamic

feature spaces, which means that the features used by the classi-

fication model change over time. In order to tackle this kind of

concept change, adaptive learning algorithms capable of handling

changes in the feature space are desirable. Authors such as Katakis

at al. [120] argue that it is useful to combine incremental feature

selection methods with feature-based learners, that is, learning algo-

rithms that work under evolving feature sets.

In this chapter we present ABC-DynF, an adaptive learning frame-

work that combines the adaptive procedures proposed in the Adap-

PreqFr4SL framework [135] with the implementation of a dynamic

feature space for a Näıve Bayes classifier in order to cope with con-

textual concept drift and the emergence of new categories over time.

In the presented framework, data arrives to the learning system se-

quentially. The classification model must first make a prediction,

and then the current model is updated with new data. ABC-DynF

is provided with control and adaptive mechanisms that try to ad-

just quickly to both real concept drift and contextual concept drift,

adapting to a changing feature set.
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The main aim of this chapter is to evaluate how different prepro-

cessing, control and adaptive strategies included in the ABC-DynF

can affect the performance of a Bayesian-based email classification

system. To this end, we have conducted experimental studies us-

ing several datasets extracted from the ENRON email corpus [32]

in order to compare different settings of the ABC-DynF framework.

Particularly we focused on three ways to improve the performance:

i) dimensionality reduction of the feature space; ii) use of control

mechanisms and adaptive methods including the implementation of

a dynamic feature space to handle changing environments; iii) the

use of an iterative algorithm called Iterative Bayes [160] for improv-

ing the probability estimators of the Näıve Bayes classifier.

This chapter is partially based on the following publication in which

the author has participated:

• Carmona-Cejudo, J.M., Castillo, G., Baena-Garćıa, M.,

Morales-Bueno, R.: “A Comparative Study on Feature Se-

lection and Adaptive Strategies for Email Foldering Us-

ing the ABC-DynF Framework”, Knowledge-Based Sys-

tems. Available online 1 April 2013, ISSN 0950-7051,

10.1016/j.knosys.2013.03.006 [161]

We conclude this introduction with a brief outline of the contents

of the chapter. Section 6.2 presents the ABC-DynF framework, and

reviews the Näıve Bayes classifier and the Iterative Bayes proce-

dure for parameter adaptation, as well as the adaptive and control

strategies adopted to handle concept drift and the dynamic feature

set mechanisms used by ABC-DynF. Section 6.3 presents the results

of the experimental study with several datasets from the ENRON

corpus. Finally, Section 6.4 provides some discussion based on the

results obtained and also in the insights highlighted in related stud-

ies.
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6.2 The ABC-DynF Framework: Adaptive

Bayesian Classifier with Dynamic Fea-

tures

This section is devoted to the ABC-DynF framework, an extension

of the AdPreqFr4SL framework that combines the control strategies

and adaptive procedures included in the latter with the implemen-

tation of a dynamic feature space for a Näıve Bayes classifier. In

Subsection 6.2.1 we review the AdPreqFr4SL, in 6.2.2 we introduce

the topic of classification in dynamic feature spaces and in Subsec-

tion 6.2.3 we discuss ABC-DynF. Finally, in Subsection 6.2.4 we

explain the Iterative Bayes procedure for improved probability esti-

mation.

6.2.1 The AdPreqFr4SL framework

The main environmental assumption that drives the design of the

Adaptive Prequential Learning Framework for Supervised Learning,

AdPreqFr4SL [162] is that observations do not arrive to the learning

system at the same time, which allows the environment to change

over time. Without loss of generality, we can assume that at each

time point data arrives in batches of equal size so that we can per-

form model adaptation in jumps when there is some accumulated

experience. Indeed, a temporal memory could be used to store the

incoming examples until there are enough examples to build a batch

of fixed size. The main goal is to sequentially predict the categories

of the next batch.

Many adaptive systems employ regular updates while new data ar-

rives. The AdPreqFr4SL, instead, is provided with controlling mech-

anisms that try to select the best adaptive actions according to the

current learning goal. To this end, two performance indicators are

monitored over time: the batch error (the proportion of misclassified

examples in one batch) and the model error (the proportion of mis-

classified examples in the total of the examples that were classified

using the same model). Using batches of examples and the batch
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error as an indicator of the current performance offers the advan-

tage to detect changes by observing the deviation from the current

batch error value to the previous observed values without paying too

much attention to outliers.

Algorithm 2 summarizes the main processes of the AdPreqFr4SL

framework. For each batch B of examples, the current hypothesis

is used to make predictions, the correct category is observed and

the performance indicators (the batch error and the model error)

are assessed. Then, the indicator values are used to estimate the

actual systems state: s1-the performance is improving; s2 - the per-

formance stops improving in a desirable tempo; s3 - a first alert of

concept drift is signaled; s4 - there is a gradual concept change (con-

cept drift); s5 - there is an abrupt concept change (concept shift); s6

- the performance reaches a plateau. Finally, the model is adapted

according to the estimated state.

Algorithm 2 The algorithm of the the AdPreqFr4SL

Require: A classifier class-model M, a dataset D of i.i.d. examples 〈x, c = f(x)〉
divided in batches B of M examples

Ensure: A classifier hC ∈M updated at each time point
Initialize hC with one of the hypothesis from M
for each batch B of m examples of D do

for each example x in B do
hC(x)⇐ predict(x, hC)
f(x)⇐ getActualClass(x)
numIncorrect+ = δ(x, f(x), hC(x)) {the 0-1 loss is used}

end for
indicators ⇐ assessIndicators(numIncorrect, . . .)
state ⇐ estimateState(indicators, monitoring-tools)
adapt(hC , B, state)

end for
end for
return hC

Whenever it is detected that the performance continues to improve

(state s1), the current classifier is updated using the examples from

the last batch. The adaptive strategy for handling concept drift

mainly consists of manipulating a short-term memory to store ex-

amples suspected to belong to a new concept. Whenever a concept

drift (state s4) or alert (state s3) is signaled, the new examples are

added to a short-memory. However, after signaling a concept drift,

the examples of the current batch are not used to update the model
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in order to force a degradation of the performance. This leads to a

faster detection of a concept shift in order to build a new classifier

from data that could belong to a new concept. Thus, whenever a

concept shift is detected (state s5), the current model is discarded.

In this case, a new classifier is learnt from scratch using the exam-

ples from the short-term memory. Afterwards, the short memory is

cleaned for future uses. This adaptation process will continue until

it is detected that the performance reaches a plateau (state s6). In

this case we assume that it does not make more sense to continue

adapting the model with new data. However, the performance will

continue to be monitored. If any significant change in the behaviour

is observed, then we will activate the adaptation procedures once

again.

The method for monitoring concept drift is based on the Shewhart

P-Chart. In quality control, the P-Chart is usually used to monitor

the proportion of non-conforming items in a production process. In

the AdPreqFr4SL, the P-Chart is used for monitoring the batch er-

ror. More details about the implementation of a P-Chart to control

concept drift can be found in the work of Castillo and Gama [162].

The AdPreqFr4SL framework is available on-line as open source at

http://adpreqfr4sl.sourceforge.net/.

6.2.2 Classification in dynamic feature spaces

Due to the high dimensionality of text streams and their dynamic

nature, it is necessary to monitor feature relevance over time for

changing the set of selected attributes when it is necessary. There

are still not many algorithms in the literature able to deal with a

dynamic feature space. Katakis et al [163] and Jou and Shih [12]

propose the use of Näıve Bayes for this task, while Delany [164]

prefers a k-NN based ensemble classifier. What both algorithms have

in common is that they can learn using all the available attributes,

and predict using a subset of them. This is achieved by using a

subset of the features to predict posterior probabilities in the case of

Näıve Bayes, and using a subset of the features to compute distances

http://adpreqfr4sl.sourceforge.net/
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in the case of k-NN. Another algorithm designed to work in dynamic

feature spaces is FAE (Feature Adaptive Ensemble), proposed by

Wenerstrom and Giraud-Carrier [121]). The FAE algorithm is based

on a dynamically-sized ensemble of Bayesian classifiers, where each

of the members of the ensemble is specialized in a subset of the

attributes.

In general, Näıve Bayes-based approaches are preferred in the lit-

erature, because example-based algorithms such as k-NN need to

store all the previous examples, making this kind of algorithms in-

efficient for large text streams [163]. Moreover, in the Näıve Bayes

algorithm it is trivial to add new attributes and labels, something

which is necessary when dealing with text data streams. For these

reasons, we use this algorithm as the basic model the ABC-DynF,

presented in the next subsection.

6.2.3 The Adaptive Bayes Classifier with Dynamic Fea-

ture Space (ABC-DynF)

We have extended the AdPreqFr4SL framework with a mechanism

for tracking changes in the top-k features that allows for the imple-

mentation of a dynamic feature space. The resulting framework is

called ABC-DynF (Adaptive Bayes Classifier with Dynamic Feature

Space) and is published on-line as open source at http://abcdynf.

sourceforge.net/. The ABC-DynF framework is based on the use

of the Näıve Bayes classification model, concept drift adaptation

procedures from AdPreqFr4SL, and the chi-squared relevance score

for maintaining a dynamic feature set to be used by the classification

model.

We have chosen to use the Näıve Bayes (NB) classifier, mainly due

to its incremental nature: it only needs to accumulate sufficient

statistics for calculating probabilities for the Bayes classification

rule. Moreover, NB allows for a simplified implementation of the

adaptive algorithms not only for incorporating new incoming data,

but also for adding new features and categories over time. With

http://abcdynf.sourceforge.net/
http://abcdynf.sourceforge.net/
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this aim, ABC-DynF maintains a set of sufficient statistics T which

comprises the following elements:

1. A table Tc containing m counters Nj , one counter for each

category cj

2. For each feature Xi with R possible values {r0, . . . , r|R−1|}:

• Am×R contingency table CTi containing the co-occurrence

counters Nijk, which represent the number of examples

〈x, c〉 ∈ D such that Xi = rk, and c = cj , for each possible

value rk of Xi.

Note that, in our case, R=2, since we work with a bag-of-words

document representation, and thus with binary attributes.

In order to handle concept drift, ABC-DynF uses the adaptation

procedures described in Subsection 6.2.1. Besides, each time a batch

B of examples arrives, the following three steps are carried out se-

quentially by the ABC-DynF framework in order to adapt to con-

textual concept drift and maintain a dynamic feature space:

1. The sufficient statistics T are updated by incrementing the

counters, using the examples from B. If new features or cate-

gories appear, they are added to the tables.

2. Based on T, a relevance score is calculated for each feature

using the chi-squared weighting function (see Eq. 2.3) .

3. The k features with the highest score are selected as the set of

top-k attributes, and will be used by the NB model when pre-

dicting the category of each example from the next batch. The

k parameter is selected before the execution of the algorithm,

and remains constant for all the batches.

If we look at Equation 2.3, we see that, in order to calculate the

chi-square weighting function, we need to estimate not only the

probability of a feature value in documents from a given class, but

also complementary probabilities. Nevertheless, the set of sufficient
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statistics T provides enough information for calculating the chi-

squared function. In fact, given a category cj , a feature Xi and

a possible feature value rk, we can calculate the number of data ex-

amples 〈x, c〉 such that Xi 6= rk ∧ c = cj by using the CTi and Tc

tables, since the number of examples such that Xi 6= rk ∧ c = cj
is equal to the total number of examples where c = cj minus the

number of examples where Xi = rk ∧ c = cj . In our case, since we

work with binary features, we have to store counters for the true

value of features only, that is, for term occurrences in documents.

Similarly, we can use the same contingency tables to calculate the

counters for the cases where c 6= cj by adding up the results for

the other categories. These counters can be used to estimate the

required probabilities.

NB naturally allows to use arbitrary feature subsets, so that only

the top-k features are used for classification. This is achieved by

constraining the set of features used in the NB classification rule:

category(x) = argmax
cj

P (cj)
∏

P (Xi = wi)|cj), Xi ∈ topk (6.1)

where wi represents the value of the Xi feature in document x and

topk is the set of the k most relevant features. That is, when learning

or updating the NB model, all the existing features are updated,

but when predicting the category of a new example, only the top-k

features are used in the computation.

The ABC-DynF framework allows the user to choose to monitor con-

cept drift or not. In addition, the user can also opt to maintain a dy-

namic feature space or not, in which case the features selected using

the first batch of examples remain unchanged. Both parametriza-

tions produce different adaptation strategies listed in Table 6.1.
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6.2.4 Improving the Probability Estimates by Itera-

tive Bayes

In order to improve the performance of Näıve Bayes its bias and/or

variance has to be reduced by obtaining better probability estimates

P̂ (Xi = xi | cj) and/or P̂ (cj). The Iterative Bayes, proposed by J.

Gama [160], improves the predictive distribution P (C | x) associated

with each example x by adjusting the estimates P̂ (Xi = xi | cj) of

the conditional probabilities.

Suppose that during a iteration we process an example x(l) which

belongs to the category cobs and that it is classified by the current

classifier hNB as belonging to cpred. The Iterative Bayes updating

procedure works as follows. An increment, delta, proportional to

the difference 1− P (cpred | x) is computed. If the example is incor-

rectly classified, that is, cpred 6= cobs, then delta is multiplied by -1

in order to be a negative quantity. For each contingency table CTi

associated to the feature Xi, the increment delta is added to the

entry where C = cpred, and then it is proportionally subtracted to

the remaining entries. For avoiding zero or negative counters, the

counters never goes below 1. The iterative procedure finishes when

a stopping criterion is met. The experimental evaluation of Iterative

Bayes in the work of Gama [160] has shown consistent reductions in

the error rate. Using the bias-variance decomposition of the error,

it was demonstrated that the reduction of the error is mainly due to

a reduction on the bias component.

An important advantage of Iterative Bayes is that it lends itself

directly to incremental learning. In [165] Adaptive Bayes was intro-

duced, an incremental version of Iterative Bayes, that can also work

in an on-line learning framework. The rationale is that after seeing a

new example, the corresponding counters are first incremented and

Concept Drift Monitoring
No Yes

Update features No Yes No Yes
Adapt00 Adapt01 Adapt10 Adapt11

Table 6.1: Adaptation strategies for AdPreqFr4SL
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then Iterative Bayes is executed in order to increase the probability

on its current category.

6.3 Experimental Evaluation

In this section, we describe the experiments we have carried out

with ABC-DynF. In Subsection 5.3.3 we present the datasets we

have used. Then, we introduce our experimental settings in Sub-

section 6.3.1. Finally, in Subsection 6.3.2 we specify the studies

which are the main focus of this chapter, and the conclusions that

can be drawn from them. For the sake of replicability, we have up-

loaded the experimentation scripts to the project web page (http:

//abcdynf.sourceforge.net/).

6.3.1 Experimental Settings

We have carried out several experiments using 10 datasets from the

Enron corpus (see Section 5.3.3 in Chapter 5). We use a binary bag-

of-words model for email representation. All features were obtained

from the message subject and the email body (from the first 5 or

10 lines, or from the whole body). After stop-words removal and

stemming, we obtain a bi-dimensional array of m messages and n

binary features for each email user.

In this chapter we do not aim at selecting the best weighting func-

tion, since studies already exist on this topic, e.g. the work of For-

man [33], in which it is shown that the weighting function used by

ABC-DynF, chi-square, is a reasonable function for text classifica-

tion.

We have an email stream for each particular dataset in the Enron

corpus, which we have divided into batches of 50 messages. The

first batch is used to build an initial Näıve Bayes classifier, which is

updated for each new batch by the ABC-DynF framework.

http://abcdynf.sourceforge.net/
http://abcdynf.sourceforge.net/
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In order to evaluate the classification performance of the model, we

have used two different evaluation measures: the percentual classi-

fication error and the F1 score. Percentual classification error is

calculated as follows:

error =
#wrong predictions× 100

N
(6.2)

that is, the number of wrong predictions between the total number

of examples, expressed as a percentage.

The other measure we have used is the F1 measure. This measure is

calculated for each category l as the harmonic mean of the precision

(π) and recall (ρ) for that category:

F1(l) =
2π(l)ρ(l)

π(l) + ρ(l)
(6.3)

where l represents a category. Precision and recall are complemen-

tary measures that are calculated as follows:

π(l) =
TP (l)

TP (l) + FP (l)
, ρ(l) =

TP (l)

TP (l) + FN(l)
(6.4)

where TP (l), FP (l) and FN(l) represent the number of true posi-

tives, false positives and false positives for category l. Note that the

π, ρ and the F1 measure are local to a given category. A global F1

is calculated by macro-averaging the measures, that is, calculating

the average of the individual F1 measures for each category.

The evaluation has been carried out following a prequential-like ap-

proach: for each new incoming batch, the performance of the model

is evaluated using some of the aforementioned evaluation measures,

and then the examples from that batch are used to update the model.

The final result corresponds to the average of the classifications for

all the batches. Note that this is a pessimistic performance evalu-

ator [114], since the evaluations for the first batches have the same

weight as the evaluations for the last batches, that are probably
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more representative of the performance of the learning model, since

they have received more information.

After our experiments, we have used non-parametric statistical tests

in order to confirm to what extent the observed differences in perfor-

mance are statistically significant, and not just statistical artifacts.

To this end, we have followed the guidelines proposed by Demšar for

statistical hypothesis testing [55], who advocates for the use of non-

parametric tests in data mining experiments. More specifically, we

have applied the Friedman test, using the statistic derived by Iman

and Davenport, since the original Friedman statistic is undesirably

conservative [55]. When comparing only two related samples (for

example, comparing the results with or without Iterative Bayes),

we have used the Wilcoxon test instead [54]. A good overview of

these tests, including its associated formulas, can be found in the

aforementioned work of Demšar [55]. In all of our tests, we use a

significance level of α = 0.05. When the Friedman test finds signif-

icant differences, it is useful to find out which is the source of this

difference, that is, which of the compared data samples are statisti-

cally different. To this end, it is necessary to use post-hoc tests. In

our case, we have used Finner’s non-parametric procedure [166] as

the post-hoc test for our Friedman tests.

6.3.2 Results and analysis

Tables C.4, C.5, C.6 and C.7 at the Appendix show the final clas-

sification accuracies obtained for different configuration settings for

feature selection processes and adaptive strategies implemented in

the ABC-DynF framework.

We can make some preliminary observations on the obtained results.

First, there is a clear relationship between the accuracy for each user

and the entropy of the folders (see Table 5.1 in Chapter 5). Specifi-

cally, the best accuracies are obtained for users with lower entropies,

such as williams-w3. We can observe that accuracies are inversely

related to the number of folders, but not to the total number of

messages. Better accuracies are obtained when the average number
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Figure 6.1: Number of generated features using the first five,
ten or all lines
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of messages by folder is bigger, since more examples are available

for the learning algorithms. These observations show that the best

results are obtained for datasets with a very reduced number of

dominant categories containing a large number of examples.

Based on the results of Tables C.4, C.5, C.6 and C.7, we have carried

three studies aimed at comparing the classification performance of

classifiers learnt using different settings for: i) feature selection and

vocabulary size reduction, using five, ten or all the lines of the email

body, as well as using different numbers of features; ii) probability

estimators, to study the impact of improving the classification model

by using better probability estimations, and iii) adaptive strategies,

in order to study the effect of the implementation of concept drift

monitoring and the use of a dynamic feature set.

First study: reducing the size of the feature space

The goal of the first study is to compare how different strategies for

dimensionality reduction affect the classification performance. We

explore two types of strategies: i) using only a limited number of

lines and ii) using a limited number of features.
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The first strategy is related to the indexing phase. Previous studies

have pointed out that the most relevant features for email classifica-

tion are those extracted from the subject. The email body usually

contains more redundant information than the subject line. There-

fore, the mail subject is more likely to contain keywords [150]. Thus,

we could significantly reduce the number of features if instead of pro-

cessing all the lines of the message body we use only the subject and

a limited number of the first lines of the body. In this study, we have

compared the results when using 5, 10 or all the lines to select clas-

sification features. As depicted in Figure 6.1, increasing the number

of used lines results in an increase of the number of features, which

is an intuitive result.

The second strategy consists in applying feature selection, using the

chi-squared weighting scheme in order to select the most relevant k

features. In our study we evaluated the classification performance

obtained using the feature set sizes used in a previous work [106]:

250, 300 and 350.

In order to illustrate the dynamism of the evolving feature space, in

Table 6.2 we show the percentage of coincidence of the top-k feature

set between every two consecutive batches, using features extracted

from the first 5, 10 or all the lines. It can be observed that this

coincidence is in general lower when using the complete message

than when only 5 or 10 lines are used. This means that keeping a

dynamic feature set is more important when larger sections of email

messages are used, or, in general, with larger document sizes. It

also suggests than the features appearing in the first lines of the

email are more stable over time, due to the fact that they are more

informative of message contents. The effect is more exaggerated in

some datasets, such as sanders-r and germany-c, than in others,

such as beck-s or lokay-m.

In order to evaluate the effect of using a different number of lines on

performance, we have performed Friedman statistical tests to deter-

mine whether there is a statistically significant difference when five,

ten or all the lines of the email body are used for feature extraction,

under the null hypothesis that this has no effect on performance.
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Dataset 5 lines 10 lines All lines
beck-s 92.63% 91.5% 91.94%

farmer-d 94.45% 94.63% 92.78%
kaminski-v 97.18% 95.75% 96.42%

kitchen-l 93.14% 92.49% 91.59%
lokay-m 91.79% 90.48% 90.35%

sanders-r 87.79% 85.76% 78.75%
williams-w3 94.22% 94.24% 93.94%

rogers-b 91.07% 91.53% 88.37%
germany-c 88.13% 87.31% 82.76%

shapiro-r 87.08% 86.09% 84.48%

Table 6.2: Percentage of coincidence of the top-k feature set
between two consecutive batches, using the first 5 or 10 lines or

the complete mail message to obtain features

Thus, we have compared the performance of three classifiers result-

ing after applying three different configuration settings during the

process of feature extraction over all the datasets, keeping fixed the

settings for feature selection and adaptive strategies.

The results are in Table 6.3. It can be seen that, in most cases,

the p-value of the Friedman test is larger than the significance level

α (0.05). This means that the null hypothesis cannot be rejected.

Moreover, in the cases where the null hypothesis is rejected, we find

that using all the lines is not the best option from the point of view

or performance (see the complete results in Tables C.4, C.5, C.6

and C.7).

Regarding the number of features, we have also carried out Friedman

tests to analyze the effect of changing this parameter. The results

can be seen in Table 6.4. We can see that the null hypothesis can

almost never be rejected, which indicates that using a different num-

ber of features does not have a significant impact on performance.

To sum up, the results of our experimentation reveal that using

more features or larger sections of the messages to extract features

does not necessarily improve the performance. This indicates that

it is possible to use less features and save computational resources

without compromising performance.
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Strategy N. attrs I.B. p-value (error) p-value (F1)
Adapt11 250 True 0.0581 0.0611
Adapt11 250 False 0.4066 0.8276
Adapt11 300 True 0.0608 0.1225
Adapt11 300 False 0.0821 0.1496
Adapt11 350 True 0.2725 0.3679
Adapt11 350 False 0.0821 0.4966
Adapt10 250 True 0.0608 0.0665
Adapt10 250 False 0.0058 0.0013
Adapt10 300 True 0.0608 0.4966
Adapt10 300 False 0.0608 0.1319
Adapt10 350 True 0.045 0.0608
Adapt10 350 False 0.1225 0.0608
Adapt01 250 True 0.0074 0.0283
Adapt01 250 False 0.1496 0.1988
Adapt01 300 True 0.0247 0.0611
Adapt01 300 False 0.0672 0.1988
Adapt01 350 True 0.2319 0.2725
Adapt01 350 False 0.0608 0.2725
Adapt00 250 True 0.3012 0.1905
Adapt00 250 False 0.0071 0.0202
Adapt00 300 True 0.4066 0.332
Adapt00 300 False 0.0821 0.0608
Adapt00 350 True 0.2019 0.3012
Adapt00 350 False 0.1794 0.4516

Table 6.3: Results of the Friedman test to check if changing
the number of email lines from which the features are extracted
affects the performance of the learning model. Both the error
and the F1 score have been used. Significant differences have

been marked in bold

Second study: using Iterative Bayes

In the second set of experiments we study the impact of improving

the classification model itself. More precisely, we use the Iterative

Bayes procedure to improve the probability estimates. We use the

Wilcoxon test to find out if the impact on performance is statistically

significant. The p-value results of the Wilcoxon tests are provided

in Table 6.5.

From the results, we can conclude that using Iterative Bayes is

clearly beneficial, especially when concept drift monitoring is not

used (that is, with Adapt00 and Adapt01). When monitoring is used

(this is, with Adapt10 and Adapt11), the Wilcoxon tests do not al-

ways reject the null hypothesis. Nevertheless, the complete results

in Tables C.4, C.5, C.6 and C.7 show that, as a rule, Iterative Bayes
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Strategy N. lines I.B. p-value (error) p-value (F1)
Adapt11 5 True 0.2093 0.067
Adapt11 5 False 0.4516 0.2847
Adapt11 10 True 0.2019 0.0108
Adapt11 10 False 0.9048 0.6703
Adapt11 all True 0.9747 0.4966
Adapt11 all False 0.6703 0.9747
Adapt10 5 True 0.5669 0.2163
Adapt10 5 False 0.1822 0.5899
Adapt10 10 True 0.9048 0.8233
Adapt10 10 False 0.4966 0.9048
Adapt10 all True 0.3012 0.8357
Adapt10 all False 0.2019 0.971
Adapt01 5 True 0.4966 0.1773
Adapt01 5 False 0.2847 0.1096
Adapt01 10 True 0.7165 0.2725
Adapt01 10 False 0.7165 0.9747
Adapt01 all True 0.2725 0.2093
Adapt01 all False 0.4516 0.4966
Adapt00 5 True 0.5669 0.1482
Adapt00 5 False 0.1635 0.5488
Adapt00 10 True 0.4966 0.723
Adapt00 10 False 0.1496 0.6144
Adapt00 all True 0.3872 0.7165

Table 6.4: Results of the Friedman test to check if changing
the number of selected features affects the performance of the
learning model. Significant differences have been marked in bold

improves the results. Thus, we can conclude that improving the

classification algorithm (in this case, by improving the probability

estimates of Näıve Bayes) has a deeper impact than augmenting the

number of features.

Third study: adaptive strategies

In the third study, we compare the four adaptation strategies listed

in Table 6.1. Unlike in the previous studies, we restrict the number

of features to 250 and the number of lines to 5, given that our results

in Subsection 6.3.2 do not justify using more features, or more lines

to extract these features. We have selected to use Iterative Bayes in

this experiment, given the results of Subsection 6.3.2.

Our objective is to test whether there is a statistically significant

difference when using different adaptation strategies. The results
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Strategy N. attrs. N. lines p-value (error) p-value (F1)
Adapt11 250 5 0.0367 0.0926
Adapt11 250 10 0.0125 0.0156
Adapt11 250 all 0.5076 0.2207
Adapt11 300 5 0.0593 0.0837
Adapt11 300 10 0.0593 0.0141
Adapt11 300 all 0.0469 0.0093
Adapt11 350 5 0.0284 0.0367
Adapt11 350 10 0.1141 0.025
Adapt11 350 all 0.0593 0.0051
Adapt10 250 5 0.0218 0.036
Adapt10 250 10 0.2845 0.1122
Adapt10 250 all 0.0367 0.0367
Adapt10 300 5 0.0745 0.2207
Adapt10 300 10 0.1688 0.1099
Adapt10 300 all 0.2026 0.1731
Adapt10 350 5 0.2026 0.2306
Adapt10 350 10 0.0284 0.0523
Adapt10 350 all 0.4446 0.3329
Adapt01 250 5 0.0284 0.025
Adapt01 250 10 0.0093 0.0105
Adapt01 250 all 0.0745 0.0385
Adapt01 300 5 0.0367 0.0382
Adapt01 300 10 0.0367 0.0209
Adapt01 300 all 0.0051 0.0093
Adapt01 350 5 0.0218 0.0214
Adapt01 350 10 0.0284 0.0223
Adapt01 350 all 0.0051 0.0069
Adapt00 250 5 0.0166 0.0254
Adapt00 250 10 0.0284 0.0284
Adapt00 250 all 0.0051 0.0069
Adapt00 300 5 0.0166 0.0209
Adapt00 300 10 0.0469 0.0176
Adapt00 300 all 0.0367 0.0499
Adapt00 350 5 0.0218 0.0166
Adapt00 350 10 0.0284 0.0117
Adapt00 350 all 0.0284 0.0367

Table 6.5: Results of the Wilcoxon test to find out if using Iter-
ative Bayes significantly improves the performance of the learning

model. Significant differences are marked in bold

for the F1 score and error, together with the average rankings, are

given in Tables 6.6 and 6.7.

The Friedman test rejects the null hypothesis (yielding a p-value of

0.00667 for F1 and 6.03×10−9 for error), which means that there

is a statistically significant difference in performance when different

adaptation strategies are used.

Since the null hypothesis is rejected, we have carried out a post-hoc

analysis to find out the causes of this difference. To this end, we
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Dataset Adapt00 Adapt10 Adapt01 Adapt11
beck-s 0.611 0.624 0.638 0.649

farmer-d 0.552 0.551 0.557 0.565
kaminski-v 0.638 0.654 0.675 0.698
kitchen-l 0.512 0.604 0.512 0.604
lokay-m 0.581 0.615 0.58 0.615

sanders-r 0.603 0.619 0.664 0.703
williams-w3 0.909 0.919 0.909 0.919

rogers-b 0.643 0.636 0.643 0.636
germany-c 0.692 0.739 0.698 0.741
shapiro-r 0.57 0.615 0.551 0.61

Average ranking 3.35 2.4 2.75 1.5

Table 6.6: F1 score for different adaptation strategies

Dataset Adapt00 Adapt10 Adapt01 Adapt11
beck-s 55.68 52.18 52.04 49.32

farmer-d 54.6 54.333 53.973 52.773
kaminski-v 52.763 49.195 47.763 43.186
kitchen-l 71.333 62.024 71.333 62.024
lokay-m 51.947 48.187 51.92 48.187

sanders-r 60.057 52.343 51.029 42.971
williams-w3 14.852 13.148 14.852 13.148

rogers-b 44.831 43.477 44.769 43.446
germany-c 43.091 39.182 41.727 38.545
shapiro-r 65.138 60.966 64.828 59.897

Average ranking 3.9 2.25 2.7 1.15

Table 6.7: Percentual error for different adaptation strategies

have launched pair-wise comparisons of the best adaptive strategy

(Adapt11) with the others, applying Finner’s procedure [166]. For

both the F1 measure and the percentual error, we find that there is

a significant difference between Adapt11 and Adapt00 (with p-value

= 0.017), and between Adapt11 and Adapt10 (with p-value = 0.03).

On the other hand, no significant difference was detected between

Adapt11 and Adapt01.

From these results, we can conclude that the the best adaptation

strategy is to use concept drift monitoring and update the feature

set over time. The impact of updating the feature space is greater

than the impact of concept drift monitoring. This leads us to the

conclusion that the effect of concept drift is limited, probably be-

cause we do actually face virtual concept drift. This can occur when

the order of training instances is skewed, for example, when differ-

ent types of instances are not evenly distributed over the training

sequence [135].
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Dataset Always When stop improving When reconstructing
beck-s 0.6417 0.6500 0.6358
farmer-d 0.5638 0.5712 0.5720
kaminski-v 0.7019 0.6985 0.6970
kitchen-l 0.5847 0.4975 0.4975
lokay-m 0.6018 0.5787 0.5787
sanders-r 0.6899 0.6338 0.6338
williams-w3 0.9069 0.9090 0.9088
rogers-b 0.6343 0.6435 0.6473
germany-c 0.7392 0.7016 0.7133
shapiro-r 0.6020 0.5941 0.5941
Average ranking 1.7 2.1 2.2

Table 6.8: F1 results for different feature updating strategies

Dataset Always When stop improving When reconstructing
beck-s 49.8000 50.4200 50.9000
farmer-d 52.6400 52.5467 52.4667
kaminski-v 43.4746 43.9915 43.9746
kitchen-l 62.5000 72.8571 72.8571
lokay-m 50.0533 52.3733 52.3733
sanders-r 45.6000 53.1429 53.1429
williams-w3 14.4815 14.2963 14.3333
rogers-b 43.7846 44.2154 44.5539
germany-c 38.5455 41.8182 41.0909
shapiro-r 59.3793 60.8276 60.8276
Average ranking 1.4 2.3 2.3

Table 6.9: Error results for different feature updating strategies

Another interesting aspect to study is when to update the feature

set. In principle, the feature space could be updated for every batch,

so that when a new batch of examples arrives, the most relevant fea-

tures from the beginning until the last batch are used. Nevertheless,

there are other possibilities. One of them is to update the features

only in case that the model performance stops improving. An ad-

ditional strategy would be to update the features only when the

learning model is rebuilt due to a concept shift, which would mean

that the feature set is static, but when the model has to be rebuilt,

it uses the newest top-k features.

We have launched experiments to measure the performance of these

strategies, obtaining the results in Tables 6.8 and 6.9.

The results show that the best option is to always update the fea-

tures. However, the Friedman test does not find statistically signifi-

cant differences between always updating, updating when the model
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stops improving or updating when the model is reconstructed. The

p-values are 0.52 for the F1 results and 0.058 for the error results,

which means that we cannot categorically affirm that updating the

features for each batch is always the best option, although it is the

best option in average.

As mentioned in Section 6.2, the base learner is reconstructed from

scratch when a concept shift is detected. This is the most expensive

step in the ABC-DynF framework, so it is interesting to analyze to

how often is the model has to be reconstructed. Reconstructing a

NB model involves a single pass over the training instances in order

to calculate the sufficient statistics. Therefore, it depends on the

number of instances and features. We have included relevant statis-

tics in Table 6.10, where we show the percentage of batches where

the model has to be reconstructed, and how many batches in the

short-term memory are used for model reconstruction in average.

These results are calculated using 250 features, 10 lines from each

email, concept drift monitoring and Iterative Bayes. The results

are different for each dataset. For users such as williams-w3 and

rogers-b, no concept shift is signaled. This means that we face

a virtual concept change, due to the emergence of new categories,

as we previously analyzed. The model does not have to be recon-

structed, although the new categories have to be incorporated, and

the learning models have to be incrementally updated. On the other

hand, there are some datasets, such as kaminski-v or lokay-m, where

concept drift is a relevant problem. For such datasets, the model

has to be reconstructed more frequently. In short, the number of

reconstructions from scratch depends on the nature of the occurring

concept changes, which in turn depends on each specific dataset.

6.4 Discussion

As previously stated, the problem of email foldering is more difficult

than spam filtering, since we typically have to deal with a very high

number of categories. Therefore, it is important to select a subset

of relevant features [167]. The skewness of the email data is another
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Author Pct. Rebuilds Batches used to rebuild (avg.)
beck-s 2.0% 2.0
farmer-d 1.0% 1.0
kaminski-v 6.36% 2.98
kitchen-l 2.38% 3.36
lokay-m 4.0% 1.0
sanders-r 2.86% 2.80
williams-w3 0.0% 0.0
rogers-b 0.0% 0.0
germany-c 4.55% 1.54
shapiro-r 1.72% 1.74

Table 6.10: Percentage of model reconstructions with respect
to total number of batches, and average length of the short-term
memory (in number of batches) used to reconstruct the model

factor that contributes to make this problem still very challenging.

That is one of the reasons why spam detection has received consider-

ably more attention in the literature than the more difficult problem

of email foldering [156].

In the previous work of Bekkerman [144], it is shown that better ac-

curacies are obtained for datasets with one or two dominant folders.

Our results are in concordance with this observation: better accura-

cies are obtained for email users with a few dominant folders, such

as williams-w3. Nevertheless, for classifiers such as Näıve Bayes,

the lack of balance between the number of email messages belong-

ing to each category might derive in some overfitting of learned pa-

rameters [156]. Learning from skewed data has attracted attention

recently, and applications include direct marketing, fraud detection,

and text categorization [168].

Email is an example of semi-structured data, since words can be ex-

tracted either from the body or from the headers, specifically from

the subject. As mentioned before, words from the subject have a

higher quality as features, since they carry less redundancy. Nev-

ertheless, Diao et al. [169] show that using exclusively words from

the subject can result in important performance degradation. In

this respect, Manco et al. [150] propose giving more weight to words

appearing in the subject line. Since we use a binary bag-of-words
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representation, it would not make sense in our case to use weight-

ing mechanisms. Instead of this, we simply include words from the

subject and from the body.

In this chapter, we have experimentally studied the influence of using

features from different numbers of lines on the learning methods.

Using all the lines in each message would be justifiable if a significant

difference in performance could be found. Otherwise, only a reduced

number of lines should be used, since this kind of optimization would

result in reducing processing time. To the best of our knowledge,

this is the first time this optimization is studied in the context of

email foldering. Our results show that, in fact, it is justifiable to use

only the five or ten first lines of each message, since this does not

affect the classification performance in a significant way.

We have used the chi-squared weighting function for feature selec-

tion. It has been experimentally found that chi-squared is in general

one of the most effective functions for feature selection in the domain

of text mining [170]. According to this work, chi-squared favours

common terms, uses categories information, and takes into account

absent terms. Furthermore, results show that the chi-squared val-

ues for a given feature are highly correlated with the values resulting

from using functions such as Document Frequency and Information

Gain. Different functions such as Mutual Information yield poor

performances in text domains.

We have shown that the optimal number of features to use is dataset-

dependent, which means that no general recommendation can be

given on how many features to select in this specific problem. Sur-

prisingly, in many of the previous works on the Enron dataset [32,

144, 156] feature selection techniques are not applied. However, good

feature selection techniques are crucial in this problem. As pointed

out in the work of Kiritchenko and Matwin [171] Näıve Bayes may

be quite sensitive to the number of features partly because of the

violation of the independence assumption, providing experimental

evidence. Rennie [38] proposes a feature selection method based

on eliminating old features, while Clark et al.[172] propose to use a

fixed number of features. Li et al. [173] use a fixed threshold instead.
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Regarding classification models, Bayesian classifiers are among the

most popular classifiers used in email classification and the more

general problem of text categorization [38], [174]. These classifiers

are usually generated by an explicit underlying probabilistic model,

which provides the probability of being in each category rather than

a simple classification. We choose Näıve Bayes as our email classifier

model mainly due to its incremental nature thus allowing us an easy

implementation of adaptive algorithms in order to incorporate new

features and categories over time.

Our aim is not to defend the use of Bayesian classifiers over other

paradigms, since past research in general favours other models such

as Support Vector Machines (see for example the work of Yu and

Zu [174]). Nevertheless, we do defend the necessity for adaptation in

this domain, regardless of the classifier used. Näıve Bayes classifiers

has the advantage of being inherently incremental, which makes it

easier to implement ad-hoc solutions for incremental feature addi-

tion [120]. They make it possible to incrementally add new cate-

gories and features, which makes them ideal for our problem. Fur-

thermore, Näıve Bayes-based approaches are generally preferred in

the literature to other models that accept a dynamic feature space,

such as k-NN, because they need to store all the previous exam-

ples, making them inefficient for large text streams [120]. While

other classification methods such as Support Vector Machines could

probably provide a better classification performance, they are not so

well suited to contextual concept drift scenarios, since they cannot

incrementally include new features.

Bayesian models in general, and Näıve Bayes in particular, can im-

prove their performance if the probability estimates they use is im-

proved. To this end, in chapter work we have use the Iterative

Bayes procedure. Gama [160] demonstrated that this procedure re-

duces the bias component of the error. Our results confirm that

this procedure improves the obtained results. A corollary of this

observation is that improving the classification model in an online

classification framework is more important than fine-tuning the size

of the feature set.
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Our results show that adaptive mechanisms effectively improve the

performance of email classifiers. Dynamic data streams are subject

to changes in the underlying data distributions, that is, to concept

changes. The learning models have to be able to adapt to these

changes, because the knowledge extracted from older examples may

not be valid anymore. It is thus necessary to detect such concept

drifts and react accordingly. In our case, the results confirm this ob-

servation. The use of a dynamical feature space has a larger effect on

performance than concept drift monitoring, which suggests that we

are facing virtual concept drift: the examples arrive from a skewed

distribution over time. We refer to the work of Žliobaitė [118], which

provides a panoramic view of research on learning under concept

change.

Finally, there is a need for feature selection mechanisms able to

take into account changes in the relevance of features during text

data streams. Katakis et al. [120] show that incrementally updating

features is important for real-world textual data streams, because,

in most applications, the distribution of data changes over time.

More specifically, they propose the coupling of an incremental fea-

ture ranking method and an incremental learning algorithm. The

predictive power of features changes over time, since new features,

such as new terms in our case, appear continuously and old ones fall

out of use. Therefore, incremental learning algorithms have to work

in combination with incremental feature selectors in the domain of

text mining. Works on classifiers that accept a dynamic feature set

are still rather scarce. An initial approach was proposed by Katakis

et al. [120], comprising two interconnected components: a) an in-

cremental feature ranking method using the chi-square weighting

function, and b) an incremental learning algorithm (based on Näıve

Bayes) that accepts dynamic feature spaces. A drawback of this

approach is that the weight for every term has to be recomputed

for each new document. Some partial solutions have been proposed,

for instance re selecting features periodically [164], or reelecting fea-

tures only when missclassifications occur [12]. In our work we have

experimented with different alternatives: updating for every batch,

updating when the model performance is not improving, or updating

when a concept shift has occurred and the model has to be rebuilt.
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In average, the best strategy was to update for every batch, although

this is not the case for every individual dataset.





Chapter 7

Online Attribute

Weighting for Document

Vectorization and

Keyword Retrieval

7.1 Introduction

The goal we set in this chapter is the efficient automatic selection

of keywords that offer an accurate description of the contents of

the documents in a data stream scenario, where there is not a fixed

dataset, but an unlimited stream of documents that arrive continu-

ously.

As we introduced in Chapter 2, the field of Information Retrieval

(IR) provides a series of functions, the so-called weighting functions,

which are used to assign numeric values to each term in a document

according to its relevance. These functions represent a tool for term

ranking and keyword selection. Those words which occupy the high-

est rank in a given document can be considered as its keywords. The

simplest weighting function is the term frequency function, which as-

signs higher weights to terms occurring more frequently. Its main

143
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weakness is that terms that occur frequently in a document are al-

ways assigned a high weight, even if they also appear frequently

in other documents. As a consequence, words such as prepositions

are given a high weight despite their low semantic relevance. A

popular alternative is the TF-IDF (term frequencyinverse document

frequency) function [175], whose rationale is to assign higher weights

to terms that appear frequently in a given document but rarely in

all the others. A similar weighting function, based on the same

principles although slightly more complex than TF-IDF, is Okapi

BM25 [176].

Keyword extraction has been successfully used for document index-

ing and retrieval, as well as document summarization [177]. Manu-

ally annotated keywords are often not available beforehand, which

makes it necessary to develop methods for automatic keyword ex-

traction [178]. The first approaches to keyword extraction were of

heuristic nature, using features such as word and phrase frequency,

as in the work of Luhn [179], the position of terms in the text, as

proposed by Baxendal [180] or occurrence of key phrases, as pro-

posed in the work of Edmundson [181]. Unsupervised [182] and

supervised [183] machine learning algorithms have also been used

as tools for keyword detection. In this chapter, we use a different

approach: the application of weighting functions to keyword extrac-

tion. This strategy has been previously employed in the work of

Brutlag and Meek [148], who use TF-IDF as a tool to identify key-

words in the domain of email and discuss its inherently incremental

nature. Keyword extraction based on weighting functions has also

been recently used in automatic generation of personalized anno-

tation tags for Twitter users [184]. More sophisticated approaches

use semantic analysis and external knowledge for document sum-

marization, as in the work of Guo and Zhang [185]. However, such

techniques are beyond the scope of this thesis. We propose an ap-

proach to keyword extraction in the absence of external knowledge,

using only document content. Although using external knowledge

could certainly improve results, it is not always available and it can

be costly to obtain.
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A graphical alternative to keyword lists for document summarization

are word clouds [186]. A word cloud is based on the idea of showing

the importance of each word by using different fonts, sizes or colors.

An alternative to traditional word clouds, where all words are used,

consists in selecting only the most relevant terms of each document

according to a relevance metric. That is, we are only interested in

the words that best describe the contents of each document. An

intuitive approach for constructing word clouds for textual datasets

organized by categories is to create a cloud for each category. Word

clouds have been popularized by some of the first Web 2.0 sites, such

as Flickr, Technorati, or Blogscope [187]. They provide a useful tool

for improving the user experience when surfing web pages, as shown

in the work of Champin et al. [188].

When calculating weighting functions in a stream of documents, it

is necessary to maintain counters for each extracted term. The term

weights in the current document depend on the terms in the previ-

ous documents, so they have to be calculated incrementally. As a

result, there is a large number of different terms, which leads to a

high space complexity. This problem becomes even more challeng-

ing if n-grams are used [189]. This is due to the fact that weighting

functions are based on counters that store sufficient statistics about

the terms. Thus, when weighting functions are used in data streams,

several counters have to be stored in order to provide item counts.

This requirement involves linear space complexity, something which

is prohibitive in data stream scenarios [13]. In the literature, we

can find solutions to this problem which consist in using only a part

of the document in order to reduce vocabulary size. For instance,

Brutlag and Meek suggest using only email headers when extracting

keywords [148], while HaCohen-Kernel suggests extracting keywords

only from abstracts [190]. There are, however, two drawbacks asso-

ciated with this kind of solutions. The first one is that important

semantic information can be missing if large portions of the docu-

ment are ignored [191]. The second drawback is that they consider

only exact solutions, that is, exact term counts, something which

eventually leads to the complexity problems we have mentioned.

For that reason we conclude that approximate solutions that use

sublinear space are necessary when dealing with data streams [192].
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In data stream scenarios, data elements are analysed only once and

are not stored for future reference. There is a growing need to de-

velop new techniques to cope with high-speed streams and deal with

the space requirements we have discussed. Problems studied in this

context include frequency estimation and top-k queries, among oth-

ers [192]. Applications of such techniques include network traffic

monitoring, network intrusion detection, sensor networks, fraudu-

lent transaction detection or financial monitoring [193]. The earliest

streaming algorithms to solve this type of queries can be traced back

to the works of Munro and Paterson [194], who provided an anal-

ysis of the computational requirements of selecting and sorting in

data streams, and Misra and Gries, authors of the Frequent algo-

rithm [195]. The interest in streaming algorithms was boosted by

some influential papers in the late 90s, such as the work of Alon et al.

on the space complexity of approximating frequency moments [196].

Algorithms for frequency estimation and top-k lists in data streams

can be divided into two main families: counter-based and sketch-

based algorithms. Counter-based algorithms require less memory,

but provide frequency estimation only for the most frequent ele-

ments, while sketch-based algorithms estimate the frequency of all

the items. In this chapter, we opt to use sketch-based algorithms in-

stead of counter-based ones because, as previously mentioned, they

can estimate the frequency of all the elements, not only the most fre-

quent ones, which is important for estimating weighting functions.

Count-based and sketch-based algorithms are discussed in Subsec-

tion 7.2.1.

The use of Information Retrieval weighting functions to process non-

batch textual data sources such as data streams is not new. For ex-

ample, Brants et al. presented a model for new event detection based

on incrementally updating term weights that allows using different

TF-IDF models for different data sources [197]. This idea is also

explored in the work of Kumaran and Allan, who propose a system

for new event detection that makes use of incremental TF-IDF [198].

In the more recent work of Abe and Tsumoto [199], TF-IDF is used

for calculating the importance of terms in order to incrementally

detect temporal trends.
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The main contribution of this chapter is a solution based on sketch-

ing techniques to efficiently approximate the TF-IDF and BM25

weighting functions in data stream scenarios, as well as to maintain

a list of the top-k most relevant terms for each document category.

We apply our proposal to two scenarios. The first one is online key-

word extraction, i.e., assigning the most relevant keywords to each

document from a stream. The second one is online construction of

word clouds, which consists in maintaining a list of terms that rep-

resent each category from the data stream as new documents arrive.

In our experiments, we compare the estimates of term weights ob-

tained with our method with the results obtained using exact counts,

using two standard Text Mining and Information Retrieval datasets.

We also analyse and compare different configurations of the sketches

used for top-k lists and frequency estimation.

This chapter is partially based on the following publications in which

the author has participated:

• Baena-Garćıa, M.; Carmona-Cejudo, J.M.; Castillo, G.,

Morales-Bueno, R.: “Term Frequency, Sketched Inverse Docu-

ment Frequency”, 11th International Conference on Intelligent

Systems Design and Applications (ISDA) [200]

• Carmona-Cejudo, J.M.; Baena-Garćıa, M.; Castillo, G.,

Morales-Bueno, R.: “Online Calculation of Word-Clouds

for Efficient Label Summarization”, 11th International Con-

ference on Intelligent Systems Design and Applications

(ISDA) [201]

The rest of this chapter is organized as follows. In Section 7.2, we

review the theoretical basis of approximate computation of statis-

tics in data streams using sublinear space. In Section 7.3, we present
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our approach to estimation of weighting functions. Finally, in Sec-

tion 7.4, we empirically evaluate our approach in two applications:

keyword extraction and word-cloud summarization.

7.2 Background

7.2.1 Problem definitions and variations

As we have seen in Section 7.1, in this chapter we wish to approxi-

mate item counts using sublinear space. Moreover, we are interested

in obtaining an approximate list of the top-k most relevant terms for

each document or category. In this section, we formalize the tasks

of finding frequent items, top-k items and item count estimation.

These problems are important in themselves and as subroutines of

more advanced computations. In fact, they are basic components

of our proposal for calculation of approximate weighting functions,

presented in Section 7.3.

The frequent items problem consists in processing a data stream to

find all the items appearing more than a given fraction of the times.

It is one of the most studied problems in data stream mining [202].

The exact frequent items problem is defined as follows:

Definition 7.1. Given a stream S of m items 〈e1, e2, . . . , em〉, the

frequency of an item e ∈ S is f(e) = |{ej ∈ S : ej = e}|. The exact

φ-frequent items is the set {e ∈ S : f(e) > φm}.

Here, φ is a real number that represents the ratio of the frequency of

a given term with respect to the total number of items m (φ ≤ 1).

This definition has an inherent limitation in streaming scenarios.

Any streaming algorithm that solves this problem must use a linear

amount of space with respect to the number of different items, as

shown in the work of Cormode and Muthukrishnan [202]. When

handling data streams, approximate versions of the problems are

preferred if they can be solved using sublinear space. For that rea-

son, an approximate version is defined based on error tolerance:
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Definition 7.2. Given a stream S of m items, the ε-approximate

frequent items problem consists in finding a set F of items so that

for all items e ∈ F , f(e) > (φ − ε)m, and there is no e /∈ F such

that f(e) > φm.

Note that the exact φ-frequent items problem is a particular case

of the approximate function where ε = 0. Henceforth, when we use

the expression frequent items we refer to its ε-approximate version.

We encounter different alternative problem definitions in the litera-

ture concerning the top-k problem [203]. The definition of the exact

problem is straightforward: the top-k elements in a stream are the

k elements with the highest frequencies. The exact solution to this

problem would require complete knowledge of the frequencies of all

elements, leading to linear space. Consequently, several relaxed vari-

ations have been proposed. The FindCandidateTop(S, k, l) problem

consists in finding l elements containing the top k elements (l > k),

without guarantees about the ranking of the remaining elements.

The FindApproxTop(S, k, ε) consists in finding a list of k elements

〈e1, . . . , ek〉 with a frequency f(e) > (1 − ε)f(ek) for every element

e in the list, where ε is the error threshold defined by the user and

f(E1) ≥ f(E2) ≥ . . . ≥ f(E|A|). |A| i the number of different items,

and Ek is the element with the k-th rank.

A related problem is the estimation of item frequency:

Definition 7.3. Given a stream S of m items, the frequency es-

timation problem consists in processing a stream so that, given

any element e, an approximate frequency f̂(e) is returned satisfying

f̂(e) ≤ f(e) ≤ f̂(e) + εm.

There are two main families of algorithms for finding frequent and

top-k items. The first one is counter-based algorithms, where a sub-

set of items is kept and monitor counts associated with each of the

items are used. One of the first counter-based algorithms is the

aforementioned Frequent algorithm, originally proposed by Misra

and Gries [195]. This algorithm outputs a list of top-k elements

without guarantees on frequency estimations. Another simple and
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well-known counter-based algorithm is Lossy Counting, proposed by

Manku and Motwany [204], which periodically deletes elements with

an estimated low frequency. The Space Saving algorithm also be-

longs to the counter-based family. This algorithm ensures that no

false negatives are kept in the top-k list (although it allows for false

positives). Space Saving is less demanding on memory than other

counter-based algorithms [192]. A refinement of this algorithm that

incorporates elements from sketch-based algorithms is described in

the work of Homem and Carvalho [205].

The second class of algorithms are the sketch-based ones. Sketch-

based algorithms are able to provide frequency estimations for all

elements in the stream, not only for the most frequent ones [206].

Each element is hashed into the space of counters using a family of

hash functions, and the counters are updated for every hit of this

element [192]. The disadvantage with respect to counter-based al-

gorithms is that more memory is needed, since a big enough number

of counters has to be used to minimize hash collisions. Two promi-

nent examples of sketch-based algorithms are Count-Sketch [207]

and Count-Min Sketch [202], both of them based on maintaining

a collection of hash functions that map each element to a counter.

Both algorithms are explained in depth in Subsection 7.2.2.

7.2.2 Sketch-based techniques

In the context of stream mining algorithms, a sketch may be defined

as a matrix data structure which represents a linear projection of the

input. This linear projection is implicitly defined by a set of hash

functions. Sketch algorithms are designed to solve the frequency

estimation problem, although they can also be applied to the top-k

items problem, using a heap-like structure, as shown in the work of

Charikar et al [207].

A sketching algorithm consists of three elements: i) a matrix data

structure that summarizes the stream using a linear projection of

the input; ii) an update procedure which modifies the structure each
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time a new element arrives, and iii) a set of queries that the struc-

ture supports and their associated procedures (e.g. the sum of the

elements, their average, variance, or extreme values).

There are different sketching models. Amongst them, there are

frequency-based sketches, such as Count-Min Sketch and Count-

Sketch, which are compact summary data structures used to com-

pute the frequencies of all items in the input stream. We now pro-

ceed to describe both algorithms, and show that the Count-Min

Sketch has better space and time properties.

The first algorithm is the Count-Sketch, proposed by Charikar et

al [207]. A Count-Sketch with parameters (w, h), where h is the

height and w is the width, comprises the following elements:

• Data structure: a two-dimensional array C of counters with

h rows of length w. Each row rj is associated with two hash

functions: hj that maps the input domain U = {t1, t2, . . . , tn}
onto the range {1, 2, . . . , w}, and gj , which maps input items

onto {−1,+1}.

• Update procedure: At the beginning, the entire sketch array

is initialized with zeros. Whenever an item i arrives, hj(i) is

computed in row j for 1 ≤ j ≤ h, and the value of C[j, hj(i)]

is incremented by gj(i) in the sketch array.

• Estimation procedure: let A be an array of n counters.

Each A[i] registers the number of appearances of the ti ∈ U

element in the stream. The estimate of the counter A[i] is

calculated as:

Â[i] = µ 1
2
(gj(i)C[k, hk(i)]), i ≤ j ≤ h (7.1)

where µ 1
2
(x) represents the median of x. The total space used by

the algorithm has complexity O( 1
ε2
log 1

δ ), while the complexity asso-

ciated with the time per update is O(log 1
δ ) [207].

The second sketch-based algorithm is Count-Min Sketch, which is

the one we have used in our proposal because of its better space
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and time properties. It was proposed by Cormode and Mathukrish-

nan [202] and comprises the following elements:

• Data structure: same as in Count-Sketch except for the hash

functions g, which are not used. See Figure 7.1.

• Update procedure: initially the entire sketch array is initial-

ized with zeros. Whenever an item i arrives, hj(i) is computed

for each row, and the value of C[j, hj(i)] is incremented by one

in the sketch array. Therefore, processing each item takes time

O(h).

• Estimation procedure: the estimate of the counter A[i] of

a given item i in the input stream is:

Â[i] = minkC[k, hk(i)] (7.2)

The following Theorem is proven in the aforementioned work of Cor-

mode and Muthukrishnan [202]:

Theorem 7.4. The Count-Min Sketch algorithm uses space O(1
ε log

1
δ )

with update time of O(log 1
δ ) per each update and query operation,

and estimates the frequency of element i (A[i]) by means of an es-

timate Â[i] such that A[i] ≤ Â[i] and with probability at least 1 -

δ:

Â[i] ≤ A[i] + ε||A||1. (7.3)

Recall that A represents the vector of frequencies. It can be proven

that in order to get an ε approximation with probability δ we need

width = e/ε and height = log(1/δ) [202], where e is the base of

the natural logarithm. Therefore, to select the sketch size, we have

to choose a given ε and δ. From these equations we observe that

the algorithm has a space complexity of O(1
ε log

1
δ ) regardless of the

vocabulary size. That is, once the sketch size is fixed for a given

ε and δ, the space complexity is sublinear. The same is true for

update and estimation time.
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Figure 7.1: Count-Min Sketch structure, with w = 6 and d =
4. When a new item i arrives, for each row r of the structure
the k-th element (where k = hr(i)) is selected and its value is

incremented

The space can be further reduced when items follow a Zipf distribu-

tion, which is usually the case in natural language. A Zipf distribu-

tion with parameter z has the property that the relative frequency

of the i-th most frequent item is given by fi = cz
iz , where cz is a scal-

ing constant. If the data follow a Zipf distribution with parameter

z, the following Theorem holds:

Theorem 7.5. Using a Count-Min Sketch, the space required to

answer point queries with error ε||A||1 with probability at least 1 - δ

has complexity:

O(
1

εmin{1,
1
z
}
ln

1

δ
) (7.4)

The proof of Theorem 7.5 is also provided in the work of Cormode

and Mathukrishnan [202]. Given these guarantees, it is obvious that

the Count-Min Sketch represents a significant improvement over

previous sketch-based model such as Count-Sketch, which has an

O(ε−2) space complexity with respect to ε, while Count-Min Sketch

has O(ε−1). These properties make Count-Min Sketch a suitable

approach for approximate term count estimation in sublinear space.

Let us now move on to our approach for approximating weighting

functions in sublinear space using the Count-Min sketch, which rep-

resents the main contribution of this chapter.
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7.3 Approximate calculation of weighting func-

tions using sketches: TF-SIDF and SBM25

As seen in Section 7.1, two of the most popular functions in Infor-

mation Retrieval are TF-IDF and BM25, for which the importance

of a term is proportional to the number of times it appears in the

document, and inversely proportional to the number of documents

in which that term appears. In this section, we present the main

contribution of this chapter: a method for approximating weighting

functions using sketches, which we call TF-SIDF (for calculating

TF-IDF) and SBM25 (for BM25).

7.3.1 Previous definitions

Let us first provide some definitions that we will need afterwards.

Let U = {t1, t2, . . . tn} the set of different observed terms (the vo-

cabulary). The size of U is denoted as n. This set is expanded when

a new term is observed. Let D = {d1, d2, . . . , d|D|} be a stream

of documents. Each document d ∈ D contains a list of |d| terms〈
w1, w2, . . . , w|d|

〉
. Note that each term can appear multiple times

in a document. We can define f(ti, dj) = |{w ∈ dj : w = ti}| as the

number of times ti appears in the document dj . For a given docu-

ment dj and a term ti the term frequency TF(ti, dj) is the number of

times the term ti appears in the document dj divided by the length

of the document:

TF(ti, dj) =
f(ti, dj)

|dj |
(7.5)

Let us also define df(ti) as the number of documents where ti ap-

pears: df(ti) = |{d ∈ D : ti ∈ d}|. For a given term ti, the inverse

document frequency IDF(i) is the number of documents divided by

the number of documents containing this term:

IDF(ti) = log
|D|
df(ti)

(7.6)
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The TF-IDF weighting function gives a higher weight to a term in

a document if it appears frequently in that document and rarely

in the others [10]. TF-IDF combines term frequency and inverse

document frequency. For a given document dj and a term ti, the

term frequency-inverse document frequency TF-IDF(i, j) is defined

as follows:

TF-IDF(ti, dj) = TF(ti, dj)IDF(ti) (7.7)

Regarding the BM25 function, it is computed as follows:

BM25(ti, dj) =
3 · f(ti, dj)

f(ti, dj) + 0.75 + 2.25·|D|
avgdl

· log |D| − df(ti) + 0.5

df(ti) + 0.5

(7.8)

where avgdl is the average document length and the other terms

have the same meaning as in Equations 7.5 and 7.6.

In the next Subsection, we show how these weighting functions can

be adapted for sketch-based approximate calculation.

7.3.2 Proposed approach

For computing the TF-IDF score of a term in a document, Equation

7.7 is used. If this formula is applied in an incremental setting,

with documents arriving one after another, we first need to extract

information from the current document (dj) in order to obtain the

TF(ti, dj) and then to process information from all the previously

seen documents d1, . . . , dj in order to compute the IDF(ti). Thus,

we need to maintain a counter for each different term that has been

extracted from the documents seen so far, which results in linear

complexity with respect to the vocabulary size.

Given the space complexity of storing exact counts of how many

times each term has occurred, we propose to use a Count-Min Sketch

to approximate these counts. This Count-Min Sketch is thus used

to get an approximation of the times each term has appeared in the
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document, in order to provide an approximate value for the IDF

factor.

We call our solution TF-SIDF (Term Frequency - Sketched Inverse

Document Frequency). This approximation of TF-IDF is calculated

as follows:

TF-SIDF(i, j) = TF(i, j)log
|D|
d̂f(ti)

(7.9)

where d̂f(ti) represents the approximation of df(ti) obtained by the

Count-Min Sketch algorithm.

We can employ the same strategy for calculating different weighting

functions. For example, the sketched version of BM25, SBM25 , is

calculated as follows:

SBM25(i, j) =
3 · f(ti, dj)

f(ti, dj) + 0.75 + 2.25·|D|
avgdl

· log |D| − d̂f(ti) + 0.5

d̂f(ti) + 0.5

(7.10)

Therefore, the TF-SIDF / BM25 system comprises the following

elements:

• An exact counter D which stores the number of documents

seen so far

• A Count-Min Sketch structure that approximates df(t) for ev-

ery term t in the vocabulary.

• In the case of BM25, we need a real number avgdl that main-

tains the average document length.

The TF term is independent for each document (it only depends

on the current document), so no information associated with it has

to be permanently stored. That is, the TF information can be

discarded once it has been used for each document. Every time a
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document arrives, the sketch used to calculate the IDF term has to

be updated.

After describing the elements that comprise our approach for ap-

proximate attribute weighting, we provide an empirical evaluation

in the next Section.

7.4 Experimentation

We have carried out experiments for two different applications: on-

line keyword extraction and online word clouds construction. In

the first application, we validate the feasibility of using sketches for

weighting function calculation, using the TF-IDF function. In the

second application, we add the BM25 function for the calculation of

word clouds.

Our hypothetical scenario consists of an unrestricted stream of text

documents. For each document, we want to extract the most rel-

evant words with respect to the past documents, using sketches to

reduce the space complexity.

7.4.1 Experimental setup and evaluation measures

In our experiments, we compare the results using several sketch con-

figurations (i.e. height and weight) with the results using exact coun-

ters. We force the size of the sketch to be smaller than the number of

different terms, because the objective is to reduce space. Therefore,

sketches larger than the space needed for storing the exact counts

would not make sense. We can define the compression reduction of a

given sketch Cw,h of width w and height h with respect to a dataset

D as compression ratio(sw,h, D) = w×h/||D||0, where ||D||0 repre-

sents the size of dataset D in number of distinct terms (that is, the

vocabulary size). The compression ratio is, therefore, a real value

that ranges between 0 (when the sketch has size 0) and 1 (when the

sketch has the same number of counters that would be necessary to

store exact counts for every term in the dataset).
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For this reason we have previously calculated this number of counters

and have added the restriction that the total size of the sketches has

to be < 3
4N .

In our experiments, we measure the performance of different sketch

configurations concerning memory size. In order to measure this

performance, we have used two different measures: the recall and

the Spearman distance. The recall is defined as the size of the over-

lapping between two top-k lists:

recall(Lsk, Lex) =
|Lsk ∩ Lex|

k
(7.11)

where Lsk and Lex are the top-k terms calculated by the sketched

and exact versions of the algorithms, respectively, and k is the num-

ber of top-k terms (in our case, we have opted to use k = 10).

This measure identifies the number of co-occurrences for both lists,

without taking into account the order of the lists.

On the other hand we are also interested in the order of the lists,

since it affects the order of the keywords and the representation

of the word cloud. To this end, we use the Spearman distance

(∆sp) [208] between the top-k terms:

∆sp(Lsk, Lex) =
1

k(k + 1)

∑
i∈D
|pos(i, Lsk)− pos(i, Lex)| (7.12)

where D is the set of terms in Lsk ∪Lex, and pos(i,L) is the position

at which i appears in L, or |L|+ 1, if i does not occur in L.

The rationale behind this kind of measures over top-k lists is that

we are not interested in the performance for all of the terms, but

only in the most relevant ones, so the ranking of the elements is an

important factor. Therefore, we include only the most relevant terms

in our evaluation measures. As a final indicator of the performance

of configuration for a given dataset, we use the average values of

these measures over the documents.
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Dataset Number of documents Number of terms
Reuters 9159 206543
PMC 212374 26903638

Table 7.1: Dataset statistics in number of documents and dif-
ferent terms

Additionally, we need a measure of the correlation between size re-

duction obtained by the sketches and performance with respect to

the exact version. To this end, we use the Spearman correlation

coefficient (not to be confused with the Spearman distance), which

measures how well the relationship between two variables can be

described by a monotonic function [209]. The relationship does not

have to be linear, as is the case with the Pearson correlation coef-

ficient. More specifically, it measures the correlation between the

element ranks. The Spearman correlation coefficient between lists

X and Y can be calculated as follows:

ρ(X,Y ) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(7.13)

where xi is the rank of Xi and x̄ is the average rank of the elements

in X.

Finally we have used the Friedman test [55], introduced in Subsec-

tion 2.9.2 to check if there is statistically significant difference in the

performance of the models presented in Subsection 7.4.4.

7.4.2 Datasets

We have used two datasets for our experimental evaluation: Reuters

and PMC, both of them presented in Subsection 2.9.3. We have

preprocessed these initial datasets. First, the original XML docu-

ments in the dataset were parsed in order to extract raw text from

their titles, abstracts and bodies. The raw text was converted into

lower case, and stop-words were deleted, as well as words with a

length of only one or two characters. Numbers and other non-

alphabetical symbols have also been deleted. Stemming has been
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applied to the remaining words, using the Porter algorithm [210].

Finally, the dataset has been reordered chronologically in order to

simulate the real-world scenario. We show the statistics of these

datasets in Table 7.1.

7.4.3 First application: online keyword extraction

In our first application, keywords are extracted using a term-weighting

scheme that assigns higher weights to terms that are more relevant

according to the TF-SIDF function.

When a document arrives, the weighting function is calculated for

each of its terms, and the top-k terms with the highest value are se-

lected as keywords.We set k = 10. We use the approximate weight-

ing functions TF-SIDF and compare the obtained keywords with

the keywords we obtain when using exact weighting function. As

evaluation measures, we use the Spearman distance and recall to

compare the exact list of keywords and the list of keywords obtained

by different Count-Min Sketch structures, with different widths and

heights.

In Figures 7.2 and 7.3, we show the Spearman distance and recall

results for different compression ratios and sketch heights, for the

Reuters and PMC datasets, respectively. We have calculated the

Spearman correlation coefficient between the compression ratio and

the Spearman distance for the Reuters dataset, obtaining a coef-

ficient of -0.999 for height = 2, -1 for height = 5 and -0.999 for

height = 10, which indicates a very high inverse correlation. We

have also calculated the Spearman correlation between the com-

pression ratios and the recall values, obtaining as a result 0.999, 1

and 0.999 for height = 2, height = 5 and height = 10 respectively.

Hence, it is clear that bigger compression ratios lead to worse re-

sults. This is an expected result, since smaller sketches have more

hash collisions, which results in more errors. The same applies to

the PMC dataset, where the Spearman correlation coefficients be-

tween the Spearman distances and the size reductions are -1 for all

heights, and 1 between recall and size reductions, showing a perfect
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Reuters PMC
Size reduction h = 2 h = 5 h = 10 h = 2 h = 5 h = 10
0.025 0.7312 0.7538 0.7773 0.619 0.7204 0.8213
0.05 0.6844 0.7084 0.7396 0.4867 0.5983 0.6992
0.075 0.6548 0.6839 0.7142 0.4059 0.5162 0.6231
0.1 0.63 0.6651 0.692 0.3497 0.4556 0.5636
0.125 0.6107 0.6457 0.676 0.3077 0.4043 0.5168
0.15 0.5947 0.6317 0.6653 0.2729 0.3676 0.4762
0.175 0.5826 0.6176 0.6543 0.2429 0.3322 0.4428
0.2 0.5657 0.6046 0.6418 0.2191 0.3018 0.4112
0.225 0.5511 0.5955 0.6336 0.1999 0.2776 0.3848
0.25 0.5395 0.5821 0.624 0.1831 0.2524 0.3574
0.275 0.528 0.5706 0.6136 0.1688 0.2347 0.3369
0.3 0.5177 0.5642 0.6068 0.1558 0.2172 0.3172
0.325 0.5038 0.554 0.5974 0.1453 0.2031 0.2964
0.35 0.4966 0.5452 0.5923 0.1343 0.1857 0.2815
0.375 0.4865 0.5398 0.5845 0.1234 0.1705 0.2634
0.4 0.4785 0.5284 0.5773 0.1161 0.1581 0.2493
0.425 0.4788 0.5255 0.5777 0.1073 0.1469 0.2376
0.45 0.4599 0.5116 0.5654 0.1042 0.1345 0.222
0.475 0.4512 0.5063 0.5588 0.09982 0.1271 0.2095
0.5 0.4434 0.5013 0.5519 0.09113 0.117 0.1966
0.525 0.4358 0.4947 0.5451 0.08601 0.109 0.1864
0.55 0.4262 0.4856 0.5389 0.08321 0.1026 0.177
0.575 0.4194 0.4777 0.5349 0.07743 0.09411 0.1685
0.6 0.4179 0.473 0.5305 0.0747 0.08938 0.1603
0.625 0.4064 0.4673 0.5238 0.07013 0.08359 0.1484
0.65 0.3961 0.462 0.519 0.06679 0.0778 0.1445
0.675 0.3942 0.4524 0.5154 0.06332 0.07443 0.1335
0.7 0.3875 0.4458 0.5093 0.0604 0.06871 0.128
0.725 0.3778 0.4427 0.5056 0.05775 0.06453 0.1199

Table 7.2: Spearman distance between the exact top-k words
(k=10) and its approximate equivalent calculated using a sketch
with a given compression ratio with respect to the exact number
of counters (shown in the first column), for the Reuters and PMC
datasets. Sketch configurations with height 2, 5 and 10 have been
used. The results show that reducing the size results in worse
results, whereas smaller heights result in improving the distance

non-linear correlation (see also Tables 7.2 and 7.3). If we compare

the results for the Reuters and PMC datasets, we see that better re-

sults are obtained with the latter. This indicates that our approach

is more beneficial for bigger datasets, where the need to reduce space

is more pressing.

The second observation is that better results are obtained when

using sketch configurations with smaller heights, that is, with fewer

hash functions. We have conducted a Friedman test in order to check

if there is a statistically significant difference between using height =
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Reuters PMC
Size reduction h = 2 h = 5 h = 10 h = 2 h = 5 h = 10
0.025 0.473 0.4548 0.4325 0.5011 0.4126 0.3358
0.05 0.5139 0.4932 0.4675 0.6088 0.518 0.4321
0.075 0.5384 0.5163 0.4906 0.6743 0.5848 0.4975
0.1 0.5583 0.5304 0.5092 0.7194 0.6338 0.5465
0.125 0.5749 0.5485 0.5241 0.7532 0.6747 0.5845
0.15 0.5863 0.5599 0.5329 0.781 0.7048 0.6167
0.175 0.5956 0.5714 0.5425 0.8057 0.7329 0.6442
0.2 0.6095 0.5805 0.5516 0.8239 0.7574 0.6691
0.225 0.6202 0.5888 0.5599 0.8402 0.777 0.6905
0.25 0.629 0.5982 0.566 0.8537 0.7966 0.7122
0.275 0.6369 0.6074 0.5746 0.8654 0.812 0.7294
0.3 0.6436 0.6126 0.5806 0.8758 0.8263 0.7445
0.325 0.6536 0.6192 0.5877 0.8844 0.8375 0.7614
0.35 0.6596 0.6267 0.592 0.8932 0.851 0.7734
0.375 0.6664 0.6309 0.597 0.9017 0.863 0.7875
0.4 0.6718 0.6387 0.6034 0.9076 0.8739 0.7993
0.425 0.6707 0.641 0.6027 0.9149 0.8828 0.8087
0.45 0.685 0.6507 0.612 0.9173 0.8925 0.8213
0.475 0.6906 0.6563 0.6179 0.9218 0.8982 0.8308
0.5 0.6962 0.6571 0.6225 0.9282 0.9064 0.8411
0.525 0.7013 0.6645 0.6272 0.9324 0.913 0.8497
0.55 0.7085 0.6697 0.6325 0.9343 0.9185 0.858
0.575 0.7125 0.6748 0.6361 0.939 0.9251 0.8644
0.6 0.714 0.6792 0.638 0.9407 0.9294 0.8716
0.625 0.7218 0.6825 0.6421 0.9449 0.9332 0.8807
0.65 0.7285 0.6862 0.647 0.9473 0.9385 0.884
0.675 0.7307 0.6942 0.6487 0.9505 0.9406 0.8926
0.7 0.7351 0.6987 0.653 0.9526 0.9461 0.8971
0.725 0.7406 0.7 0.6568 0.9548 0.949 0.9038

Table 7.3: Recall between the exact top-k words (k=10) and
its approximate equivalent (See Table 7.2)

2, height = 5, and height = 10. The null hypothesis that there is no

difference among the rankings in the results produced by these three

configurations is rejected with a p-value of 2.2437×10−13 in both

cases under a significance level of α = 0.01. This is also confirmed

in the case of the PMC dataset, where the null hypothesis is rejected

under α = 0.01, obtaining a p-value of 2.5437×10−13. This shows

that it is recommendable to use sketch configurations with a small

height, that is, with few hash functions. This is explained by the

properties of the Count-Min Sketch shown in Section 7.2.2. We are

primarily interested in elements with low counts, since the values

we estimate with sketches are in the denominator of the IDF term.

Error is proportional to the 1-norm of the count array of all observed

elements (the vocabulary size), so elements with large counts will
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have lower errors. Error depends on width (more precisely, ε =

e/width with probability 1−δ), whereas δ depends on the number of

hash functions (the height). Therefore, when working with elements

having small counts it is desirable to use sketches with a width as

big as possible, at the expense of height, as this reduces the expected

error.

In Figure 7.4, we show the evolution of the Spearman distance using

moving averages and sketches of sizes corresponding to a compres-

sion ratio of 0.3, 0.5 and 0.7, for the Reuters and PMC datasets.

Initially, there is a better term coincidence, since few hash collisions

have taken place. Later collisions result in a descending accuracy

trend that nevertheless ends up stabilizing. This shows that the

approximation is consistent.

7.4.4 Second application: word cloud summarization

In the second application, our hypothetical scenario consists of a

stream of categorized documents, where each document d has an

associated category from a set of categories. Our problem consists

in summarizing the contents of each of these categories by means of

word clouds, using only the most relevant terms of the documents.

The objective is to provide an approximate solution to this problem

using Count-Min Sketch in order to reduce the space requirements.

The lists of words to be used in the word cloud for each category is

calculated as follows. For each arriving document d, the list of its

top-k words is obtained as in the first application (Subsection 7.4.3),

setting k = 10. Such elements are marked as keywords for the

document. We consider the terms that have been selected the most

times as keywords in documents belonging to a given category to

be the most representative terms for that category. In other words,

in the exact version of the problem a counter ccategory,t has to be

maintained for each category and term combination (category, t).

This counter is used to count how many times a term has been

marked as a keyword in documents belonging to that category. The
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Figure 7.2: Evolution of the Spearman distance and recall be-
tween the exact and approximate top-k words for different sketch
sizes for the Reuters dataset. The x axis represents the compres-
sion ratio of the sketches with respect to the number of coun-
ters needed for exact calculation, while the y axis represents the
Spearman distance. Three graphics are shown, for heights 2, 5,
and 10 respectively. As explained in the paper, lower heights
bring better results (see Friedman test results). The size of the
sketch is inversely correlated with the Spearman distance, yield-
ing correlation factor close to -1 (see the text for a more detailed

explanation)
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Figure 7.3: Evolution of the Spearman distance and recall be-
tween the exact and approximate top-k words for different sketch
sizes for the PMC dataset. The results show the same tendency

as in the Reuters dataset, depicted in Figure 7.2
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Figure 7.4: Learning curve for the Reuters and PMC datasets.
The lines represent the evolution of the Spearman distance (y
axis) for sketches of different sizes (indicated in the legend). The x
axis represents the number of documents analysed until now. The
first documents show a better performance, something that could
be expected given the absence of hash collisions at the beginning.
The results stabilize and even improve as time goes by. This
graphic uses moving averages over the Spearman distance with a
moving window of width 1000 for Reuters and 50000 for PMC
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terms with the highest counter in a category will be used as its

representatives in the word cloud.

In the approximate version, all the needed counters are approxi-

mated using the Count-Min Sketch algorithm, in order to reduce

the space complexity of the exact version. Sketches are used for two

different tasks in our approach:

• Approximation of weighting functions (frequency estimation

problem) for obtaining the keywords of a document.

• Approximation of the top-k problem to select the most fre-

quent keywords in each word cloud corresponding to a cate-

gory (top-k problem).

We consider three different options for the top-k calculation:

1. Using a different sketch to calculate the top-k for each label.

An additional sketch is used for weighting function calculation.

We call this configuration NSketch.

2. Using a shared sketch to calculate the top-k for each label.

To this end, we have used the following method: the label

is concatenated to the beginning of each term as a prefix, to

avoid confusions when the same term appears in different la-

bels. Again, different sketch is used for weighting function

calculation. We call this configuration 2Sketch.

3. Using the same sketch for both weighting function calculation

and top-k calculation for all labels. We call this configuration

1Sketch.

The memory requirements are different for each of these options. If

we define a sketch S of width w and height h, its size |S| will be w ·h.

If we use a single sketch to calculate the weighting functions and the

top-k words, w · h counters will be needed. If we use a sketch for

the top-k problem for all labels and a different sketch for weighting

function calculation, 2w ·h counters will be necessary. But if we opt
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Figure 7.5: Comparison of Spearman distance and recall evo-
lution for the three models (Sketch height=2), using TFIDF as
weighting function and PMC as dataset. We see that the opti-
mal strategy is to use configuration 2Sketch, a sketch for weight-
ing function calculation, and another one shared between the la-
bels for top-k calculation. The best results are obtained for the
2Sketch configuration, because it is efficient in space while avoid-

ing many collisions. See text for more details.
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Figure 7.6: Comparison of Spearman distance and recall evolu-
tion for the three models (Sketch height=2), using BM25 (PMC
dataset). The results are similar to those depicted in Figure 7.5

for the TF-IDF function
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for using a different sketch for each label, (1+ |labels|) ·w ·h counters

in total will be necessary, where |labels| is the number of labels.

For comparing the proposed models we use the Spearman distance

and recall of the top-k elements with respect to the exact calcu-

lation. We use k = 10 in all the experiments. The comparison of

the three proposed models is graphically depicted in Figures 7.5 and

7.6. All of them show the comparison for a given measure (Spearman

distance or recall) for TF-IDF and BM25 with respect to the com-

pression ratio. The figures show that the best results are obtained

with the 2Sketch model: one sketch for calculating the weighting

function, and another one for top-k. We have carried out a Friedman

test in order to check if there is enough statistical evidence for this

difference. The obtained p-values are 9.12×10−4 for both TF-IDF

graphics, and 3.36×10−4 for the BM25 graphics. These results re-

ject the null hypothesis under a significance level of α = 0.01, which

implies that there is a statistically significant difference. 2Sketch

yields better results because, on the one hand, NSketch is very in-

efficient in space since small sketches have to be employed so as not

to use up too much memory, which rapidly causes saturation. On

the other hand, 1Sketch causes big errors in the top-k calculation,

given that sketches are more likely to be more accurate for greater

item counts. For these reasons, 2Sketch is found to be the optimal

configuration: it is memory-efficient while alleviating the problem

of hash collisions that lead to errors in the top-k calculation.

See Figures 7.7, 7.8 and 7.9 for an example of word clouds for three

specific journals. The graphics were produced by the online tool

Wordle1 using the terms and frequencies provided by the BM25

function.

1http://www.wordle.net
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Figure 7.7: Word cloud for BMC Medical Education, obtained
using SBM25 function. The most relevant terms (that is, the ones
that are represented with a larger font size) are terms related
to education, such as tutor, curriculum, clerkship, appraise or
faculty, together with terms from the domain of medicine, such
as physician or pediatrician. Note that the terms appearing in this
graph are the result of applying the Porter stemming algorithm.

Figure 7.8: Word cloud for JMIR, using SBM25 weighting. As
expected, the most relevant words correspond to Internet-related
terms, such as Internet, e-Health, web, site, online or telemedicine.
Note that the terms have been stemmed using the Porter algo-

rithm.
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Figure 7.9: Word cloud for HBP Surg, using SB25 weighting.
The most relevant terms correspond to hepatopancreatobiliary

surgery, such as liver, pancreatic or hepatic.



Chapter 8

STFSIDF: Efficient

Online Feature Selection

for Categorization in Text

Streams

8.1 Introduction

As we have discussed, an important difficulty faced by text cate-

gorization applications is the inherently high dimensionality of the

datasets. In order to classify documents, the bag-of-words represen-

tation is commonly used, which means that words appearing in the

documents are used as classification features. Given the number of

possible words, it is necessary to select only a subset of the words as

attributes, in order to be able to learn with less computational cost

and to avoid overfitting problems resulting from high dimensionality.

A common approach is the application of weighting functions that

associate numeric values or weights to attributes according to their

relevance, selecting the words with the highest weight as attributes.

We introduced to topic of dimensionality reduction in Chapter 2.

173
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In this chapter we are in the data stream scenario. In data stream

scenarios, data instances arrive from a hypothetically infinite stream,

and the learning models have to be continuously updated. The

available space is also limited, and documents cannot be stored for

future reference. Sublinear algorithms are widely recommended in

text stream mining scenarios [211].

As we saw in Chapter 5, a particularity of data streams is concept

change [124]. The distribution of data changes over time, which

means that the most important attributes at a given moment might

not be the most important later on. This is especially problematic

for high-dimensional text streams. Incrementally updating the set

of features is necessary to maintain and improve the performance of

text classification, as pointed out by Katakis et al. [163]. In order

to dynamically change the classification attributes, the necessary

statistics for computing weighting functions have to be continuously

updated. In general, weighting functions such as chi-squared or Gini

index have the disadvantage that the observation of a given term

affects not only the weight for that term, but also for every term

in the vocabulary. This means that, in order to calculate weighting

functions, the weight of every word in the vocabulary has to be

updated each time a new document arrives. This is not a feasible

approach to feature space reduction in text streams, because of the

time complexity. For this reason, we need weighting functions that

minimize this problem.

An additional difficulty we face in the context of text streams is space

complexity, due to the fact that statistics have to be kept for each of

the terms that have appeared so far. For this reason, it is desirable

to work with algorithms that use sublinear space complexity, even

at the expense of controlled precision losses.

Therefore, there is a need for feature selection mechanisms able to

take into account changes in the relevance of attributes during text

data streams. Such mechanisms should be efficient in time and

space, given the computational restrictions of data streams. Works

on classifiers that accept a dynamic feature set are still rather scarce.

An initial approach was proposed by Katakis et al.[163], comprising
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two interconnected components: a) an incremental feature rank-

ing method using the chi-square weighting function, and b) an in-

cremental learning algorithm (based on Näıve Bayes) that accepts

dynamic feature spaces. A drawback of this approach is that the

weight for every term has to be recomputed for each new document.

Some partial solutions have been proposed, for instance reselecting

features periodically [164], or reelecting features only when missclas-

sifications occur [12]. See also Chapter 6. However, these solutions

are still expensive, since they still need many feature list recalcu-

lations, and, except in the proposal by Katakis et al., the feature

set is not always kept updated. Moreover, they involve large space

requirements given the vocabulary sizes in text streams, so they are

not suitable for data stream processing. Henceforth, it would be in-

teresting to have mechanisms for dynamic feature selection in data

streams with reduced space complexity, which do not need to recal-

culate all the weights continuously in order to maintain an updated

feature set.

In this chapter we propose such a mechanism for incrementally se-

lecting the most relevant attributes in text streams. To this end, we

propose the use of a modified version of TF-IDF which is able to ef-

ficiently maintain the updated weight of all the words, as well as the

use of approximate algorithms for frequency estimation. We present

the STFSIDF approach, based on the application of sketch-based

algorithms and Bloom filters in order to reduce the space needed for

the weighting function computation without significantly affecting

the performance of the classification algorithms.

The rest of this chapter is structured as follows. In Section 8.2 we

discuss the theoretical background and provide some relevant refer-

ences. We discuss weighting functions for attribute selection, show-

ing that the exact calculation and update of their values is unfeasible

in data stream scenarios, and then we discuss some approximate al-

gorithms for data streams. In Section 8.3 we explain our proposal

for weighting functions approximation, using the concepts from the

previous section. Finally, in Section 8.4 we provide the experimental

evaluation.
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8.2 Background

In this Section we present the main concepts used by our proposal

and provide relevant references to the literature. In Subsection 8.2.1

we deal with feature space reduction, and in 8.2.2 we explain the

approximate algorithms for data streams that we have used.

8.2.1 Feature selection in data streams with dynamic

feature spaces

A common strategy for dimensionality reduction of text data is se-

lecting the most relevant terms according to a given weighting func-

tion as classification features [212]. As we saw in Chapter 2, there

are many weighting functions in the literature, such as the document

frequency function, or functions originating from the Information

Theory area [10], for example Information Gain [213], Mutual In-

formation [214], Chi-square [213], DIA association factor [29], NGL

coefficient [215], relevancy score [216], odds ratio [213] or GSS coeffi-

cient [217]. An empirical comparison of several function is provided

in the work of Čehovin and Bosnić [218]. In general, these functions

capture the intuition that the best terms for a given category are the

ones distributed most differently in the sets of positive and negative

examples [10].

TF-IDF [219] is a different alternative which captures the same in-

tuition. For a given category cj and a term ti, the term frequency-

inverse document frequency TF-IDF(ti, cj) is defined as:

TF − IDF (ti, cj) =
f(ti, cj)

|cj |
log

|C|
|{c ∈ C : ti ∈ c}|

(8.1)

where f(ti, cj) is the number of appearances of term ti in the cate-

gory cj , C is the set of existing categories, and |c ∈ C : ti ∈ d| is the

number of categories in which the term ti appears.

All of these functions provide local weights, that is, weights with

respect to a given category. In order to obtain a global weight, the
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local values have to be aggregated [10]. As we mentioned in Sec-

tion 8.1, weighting functions in general have to be recalculated for

every term in the vocabulary every time a new document arrives.

Otherwise, it can occur that a term has a high weight at a given

time, and after that is not observed anymore. Its actual relevance

diminishes over time, but, since it is not updated, the term is still

associated with a high weight. We need functions that reduce the

number of necessary recalculations. TF-IDF has the advantage over

other functions that it can be easily modified to cope with this re-

quirement, as we will see in Section 8.3.

8.2.2 More approximate algorithms for stream sum-

marization: Bloom filters

In stream mining contexts it is necessary to maintain certain statis-

tics about the data. Nevertheless, the time and memory require-

ments of algorithms for streaming scenarios make it unfeasible to

use exact calculations, since this would necessarily involve linear

complexity, something which is not acceptable in streaming scenar-

ios, as discussed in the work of Papapetrou et al. [220].

For this reason, several efficient algorithms have been proposed for

approximating online statistics. Two important examples are Bloom

filters and sketches. In Chapter 7 we saw that sketch-based algo-

rithms are more adequate for function approximation than counter-

based algorithms.

There are several works that discuss the application of approximate

algorithms to text streams. See for example the work of Fung et

al. [221], which uses document and category summaries within a

similarity-based online multilabel classifier. Note that they use the

term sketch in a different sense than we do. A recent related ar-

ticle is the one by Goyal et al. [222], which uses the Count-Min

Sketch algorithm in order to compute semantic similarities between

word pairs. Ravichandran et al. [223] use hash functions for com-

pressing word-pair similarities in large text collections, while Leven-

berg and Osborne use approximate techniques for building language
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Figure 8.1: Schema of a simple Bloom filter structure. When
adding elem to set S, the positions φ0(elem), φ1(elem) and
φ2(elem) are set to 1 in the bits array. In order to check if
elem ∈ S the corresponding positions are checked. If all of them
are set to 1, the element is in the set. If there is a single i such

that φi(elem) = 0, the element is not in the set

models in [224]. Bloom filters have been applied to multilingual key-

word search in the context of cloud computing in the work of Pal et

al. [225].

In Chapter 7 we have already reviewed Sketch-based algorithms.

We now discuss Bloom filters. A Bloom filter is a space-efficient

probabilistic data structure that can be used to determine whether

an element belongs to a set S [226], and consists of a bit array b with

m bits, and k hash functions φ1, . . . , φk, each one of them mapping

an element into a position of the array with a uniform distribution.

The optimal value of k is given by k = m
n ln 2 [227], where n is the

number of inserted items. All the elements in b are initialized with

0.

Two operations are defined on a Bloom filter:

• add to bloom filter(bf, elem) adds element elem to the Bloom
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filter bf , in case that elem ∈ S. For each hash function φ,

b[φ(elem)]⇐ 1.

• bloom filter contains(bf, elem) checks if element elem be-

longs to the set S, using Bloom filter bf . In order to query

if an element elem is contained in S, all the corresponding

positions in b are checked (that is, for every hash function

φi ∈ {φ1, . . . , φk}, b[φi(elem)] is checked). If any of the cor-

responding positions is 0, the element does not belong to S.

That is,
∏k
i=0 b[φi(elem)] = 0⇒ elem /∈ S. If all the positions

are 1, nothing can be assured.

See Fig. 8.1 for a graphical depiction of this structure. A Bloom filter

may return false positives, but never false negatives. In spite of this

disadvantage, Bloom filters have a clear space advantage over other

data structures for representing sets that require the data items

themselves to be stored. Moreover, the operations related to Bloom

filters present a constant time complexity O(k), independently of

the number of elements in the set.

In the next Section we describe how we use sketch-based algorithms

and Bloom filters to approximate the TF-IDF weighting functions.

8.3 STFSIDF for online feature selection

In this section we present the main contribution of this chapter, the

STFSIDF approach for online attribute selection. First we explain

the use of TF-IDF for feature selection, then we describe the use

of approximate algorithms for approximating the TF-IDF weighting

function and finally we explain more formally our proposal.

8.3.1 TF-IDF for efficient incremental feature selec-

tion

Our strategy for selecting features for classification works a follows.

We keep a list qj for each category cj containing the top-k words
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with the highest relevance according to a weighting function. These

lists have to be permanently updated. In order to select the features

that the classifier is going to use, we use the union of the lists,
⋃
j qj .

As previously stated in Section 8.1, using weighting functions to

incrementally update the list of most relevant attributes has an in-

herent complexity problem, since, in general, the weights for all the

terms and categories have to be continuously updated. Some par-

tial solutions to this problem were presented in Subsection 6.2.2.

By contrast, in this chapter we propose using weighting functions

for which the number of recalculations of all the weights (complete

recalculations) can be minimized. More specifically, we propose the

TF-IDF weighting function since it allows us to reduce the number

of necessary complete recalculations.

The TF-IDF weighting function can be modified to satisfy this prop-

erty, by ignoring the |cj | term in Equation 8.1, and performing an

update of all the weights only when it is indispensable (see Sub-

section 8.3.3). This results in a reduction of the number of weight

recalculations. We denote this modified function as TFIDF ′:

TFIDF ′(ti, cj) = f(ti, cj)

(
log

|C|
|{c ∈ C : ti ∈ c}|

)
(8.2)

Let us see why this function avoids most complete recalculations.

Imagine that a document d with category cj is observed, and that

the category c was previously known. Then, for each word w ∈ d
one of the following applies:

• The word w had been previously observed in conjunction with

category cj . This implies that the |{c ∈ C : w ∈ c}| term in

Eq. 8.2 remains unchanged. The only weight that was to be

modified is the TFIDF ′(w, c), since the only change has been

f(w, c). Thus, no complete recalculation is needed in this case

• Category cj is new for word w. This implies that the |{{c ∈
C : w ∈ c}| term is incremented for each category c ∈ C where

w has occurred. This makes it necessary to recompute the
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weights, which will diminish for word w in other categories.

However this recalculation can be avoided for a category c in

two cases: a) if w is not in the top-k list for category c (since its

weight will diminish, it will not enter the top-k list if it is not

previously there) and b) if w is in the top-k list, but its new

weight is larger than the minimum weight in the top-k list.

Hence, a complete recalculation is necessary only when the

weight reduction of w makes it fall off the top-k list, because

it is not possible to know which other term will occupy the

vacant place. From the computational point of view, this is

more affordable than running complete recalculations for every

new document.

• It can also happen that a previously unknown category arrives.

In this case, a complete recalculation has to be carried out for

all the other categories. However, the number of new classes is

expected to be low with respect to the number of documents.

This means that, in most cases, when a document arrives, the only

weights that have to be updated correspond to the words appearing

in the document, for the category with which the document has

been tagged. Weights for other words and categories have to be

recalculated only if a new category is observed, or if a word that

appears in a document appears as a relevant attribute for other

category and its new value is smaller than the smallest weight in the

corresponding attribute list.

8.3.2 Weighting function approximation using sketches

and Bloom filters

Let us start by providing some previous definitions. Let S be a

stream of categorized documents, represented by a list of document

- category pairs, {(d1, c1), (d2, c2), . . .}. The stream contains a total

number of terms #termsS =
∑

i |di|, where |di| is the length in

number of terms of document di. The number of different terms is

#diff termsS ,c = |{t : ∃d(d, c) ∈ S ∧ t ∈ d}|.
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The number of counters needed for calculating the exact TFIDF for

category cj and stream S is

sizetfidf (S , cj) = 2×#diff termsS ,c + 2 (8.3)

That is, it is necessary to store the number of appearances and

number of categories where each distinct term appears, and two

additional counters (for the total category size and for the number

of categories). This represents a linear complexity with respect to

the number of terms in the stream.

Our idea for overcoming this complexity consists in using approxi-

mate instead of exact statistics for the calculation of weighting func-

tions, making use of auxiliary Count-Min Sketch data structures.

The challenge is to calculate accurate enough approximations of the

functions while reducing the necessary space.

In order to calculate TFIDF (ti, cj), the following statistics have to

be maintained: a) total number of different terms; b) number of

categories, c) number of appearances of each term in each category

and d) number of categories where each term occurs.

The number of different terms and categories is not a problem from

the point of view of space complexity, since it can be calculated using

a single counter. The last two types of statistics are approximable

by sketches, using the approximate version of the TFIDF function,

which we call STFSIDF:

STFSIDF (ti, cj) =
f̂(ti, cj)

|cj |
log

|C|
̂|{c ∈ C : ti ∈ c}|

(8.4)

where ̂|{c ∈: ti ∈ c}| represents the approximation of |{c ∈ C : ti ∈
c}| provided by the Count-Min sketch and f̂(ti, cj) is the approxi-

mation of f(ti, cj).

For approximating the number of appearances of each term in each

category (the STF factor) we need a single sketch, which is used for
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storing (category, term) pairs, so that we do not have to maintain a

different sketch for each category. In a pilot study (see Chapter 7)

we have also tried using a different sketch for each category, but the

results were worse than when using a shared sketch.

Approximating the number of categories where each term occurs

(for the SIDF factor) is more tricky. An observed category for a

term is added to the sketch only if it is the first time that a specific

(term, category) pair has appeared (because we are measuring the

number of different categories in which a term has appeared). In

order to assert if a given (term, category) has appeared in the data

stream, we use a Bloom Filter. In summary, we use a Count-Min

Sketch in conjunction with a Bloom filter to approximate the SIDF

term, and an additional Count-Min Sketch to approximate the STF

factor.

8.3.3 STFISDF formalization

We now present our approach more formally. The STFSIDF cal-

culation algorithm uses a structure Ψht,wt,hc,wc,b that comprises the

following elements:

• A set of |C| counters CL = {cl1, . . . , cl|C|} for calculating the

size, in number of terms, for each category c ∈ C

• A Count-Min Sketch structure CMterms that maintains the

counts of the (category, term) combinations, with width wt
and height ht

• A counter ccat that maintains the number of different cate-

gories

• A Count-Min Sketch structure CMcat that maintains the num-

ber of different categories in which each term has appeared,

with width wc and height hc.

• A Bloom Filter BF to decide whether a given (category, term)

combination has appeared, with b bits and f functions.
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Figure 8.2: STFSIDF elements and their relationship with the
final calculation

• A set of observed categories C

Additionally, we need a priority queue qi of maximum size k for

each category ci ∈ C, in order to store the list of its top-k terms

(sorted by TFIDF). Such queues can be restarted (resetQueue(q)),

and it is possible to change the weight for a term in the queue

(changeWeightInQueue(q, w,weight)). An element w with weight

weight can be added to queue q by means of add to priority queue(q,

(w, weight)). This means that the element will be kept in q if its

weight is larger than the lower weight already present in the queue.

Figure 8.2 represents the relationship between the mentioned ele-

ments and the STFSIDF calculation: the CMterms sketch and CL

counters determine the STF term, while the Bloom filter BF , the

CMcat sketch and the ccat counter determine the SIDF factor.

The size in number of counters of the structure is given by the

following formula:

size(Ψht,wt,hc,wc,b) = htwt + hcwc + |C|+ b+ 1 (8.5)

This size depends on the selected sizes for the sketches and the

Bloom filter. Obviously, we are interested in parameters for which
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the size of the structure is lower than the size that would be neces-

sary for the exact calculation, as long as good approximations are

obtained. In Section 8.4 we show that it is in fact possible to obtain

good approximations while reducing space.

The algorithm works as follows. First, all the relevant data struc-

tures are initialized: the set of observed categories is initialized as an

empty set, each of the counters corresponding to category length are

initialized with 0, as well as the sketches and the Bloom filter. Each

time a new document d with category c arrives, the data structures

are updated, following Algorithm 3. The set of observed categories

is updated, as well as the associated lengths. The sketch structures

associated with term counts are updated for each term w ∈ d, as well

as the sketch and Bloom filter used for the SIDF approximation.

The priority queues are also modified, using the values returned by

Algorithm 5. More specifically, if no new category has been observed

for a given term, its weight is recomputed and offered to the queue

corresponding to category c. Otherwise, other queues might have

to be reset, following algorithm 4. This is by far the slowest opera-

tion of the approach, since all the words in the vocabulary have to

be covered. There are two situations when this operation may take

place: a) when a new category occurs in the dataset, or b), when

an existent category is observed in conjunction with a term for the

first time. As a result of this procedure, each queue qj contains the

top-k elements for category cj according to the approximate TFIDF

function.

Finally, the set of attributes to be used by the classifiers is the union

of the set of attributes for each category, which are the ones provided

by the queues.

Figure 8.3 shows graphically the procedure we have described for

carrying out the STFSIDF calculation.

After the presentation of our approach, we provide the experimental

results in the next Section.
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Figure 8.3: Schema of the STFSIDF elements and procedures.
When a document arrives, the STFSIDF elements are updated
using the documents words and category. These statistics are
used to calculate the TFIDF function for each category, and the

values are used to maintain a top-k queue for the categories.

Algorithm 3 Update procedure when a document arrives

Require: A document di with |di| terms, with category cj
Ensure: Updated structures C, CL, CM , BF , CMcat, qi
C ⇐ C ∪ {cj}
clj ⇐ clj + |di|
for each term w in di do

update sketch(CMterms, {w cj})
if ¬bloom filter contains(cj) then

update sketch(CMcat, {w})
add to bloom filter(BF, cj)

end if
end for
CategoriesToReset⇐ ∅
for each term w in di do

tfidf ⇐ calculate stfstidf(w, cj)
add to priority queue(qj , (w, tfidf))
if isNewLabelForWord(w, cj) then

for each category ck in C − {cj} do
weight⇐ calculate stfsidf(w, ck)
if (w ∈ qk ∧ weight < minWeight(qk)) ∨ |qk| = 0 then

CategoriesToReset⇐ CategoriesToReset+ ck
else

changeWeightInQueue(qk, w, weight)
end if

end for
end if

end for
for ck ∈ CategoriesToReset do

resetQueue(qk)
end for
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Algorithm 4 Reset queue

Require: A queue q for category c
clearQueue(q)
for each word w in the vocabulary do

weight⇐ calculate stfstidf(w, c)
add to priority queue(q, (w,weight))

end for

Algorithm 5 STFSIDF calculation

Require: A term w and a category cj
Ensure: STFSIDF (w, cj)
stf ⇐ estimate from sketch(CMterms, {cj , w})
estimate⇐ estimate from sketch(CMcat, w)

sidf ⇐ log
|C|

estimate
stfsidf ⇐ stf ∗ sidf
return stfsidf

8.4 Experimentation

In this Section we evaluate our approach from two different per-

spectives. We first provide an intrinsic evaluation, where we study

how different the features selected by the exact and approximate

weighting functions are, and afterwards an extrinsic evaluation, in

order to analyze how the classification algorithm is affected by the

use of approximate feature selection functions, as well as the impact

of attribute list recalculations.

The rest of this section is structured as follows. In Subsection 8.4.1

we describe the datasets and measures we have used in our evalua-

tion. In Subsection 8.4.2 we explain the intrinsic evaluation and our

parameter optimization process, and in Subsection 8.4.3 we provide

the extrinsic evaluation.

8.4.1 Experimental setting: datasets and measures

We have launched an empirical evaluation using the Näıve Bayes

algorithm, as in the work of Katakis et al. [163], with Laplacian

probability estimators. We have used two datasets. We have used

the Reuters and PubMed datasets, as we did in Chapter 7. Both

datasets are distributed as plain text, so we have preprocessed them
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in order to map the documents into a more suitable representation

for machine learning. To this end, we have used a bag-of-words rep-

resentation, after applying stop-word removal and stemming. A rep-

resentation based on bigrams (adjacent word pairs) has been used.

For classification purposes, we use the top 150 attributes for each

category.

The PubMed dataset is distributed in an unlabelled form. Since we

are interested in a supervised learning scenario, we have divided the

articles into 15 clusters, using the repeated bisections method (top-

down clustering) and the cosine distance as a distance function, with

the help of the CLUTO library [228] for clustering.

We use various measures to evaluate our approach for two different

purposes: comparison of lists of ordered elements (intrinsic evalua-

tion) and classifier performance (extrinsic evaluation). For evaluat-

ing differences between ordered lists we use the Spearman distance

(∆Sp) [208], as in Chapter 7

For evaluating classifier performance we use the prequential accuracy

with fading factors, proposed by Gama et al. [114] as a mechanism to

overcome some deficiencies of the plain prequential accuracy. Ad-

ditionally, for evaluating to what extent the performances of two

online classifiers over a data stream are different, we use the McNe-

mar statistical test with fading factors, also proposed by Gama et

al. [114]. See Section 5.2.5 for more information on this test.

8.4.2 Parameter optimization and intrinsic evaluation

The STFSIDF data structures for weighting function approximation

have several parameters that affect their performance: the width

and height of the terms sketch (wt and ht), the width and height

of the categories sketch (wc and hc) and the size b of the Bloom

filter. These parameters determine the total size of the structure

(see Eq. 8.5). We pose the following constraint on the parameters:

the total size of the data structures involved in STFSIDF has to be

lower than the number of counters that would be necessary for the

exact calculation. That is, sizetfidf (S , cj) > size(Ψht,wt,hc,wc,b,f )
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reduction Best ∆Sp % CMterms % CMcat % BF
0.5 0.001653 64.44% 26.09% 9.47%
0.25 0.1091 65.24% 31.09% 3.66%
0.125 0.3132 76.69% 17.90% 5.4%
0.0625 0.4471 80.62% 15.92% 3.46%
0.03125 0.6095 85.23% 13.79% 0.97%

Table 8.1: Best results for the Reuters dataset, according to the
maximum allowed size

reduction Best ∆Sp % CMterms % CMcat % BF
0.5 0.07758 21.53% 71.68% 3.69%
0.375 0.1745 28.97% 66.86% 4.16%
0.25 0.3188 15.57% 53.92% 7.94%
0.1875 0.423 35.48% 59.17% 14.58%
0.125 0.5745 26.02% 54.19% 17.15%

Table 8.2: Best results for the PubMed dataset, according to
the maximum allowed size

For a given maximum size(Ψht,wt,hc,wc,b,f ), which we can abbre-

viated as MAX SIZE, our objective is to find the parameters

ht, wt, hc, wc, b, f that optimize the average Spearman distances be-

tween the exact and approximate lists of top-k attributes for each

category, after processing the whole dataset.

The maximum size should be a fraction of the numbers of counters

needed for the exact calculation, that is, MAX SIZE = reduction∗
sizetfidf (S , cj), reduction ∈ (0, 1). In order to find the optimal pa-

rameters, we have launched an optimization process for the Reuters

dataset, using the Luus-Jakola optimization algorithm [229]. As a

result, we have obtained the parameters in Tables 8.1 and 8.2.

We have used increasingly large size reductions until the Spearman

distance has become larger than 0.
_
45, since this distance ensures

that there is at least one term that appears in one list and not in

the other one.

Slight modifications of the obtained parameters do not necessarily

yield statistically significant changes of the Spearman distance val-

ues. Figure 8.4 uses boxplots to represent the optimal range of val-

ues for the parameters associated with the optimal configurations

we have found, that is, the range of values for which the average

Spearman values (averaged over the categories) is not significantly
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different from the obtained optimal value. We have used a paramet-

ric Student’s t-test [209] with a significance level of α = 0.01 to test

significant differences.

We can extract several conclusions from these results. The first one

is that bigger size reductions imply worse approximations, some-

thing which is intuitive. The second conclusion is that the relative

sizes of the data structures depend on the number of different labels.

This happens because the most difficult component to approximate

for both TF-IDF is SIDF (the number of classes in which each com-

ponent appears), given that IDF is optimized by a small number of

appearances, which, as previously pointed out in Theorem 7.4, is

more error-prone than in the case of more frequent elements. The

Reuters dataset contains a high number of labels, which means that

small modifications of the approximated values of IDF do not mod-

ify the relative term ranking. Nevertheless, the difference is smaller

when there are fewer labels, as in the PubMed dataset, so bigger

sketches are necessary to successfully approximate the SIDF term.

As a corollary of this, when applying our approach to datasets with

a high number of labels, we have to give more space to CMterms,

whereas when the number is not so high, more space has to be given

to the CMcat component.

8.4.3 Application to classification (extrinsic evaluation)

The objective of the extrinsic evaluation is to test whether there

are significant differences in the performance of the classifier with

exact or approximate functions, as well as the impact of attribute

list recalculations. We have used the best parameters for a space

reduction of 0.5, shown in Table 8.2. In the case of the Reuters

dataset, we have removed categories with less than 100 documents.

In Figure 8.5 we see the evaluation of the McNemar statistic corre-

sponding to the comparison of the behaviour of the classification al-

gorithm for the PubMed dataset, using exact or approximate values.

Fading factors with α = 0.99 are employed in the figure. It can be

observed that the McNemar statistic lies within the (−6.635, 6.635)
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(a) Reuters dataset
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(b) PubMed dataset

Figure 8.4: Result of the parameter optimization for the
Reuters and PubMed datasets. The first three rows in the figures
represent the range of values of the size proportion of the terms
sketch, the categories sketch and the Bloom filter which lead to
an optimal Spearman distance, while the last row represents the

obtained Spearman distance
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Figure 8.5: McNemar statistic for the PubMed dataset with
fading factor α=0.99. The grey zone represents the area without
significant differences in performance with a significance level of
0.01. The figure shows that the performance of the classifiers is

not statistically different for the 95.5% of the documents

range during the 95.5% of the examples, which means that, in gen-

eral, the difference of the performances using exact and approxi-

mate attributes is not statistically significant. Put in other words,

we have succeeded in computing approximate statistics using a re-

duced space, without significantly modifying the behaviour of the

algorithm. Note that in the last quarter of the execution for the

PubMed dataset there are more and more points where a significant

difference is detected. This is due to the phenomenon of sketch sat-

uration: when many examples with low count are registered in the

sketches, there are more hash function collisions, which yields worse

approximations over time. This is an inherent limitation of sketch-

based algorithms, which makes them work better for approximating

large counters than smaller ones, as seen in Chapter 7. Regarding

the Reuters dataset, we have found that the value of the McNe-

mar statistic is 0 during the complete execution, which means that

the behaviour of the exact and approximate algorithms is the same.
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Figure 8.6: Prequential accuracies of the classifier using the
features provided by the exact and approximate calculation of the
TF-IDF measure (PubMed dataset). The curves show a similar
behaviour for the exact and sketch version. The performance
drops are due to concept drifts to which the classifiers have to
adapt. Fading factors with α = 0.99 have been applied to the
accuracy curve in order to give more weight to the most recent

examples.

This was expected due to the low Spearman distance obtained in
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Subsection 8.4.2.
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Figure 8.7: Prequential accuracies of the classifier for the
Reuters dataset. The curves are identical for the exact and ap-
proximate version of the weighting function. The last value of

the prequential accuracy is 0.9241

Figure 8.6 depicts the evolution of the prequential accuracy over

time for the exact and approximate size for the PubMed dataset.

The curves are remarkably similar. The sudden performance drops

correspond to changes in the data distributions. The behaviour of

the classifier is similar in the exact and approximate feature scenar-

ios, which was already corroborated by the McNemar test depicted

in Fig. 8.5. This adds further evidence to our observation that our

approximation of weighting functions does not significantly affect

the classifiers. Concerning the Reuters dataset, as we have seen, the

behaviour of the exact and approximate algorithm is identical. The

prequential accuracy for this dataset is shown in Figure 8.7.

We would also like to know the number of complete attribute list

recalculations, since this is the most expensive step of the algorithm.

To this end, Figures 8.8 depicts the percentage of the number of per-

formed top-k attribute list recalculations with respect to the number

of recalculations that would be necessary in the worst case, that is,

if all the attribute lists had to be updated for every new document.

In this figure we use moving averages over a sliding window of size
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(a) PubMed dataset. Size of sliding window = 2500
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(b) Reuters dataset. Size of sliding window = 500

Figure 8.8: Percentage of the number of complete top-k at-
tribute list recalculations with respect to the worst case (that is,
when all the lists had to be updated for each document). The
figure shows the moving average of the percentages, using sliding
windows of 2500 documents for the PubMed dataset and 500 for

Reuters
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2500 for PubMed and 500 for Reuters, in order to give more weight

to the most recent examples. The figure shows that, although the

number of recalculations is high at the beginning of the stream, it

diminishes as new documents arrive over time, stabilizing at about

0.08% in the case of the PubMed dataset and 1% for the Reuters

dataset.

To wrap up, from the experiments we can conclude that using the

sketched version of the statistics for calculating weighting functions

does not significantly change the behaviour of the algorithms, but

reduces the used space, which is a desirable property for online learn-

ing scenarios. Moreover, the number of complete recalculations is

small and diminishes over time. This is better than recalculating it

for each document, given the complexity of this task, and also bet-

ter than recalculating it periodically, since our approach guarantees

that the attribute lists are always updated.



Chapter 9

Conclusions and Future

Work

9.1 Conclusions

The current trend to increasingly large data sources is a double-

edged sword. On the one hand, such data allow interesting new

applications which combine research interest with an important so-

cioeconomic impact. On the other hand, data sources are more

and more complex and voluminous, which makes it hard to process

them using standard technologies and tools. For this reason, new

techniques are being researched in the fields of machine learning and

data mining in order to tackle these challenges.

In particular, text mining is a discipline of paramount importance,

given that a large proportion of the stored information is in the form

of natural text: web pages, news articles, blogs, social networks, and

others. As we have discussed, the automatic processing of natural

text is a difficult task. One of the reasons for this is high dimension-

ality: systems that analyze text have to be able to reduce the space

needed for representing the textual datasets without compromising

their semantic contents.
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Many interesting current data sources are open-ended, which means

that there is not a closed dataset, but an unbounded stream of data

that arrives continuously. This leads to several interesting chal-

lenges. Learning algorithms have to be incremental, that is, they

have to be able to incorporate new information without learning

the model from scratch. Moreover, they must comply with strict

computational constraints in terms of time and space needed. The

models have to be able to adapt to new concepts that emerge over

time, since data streams do not have to be necessarily stationary

from the point of view of the statistical distributions that generate

the data.

In the case of text streams, we face some specific difficulties. As we

have stated, it is necessary to reduce the dimensionality of textual

data sources, given their high dimensionality. This has to be done in

an incremental fashion, continuously incorporating new information

to the preprocessing model. This is challenging from the point of

view of the required computer resources. Moreover, this has the con-

sequence that the selected attributes may change over time, which

makes it necessary for learning models to be able to work under the

assumption of a dynamic attribute space.

In this thesis, we have studied the problem of text stream mining and

propose new techniques for dealing with massive, evolving and high-

dimensional text streams in an efficient way. We now summarize the

contents of the individual chapters.

9.2 Conclusions by chapter

In Chapter 2 we have provided an introduction to the field of text

classification, and have discussed related fields of study and the main

algorithms and techniques involved in this field. We have presented

text classification as a subfield of text mining, the application of data

mining techniques to natural language datasets. In this chapter we

have discussed that the complexity of such data makes it necessary

to use techniques from the field of information retrieval and natu-

ral language processing, especially for transforming the documents
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from their raw form into a more adequate representation that cap-

tures the underlying semantics of the documents while reducing the

dimensionality of the data. Once the documents have been trans-

formed into a suitable representation, data mining algorithms can

be used to obtain the desired models. Standard evaluation tech-

niques can be used for studying the effectiveness of the obtained

models, taking into account that the nature of textual data makes

some measures more adequate than others. We have also mentioned

some commonly used benchmarks for comparing text classification

systems.

After that, in Chapter 3 we have shown that text mining techniques

can be applied to feature extraction in the domain of DNA strings.

We have proposed a parallel algorithm that is able to extract mean-

ingful substrings from complete DNA strings. Such substrings can

be used as words of different length, which allows to treat DNA

strings as documents, that is, as word sequences. In contrast with

previous works, the length of the features does not have to be fixed

beforehand. We have shown that this approach can be used for

string visualisation, as well as for mitochondrial DNA haplogroup

classification, where competitive results are obtained using text min-

ing techniques exclusively, without attributes provided by experts in

biology.

Text classification is extended to the multilabel scenario in Chap-

ter 4, focusing on email classification. We have argued that mul-

tilabel classification is important for many data sources, and have

presented a study of the performance of different multi-label meth-

ods in combination with standard single-label algorithms using sev-

eral specific multi-label metrics. We have shown that reducing the

dimensionality spaces improves the learning performance, and that,

most of the times, the difference in performance is statistically sig-

nificant. The results achieved by SVM were uniformly better than

for any other algorithm. The best multilabel methods were found

to be RAkEL, EPPT and CLR. Overall, the best combination was

RAkEL over SVM, but CLR over decision trees worked better when

we only want to optimize Micro Precision. We found that label

dependency was more important for recall than for precision.
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In Chapter 5, we have introduced the concept of text stream min-

ing. We have presented the GNUsmail framework for online email

classification, which was used to carry out a study about the effect

of different types of concept drift in several email datasets. From

this study we could conclude that, although the process of adapta-

tion improves the accuracy of the learning models, the concept drift

was virtual rather than real, which means that it is caused by the

skewness of the data distribution over time.

In Chapter 6 we have focused on the comparison of several fea-

ture selection and adaptive strategies for email foldering using the

Enron corpus and our proposed ABC-DynF framework for adapta-

tion. The ABC-DynF framework can work under a dynamic feature

set, keeping a list of the top-k features which will be used by the

learning model, and allowing to add new categories. We have not

found evidence that allows us to assert that the classification accu-

racy is significantly different when a different number of lines are

used to extract features. We can corroborate that the use of Itera-

tive Bayes significantly improves the performance of the incremental

Näıve Bayes. Updating the classification features also shows a sig-

nificantly positive impact on classification. On the other hand, our

results show that adapting to conceptual concept change by allowing

a dynamical feature space consistently improves the performance in

a statistically significant way. Thus, we conclude that keeping track

of the most important features over time and including them in the

classification model has a great importance when improving classi-

fication performance.

In Chapter 7, we have dealt with the process of vectorization of doc-

uments arriving from a stream, and have proposed weighting func-

tions as a mechanism to summarize documents. More specifically,

we have used weighting functions to extract the most relevant words

from documents, in order to incrementally construct keyword lists

and word clouds. We show that there is a severe complexity prob-

lem involved in this computation, so we have proposed TF-SIDF

/ SBM25 as a novel solution that uses sketch-based algorithms to

cope with this. We have found that sketch configurations with few

hash functions are preferable given the same total size. The results
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show that using a sketch for computing the weighting function and

another one to compute top-k of all labels is the most appropriate

solution for maintaining word clouds.

Finally, in Chapter 8 we have dealt with an online learning scenario

where text documents arrive from a stream, and only the most im-

portant words should be used as features in order to avoid complex-

ity problems. It is important to use algorithms able to deal with the

dynamic feature spaces in an efficient way, reducing the necessary

space. Our main contribution in this chapter was STFSIDF, an ap-

proach to approximating a modified version of the TFIDF function

using the sketches and Bloom filters as a basic tool for reducing

the needed space, making it possible to maintain dynamic feature

spaces in data streams with reduced time and space requirements.

The experimental results show that, in general, there is no significant

difference in the behaviour of the algorithm when using exact or ap-

proximate functions. Additionally, we have found that the number

of attribute list recalculations is affordable. Thus, we can conclude

that our proposal is of practical utility for text data streams, since

it enables a noticeable complexity reduction without significantly

affecting the performance of classification algorithms.

9.3 Future work

There are several issues that are still open, and different improve-

ments and extensions can be made over proposals presented in this

thesis. Some possibilities for future work are the following:

• A possibility for future research is to extend the GNUsmail

framework to other text-based domains, such as blog entries or

tweets. The current architecture of the framework, although

designed with a low level of coupling, is specialized in elec-

tronic mail, and includes out-of-the-box components for email

parsing and feature extraction. The architecture could be ex-

tended by allowing other data sources, such as web pages, blog

feeds, tweets or others. This would involve implementing other
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data extractors, as well using attributes relevant to each kind

of data.

• In the future, we plan to extend the study presented in this

thesis to different item frequency estimation algorithms that

use sublinear space.

• We are interested in studying the performance of the TF-SIDF

approach with alternative weighting measures (currently, only

TF-IDF and Okapi BM25 are used).

• Another line of future work is the adoption of measures to

handle the degradation of the sketch performance due to satu-

ration. This saturation is inherent in sketch-based algorithms

because as time goes by more elements are stored in the sketch,

which results in more collisions taking place due to the effect of

having many elements with small counts. This saturation can

be delayed by selecting different sketch configurations or using

larger sketches, but it cannot be totally avoided in the long

term. We plan to study measures to alleviate this problem,

such as periodically resetting the counters.

• As future work, we aim to study the multilabel classification

problem under the optic of on-line multi-label learning.

• We plan to use different weighting functions for feature selec-

tion. We also plan to use other classifiers are base learners for

the ABC-DynF framework.

• We are also interested in developing new stream mining meth-

ods for learning in the dynamic feature set scenario, specially

at the presence of concept drift.

• Finally, we also consider the use of other kinds of features for

classification, such as semantic annotations.



Appendix A

Resumen en español

A.1 Introducción

En los últimos años ha tenido lugar un vertiginoso incremento en

la cantidad de datos disponibles en forma electrónica, en gran parte

debido al surgimiento de la Web 2.0 y las aplicaciones móviles. Gran

parte de estos datos están disponibles en forma de lenguaje natu-

ral, ya sea páginas web, art́ıculos cient́ıficos, noticias de periódicos,

correo electrónico, o contenidos de redes sociales. Esta explosión de

datos ha hecho posible la aparición de aplicaciones tan novedosas

como recomendadores personalizados, análisis automático de sen-

timiento respecto a un producto, detección automática de correo

no deseado, segmentación de mercado o incluso análisis automático

de literatura médica para obtener conocimiento nuevo sobre enfer-

medades. Estas aplicaciones son importantes no sólo desde el punto

de vista de los desaf́ıos cient́ıficos asociados a ellas, sino también

por su impacto económico y social. El hecho de poder extraer

conocimiento y patrones que no estaban disponibles con anterio-

ridad es de gran importancia para las empresas, ya que las sitúa

en una mejor posición para tomar las medidas más adecuadas para

continuar con éxito su crecimiento.

Por estas razones, cada vez es más importante el desarrollo de técnicas

capaces de explotar y dar aśı un valor añadido la gran cantidad de
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datos disponibles. Esta tarea está lejos de ser trivial, y necesita la

implicación de campos cient́ıficos de diversa ı́ndole, tales como la

estad́ıstica, la inteligencia artificial, tecnoloǵıas de bases de datos

y almacenamiento, sin olvidar conocimiento de los expertos del do-

minio del problema concreto a ser tratado, ya que, como hemos visto,

una gran variedad de dominios de conocimiento se pueden beneficiar

de la explotación automática de datos. Como condición previa para

dar utilidad a los datos es necesario explorar y mejorar la calidad

de estos, ya que pueden estar incompletos e incluso presentar in-

consistencias internas y ambigüedades en el mensaje. También es

importante unificar fuentes de datos heterogéneas, ya que en apli-

caciones reales puede haber documentos de muy distinto tipo que,

sin embargo, hablen de lo mismo. Por ejemplo, una noticia de al-

cance generará art́ıculos de opinión, tweets o noticias en periódicos,

por lo que es necesario unificar todas estas fuentes para obtener la

mayor cantidad posible sobre el hecho de interés. Por otra parte, es

necesario aplicar técnicas adecuadas de modelado de documentos,

de forma que puedan ser procesados automáticamente. Es necesario

disponer de herramientas para evaluar el éxito de los modelos de-

sarrollados con respecto a los problemas de interés, sobre todo para

poder comparar diferentes estrategias, algoritmos y tecnoloǵıas. En

resumen, nos enfrentamos a una tarea altamente multidisciplinar.

La mineŕıa de datos ha demostrado ser una disciplina esencial para

conseguir la extracción de información útil a partir de datos almace-

nados, proporcionando un amplio abanico de herramientas para las

distintas tareas que se necesitan: preprocesado de datos, extracción

de información, análisis predictivo o agrupamiento de instancias de

datos similares, y evaluación. Desde un punto de vista general, el

proceso de mineŕıa de datos consiste en el análisis automatizado de

grandes cantidades de datos para extraer patrones interesantes que,

hasta ahora, no eran conocidos. Estos patrones pueden consistir en

grupos de registros de datos (mediante el análisis clúster), instan-

cias poco usuales (detección de anomaĺıas) y dependencias (reglas de

asociación), aśı como modelos que predicen a qué grupo corresponde

una instancia dada (clasificadores), y funciones que son capaces de

asignar un valor numérico a cada instancia (regresión). La mineŕıa

de datos ha sido aplicada con éxito en ámbitos muy diversos, como
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análisis de patrones de fraude en entidades bancarias o análisis de

comportamientos de usuarios en páginas web, analizando las páginas

visitadas o los clicks que ha hecho el usuario. En nuestro caso, las

instancias a estudiar son documentos en lenguaje natural, y nuestra

tarea consiste en generar modelos capaces de predecir a qué cate-

goŕıa debe ser asignado cada documento, de entre un conjunto de

categoŕıas preestablecidas.

No resulta sorprendente que la mayor parte de la información se

encuentre almacenada hoy en d́ıa en forma de texto en lenguaje na-

tural. Gracias a Internet es posible acceder a una inmensa cantidad

de páginas web, blogs y art́ıculos sobre cualquier tema que podamos

imaginar. Una de las virtudes de la Web 2.0 es que prácticamente

cualquier persona con una conexión a Internet puede generar con-

tenidos. El uso de correo electrónico es hoy en d́ıa universal entre los

usuarios de internet, y la escritura en blogs o Twitter está también

muy extendida. Desgraciadamente, el análisis computacional de in-

formación no estructurada, como es el caso del lenguaje natural, es

una tarea compleja, ya que implica que la máquina pueda de alguna

forma captar el significado que el emisor pretend́ıa darle a su men-

saje. Las razones para esta dificultad inherente al procesamiento

de lenguaje natural son variadas. Por una parte está el hecho de

que los idiomas humanos, en contraste con los lenguajes de progra-

mación, están plagados de ambigüedades en términos de gramática

y vocabulario. El conocimiento del dominio, que en muchos casos

podŕıa ayudar a resolver estas ambigüedades, no siempre es fácil

de obtener, o, cuando está disponible, no siempre está claro cómo

aplicarlo para mejorar el desempeño de los algoritmos.

En esta tesis exploramos diversos aspectos de la clasificación de tex-

tos, incluyendo su aplicación a datos biológicos (cadenas de ADN

representadas como documentos de texto), médicos (art́ıculos de

literatura médica) y correo electrónico, y afrontamos diversas di-

ficultades que surgen al analizar fuentes de texto voluminosas, que

posiblemente no están disponibles de forma completa, sino que sus

documentos llegan continuamente a lo largo del tiempo, debiendo ser

incorporados a los modelos de aprendizaje. En la siguiente sección
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desgranamos con más detalle nuestra motivación y las dificultades

asociadas a los problemas con los que nos enfrentamos en esta tesis.

A.2 Motivación

Una dificultad notable de los conjuntos de datos en lenguaje na-

tural en general es su alta dimensionalidad inherente, ya que los

principales atributos de clasificación con los que contamos son las

palabras que conforman los documentos. El gran tamaño de los

vocabularios asociados a las fuentes de datos hace necesario el de-

sarrollo de técnicas escalables capaces de hacer frente a espacios

de atributos de alta dimensionalidad, ya que, por una parte, esta

alta dimensionalidad causa problemas desde el punto de vista de la

complejidad computacional (tanto en tiempo como en memoria), y

por otra parte, perjudica a la capacidad predictiva de los modelos

de aprendizaje, debido al efecto del sobreajuste provocado por un

espacio de atributos demasiado complejo.

En esta tesis nos planteamos además la aplicación de técnicas de

mineŕıa de textos a datos no estrictamente lingǘısticos, si no más

bien al lenguaje biológico por excelencia: las cadenas de ADN. In-

tuitivamente, podemos pensar en el ADN como en un lenguaje: está

formado por cadenas de śımbolos de un alfabeto (los cuatro tipos

de nucleótidos) con una semántica (el ADN determina el fenotipo,

es decir, las caracteŕısticas observables de los seres vivos). En ge-

neral, la extracción de palabras a partir de documentos es la parte

más sencilla del procesado de lenguaje natural, ya que las palabras

están delimitadas por espacios u otros śımbolos de puntuación, con

la excepción de algunos lenguajes como el chino o el japonés. Esto

no es aśı en el ADN, ya que a priori no tenemos ninguna forma de

saber cuáles son sus subcadenas más significativas de entre todas

las posibles subcadenas que se encuentran contenidas en la secuen-

cia de ADN. Por eso, es necesario desarrollar técnicas que permitan

extraer atributos a partir de las cadenas de ADN para poder usarlos

para aplicar mineŕıa de datos. Dada la gran longitud de este tipo

de cadenas, se necesitan algoritmos eficientes para llevar a cabo esta
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extracción de atributos, ya que existe una gran cantidad de sub-

cadenas posibles a analizar. Una condición que deben cumplir las

subcadenas para poder ser consideradas atributos de clasificación

es que aparezcan con frecuencia en la secuencia de ADN. Sin em-

bargo, esto no es suficiente por śı mismo, ya que, si una cadena

es frecuente, sus subcadenas también lo serán necesariamente. Por

lo tanto hay que emplear filtros adicionales, que permitan evaluar

hasta qué punto una subcadena es relevante para poder ser conside-

rada como una “palabra” dentro de ADN, y, por lo tanto, como un

atributo de clasificación para las técnicas de mineŕıa de texto.

Un tipo diferente de desaf́ıo con el que frecuentemente nos encon-

tramos al trabajar con conjuntos de textos es la clasificación mul-

tietiqueta. En muchas ocasiones, asignar una sola etiqueta a cada

documento no es suficiente, ya que un mismo documento puede es-

tar asociado de forma natural a diferentes temáticas o categoŕıas, y

seleccionar sólo una puede ser demasiado restrictivo. Esto da origen

al paradigma de clasificación multietiqueta. Aunque una estrate-

gia simple para clasificación multietiqueta es entrenar a un clasifi-

cador por cada etiqueta de forma independiente, esto no tiene en

cuenta que las etiquetas no son independientes entre śı, sino que la

aparición de unas etiquetas tiene influencia en la posibilidad de que

otras etiquetas aparezcan también. Por ejemplo, las noticias rela-

cionadas con economı́a pueden ir relacionadas también con poĺıtica,

pero más raramente con entretenimiento. Por lo tanto, los métodos

de clasificación multietiqueta deben incorporar esta información so-

bre dependencias en su proceso de aprendizaje. Igualmente, los

procedimientos de evaluación tienen que tener en cuenta la natu-

raleza multietiqueta de estas fuentes de datos, por lo que hay que

usar medidas de evaluación espećıficas.

En esta tesis nos enfrentamos a fuentes de datos no acotadas, es de-

cir, a documentos procedentes de un flujo de datos, en contraste con

los conjuntos de datos estáticos. En otras palabras: no disponemos

a priori de todo el conjunto de datos, sino que los documentos van

llegando poco a poco, debiendo ser incorporados al modelo de clasi-

ficación conforme aparecen. Esto de pie a hablar de clasificación de

flujos de datos. La mineŕıa de flujos de datos surge de forma natural
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en escenarios tales como tráfico de red, datos de sensores, búsquedas

web, o correos electrónicos. Este tipo de escenarios está asociado a

fuertes restricciones computacionales, tanto desde el punto de vista

del tiempo como del espacio necesarios. Las instancias no pueden

ser almacenadas, por provenir de un flujo de datos ilimitado, lo que

hace que cada una sólo se pueda procesar una vez, o, a lo sumo, un

número limitado de veces. Los algoritmos usados deben ser incre-

mentales, es decir, deben ser capaces de procesar las instancias una

a una, sin tener que volver a revisar instancias anteriores. Además,

el modelo de aprendizaje debe estar listo para predecir en cualquier

momento, por lo que el aprendizaje y las predicciones se intercalan

en el tiempo. Por estas razones, los algoritmos de mineŕıa de datos

tradicionales no nos sirven en general para analizar flujos de datos.

Una dificultad asociada a los flujos de datos es la aparición de cam-

bios de concepto. Este fenómeno consiste en que la distribución

de los datos, aśı como la relación subyacente entre datos y etique-

tas, está sujeta a cambios a lo largo del tiempo. Esta problemática

se da por ejemplo en el correo electrónico, donde nuevos temas de

conversación surgen a lo largo del tiempo, o en flujos de noticias,

donde aparecen temas de actualidad que deben ser incorporados

a los modelos de clasificación ya existentes. Este fenómeno hace

necesario que los modelos de aprendizaje deban ser capaces de, por

una parte, detectar los cambios que ocurran, y, por otra, adaptarse

a estos cambios, modificando los modelos de forma adecuada, sin

que sea necesario recalcular el modelo desde cero. En esta tesis nos

planteamos un estudio del efecto que tienen distintos tipos de cambio

de concepto en el desempeño de clasificadores de correo electrónico,

ya que el efecto será diferente dependiendo de si estamos ante un

cambio de concepto “real” o “virtual”, es decir, originado por des-

balanceos en la distribución de las clases a lo largo del tiempo.

En el caso particular de los flujos de textos tenemos además el pro-

blema de los cambios de concepto de tipo contextual. Esto significa

los términos del vocabulario más relacionados con las categoŕıas,

y por lo tanto usados como atributos de clasificación, cambian a

lo largo del tiempo. Es natural que en flujos de texto aparezcan
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nuevas palabras, aśı como que haya palabras que pierden su rele-

vancia. Por ejemplo, durante la celebración de un cónclave para

la elección del nuevo papa surgirán muchos términos relacionados

con la iglesia católica, que perderán en parte su frecuencia en las

noticias pasadas unas semanas. Esto es una consecuencia de la alta

dimensionalidad de este tipo de datos, derivada del elevado número

de palabras diferentes que aparecen en el lenguaje natural. Por lo

tanto, se hace necesario contar con mecanismos para selección de

atributos de forma incremental, aśı como clasificadores incremen-

tales capaces de trabajar en un escenario de atributos dinámicos, es

decir un espacio de atributos cambiante a lo largo del tiempo. Una

de las principales motivaciones de esta tesis es precisamente la im-

plementación y evaluación de mecanismos de selección incremental

de atributos, reduciendo en la medida de lo posible la complejidad

computacional para poder ser aplicadas a escenarios de flujos de

datos con las restricciones mencionadas. También nos planteamos

el estudio de estrategias para coordinar la actualización del espacio

de atributos, ya que este se podŕıa actualizar para cada nuevo docu-

mento, o bien sólo cada vez que se detecta un cambio de concepto.

Debido a las restricciones espaciales con las que nos enfrentamos en

los flujos de datos, es necesario desarrollar estrategias para proce-

sar los datos de forma que se ahorre espacio, a costa de pérdidas de

precisión controladas. En particular, es necesario contar con algorit-

mos sublineales respecto al tamaño del vocabulario. Históricamente

se han desarrollado diferentes algoritmos de compresión del espacio

necesario para procesar flujos de datos, permitiendo pérdidas con-

troladas de precisión como contrapartida de funcionar con una com-

plejidad espacial más razonable. Un ejemplo importante de este tipo

de estrategias son los algoritmos basados en sketches, aśı como los

filtros de Bloom. Este tipo de algoritmos usan estructuras de datos

probabiĺısticas, que proyectan los datos a un espacio de menor di-

mensionalidad mediante el uso de funciones hash. Estas estructuras

son utilizadas a lo largo esta tesis para el resumen automático de

documentos y etiquetas en flujos de textos, aśı como para la imple-

mentación de estrategias de extracción incremental de atributos.
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En la siguiente sección resumimos cada uno de los caṕıtulos que

componen esta tesis.

A.3 Resumen de los caṕıtulos individuales

• En el Caṕıtulo 1 sirve de introducción a la tesis. En él in-

troducimos nuestras motivaciones y objetivos. El hecho de

que la mayor parte de los datos almacenada hoy en d́ıa en

forma informática consista en lenguaje natural nos sirve como

motivación para justificar la importancia que tiene desarro-

llar nuevas técnicas y algoritmos que permitan extraer infor-

mación. Introducimos los conceptos más importantes que de-

sarrollamos a lo largo de la tesis, y exploramos los desaf́ıos que

presenta el análisis automatizado de lenguaje natural, tales

como la ambigüedad lingǘıstica, cambio de concepto, alta di-

mensionalidad y los altos requisitos computacionales. Por

último, proponemos los objetivos de esta tesis doctoral e in-

troducimos a grandes rasgos cada uno de los caṕıtulos de la

tesis.

• En el Caṕıtulo 2 proporcionamos una introducción general a la

clasificación de textos en lenguaje natural. El objetivo princi-

pal de este caṕıtulo es que esta tesis sea lo más autocontenida

posible. Presentamos la mineŕıa de textos como una disci-

plina encuadrada dentro de la mineŕıa de datos, y explicamos

la relación entre mineŕıa de datos, aprendizaje natural y ex-

tracción de información, definiendo los términos que serán uti-

lizados a lo largo del resto de la tesis, y proporcionando ejem-

plos de las principales tareas de la mineŕıa de datos. Expli-

camos de forma general las fases que constituyen un proyecto

KDD (selección de datos, preprocesamiento, transformación de

los datos, modelado, evaluación y despliegue). A continuación

repasamos la historia del procesamiento de lenguaje natural y

sus tareas más destacadas. Hacemos también un repaso breve

de algunos conceptos básicos de extracción de información.
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Por último, formalizamos la disciplina de clasificación de tex-

tos, haciendo mención a modelos de representación de docu-

mentos, técnicas de indexación y reducción de dimensionali-

dad, aśı como los algoritmos más importantes para la clasifi-

cación en śı misma, tales como los algoritmos probabiĺısticos,

clasificadores lineales, máquinas de vectores de soporte, apren-

dices basados en ejemplos y árboles de decisión. Por último,

hablamos de las principales técnicas de evaluación, incluyendo

medidas de evaluación y procedimientos como la validación

cruzada.

• En el Caṕıtulo 3 exploramos la aplicación de las técnicas de

mineŕıa de texto a la extracción de caracteŕısticas, visualización

y clasificación de ADN. El ADN puede ser visto como cade-

nas extremadamente largas de śımbolos. Estas cadenas tienen

además una semántica asociada, ya que determinan las carac-

teŕısticas de cada ser vivo, es decir, su fenotipo. Con esto en

mente, podemos afirmar que el ADN es una especie lenguaje

biológico al que le podemos aplicar técnicas que han sido desar-

rolladas para lenguaje natural. Al igual que algunos lenguajes

humanos como el chino o el japonés, sus unidades constitutivas

(sus “palabras”) no están delimitadas por separadores, por lo

que es necesario aplicar técnicas de naturaleza estad́ıstica para

descubrir las subcadenas más relevantes de una cadena del

ADN. Dada la gran longitud de estas cadenas, nosotros pro-

ponemos una versión paralela del algoritmo SANSPOS para

extraer factores frecuentes, junto con una función de interés

usada en el aprendizaje de reglas de asociación (AV, iniciales de

Added Value) para filtrar las subcadenas más interesantes, que

serán usadas como las palabras que conforman la cadena de

ADN. Como resultado de este procedimiento obtenemos una

representación del ADN como una bolsa de palabras, o, visto

de otra forma, como un documento al que podemos aplicar

técnicas de mineŕıa de textos. En este caṕıtulo usamos esta

representación para dos tareas. La primera consiste en vi-

sualizar las cadenas de ADN en función de sus palabras más

significativas, lo que permite tener una representación gráfica

de los atributos más importantes de una secuencia de ADN.
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Adicionalmente, se puede usar esta misma estrategia para re-

presentar la diferencia entre dos secuencias de ADN, lo que

permite visualizar cuáles son los atributos que mejor difer-

encian una secuencia de otra. La segunda tarea consiste en

clasificar cadenas de ADN mitocondrial según su haplogrupo,

usando los atributos seleccionados como entrada a los algorit-

mos de clasificación.

• El Caṕıtulo 4 está dedicado al aprendizaje multietiqueta para

clasificación de textos. En este caṕıtulo presentamos las prin-

cipales tareas y algoritmos, y las usamos para analizar el efecto

de la selección de atributos en un conjunto de datos multieti-

queta. Este caṕıtulo nos sirve para presentar las principales

tareas y métodos de aprendizaje multietiqueta, centrándonos

en los métodos denominados de transformación de problema,

que consisten en reducir los problemas multietiqueta en una

colección de problemas monoetiqueta, integrando los clasifi-

cadores individuales en el clasificador multietiqueta final. Dis-

cutimos también las principales medidas de evaluación para

aprendizaje multietiqueta, y proponemos una evaluación de

diferentes algoritmos multietiqueta a la clasificación de correo

electrónico. Además, estudiamos el efecto de reducir la dimen-

sionalidad del problema con respecto a diferentes medidas de

evaluación, usando técnicas clásicas de selección de atributos.

• En el Caṕıtulo 5 introducimos fuentes de datos textuales no

acotadas (flujos de documentos de texto), las cuales presen-

tan limitaciones en cuanto al tiempo y espacio para procesar

los ejemplos. Además, estás fuentes de datos están sujetas a

cambios de concepto. En primer lugar presentamos los prin-

cipales conceptos teóricos de la mineŕıa de flujos de datos,

incluyendo una discusión sobre cambio de concepto gradual

o repentino, aśı como virtual y real. Repasamos también

algunos de los algoritmos más destacados para aprendizaje

en flujos de datos, incluyendo una descripción de detectores

clásicos de cambio de concepto y las medidas de evaluación

más adecuadas para flujos de datos. En la segunda parte
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del caṕıtulo ofrecemos un estudio experimental sobre la ocu-

rrencia de cambio de concepto en diversos conjuntos de datos

de correo electrónico. Presentamos literatura relevante sobre

la clasificación de correo electrónico, y pasamos a describir

la plataforma de código abierto presentada en este caṕıtulo,

GNUsmail. Tras un análisis exploratorio de conjuntos de datos

del corpus Enron de correo electrónico, comparamos distintas

configuraciones de GNUsmail, utilizando diferentes algoritmos

y detectores de cambio de concepto. Llegamos a la conclusión

de que el cambio de concepto observado es de tipo virtual, lo

cual hace que, aunque los algoritmos de detección y adaptación

a cambio de concepto sean capaces de mejorar el desempeño

de lo algoritmos en muchos casos, no lo hagan siempre de

forma significativa desde el punto de vista estad́ıstico. Uti-

lizamos el test de McNemar como herramienta estad́ıstica de

comparación de algoritmos en flujos de datos. Observamos

también que los algoritmos basados en árboles de decisión,

tales como VFDT (árbol de Hoeffding), no funcionan bien en

estos conjuntos de datos.

• En el Caṕıtulo 6 introducimos la problemática de los espa-

cios de atributos dinámicos junto con cambios de concepto

en flujos de texto. Introducimos un nuevo tipo de cambio de

concepto, el contextual. Presentamos ABC-DynF, un frame-

work para clasificación de flujos de datos que mantiene una

lista de los atributos más relevantes en cada momento (usando

una función de relevancia de atributos, concretamente chi-

cuadrado), y que es capaz de actualizar el espacio de atributos

usado según la evolución de esta lista. Adicionalmente, ABC-

DynF hereda del framework de clasificación AdPreqFr4SL un

mecanismo de detección de cambio de concepto basado en las

P-Charts de Shewart, que busca mantener un equilibrio en-

tre sesgo y sobreajuste. Se usa Iterative Bayes para mejo-

rar las estimaciones de probabilidad del algoritmo bayesiano

en el que está basado ABC-DynF. En la sección de experi-

mentación, ABC-DynF es evaluado en el problema de clasifi-

cación de correo electrónico usando varios datasets del corpus
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Enron. Se prueban diferentes estrategias de reducción de di-

mensionalidad (incluyendo poner un ĺımite en el número de

ĺıneas usadas por cada documento), y se estudia el efecto de

usar Iterative Bayes para mejorar las estimaciones de proba-

bilidad (mejorando por tanto el algoritmo base). Se comparan

diversas estrategias de control de cambio de concepto, para

estudiar el efecto de la monitorización de cambio de concepto.

Por último, se estudia si el espacio de atributos debe ser ac-

tualizado continuamente, o sólo cuando se ha detectado un

cambio de concepto.

• El Caṕıtulo 7 se centra en el uso de funciones de pesado sub-

lineales para resumen de flujos de datos. Más espećıficamente,

usamos las funciones TF-IDF y BM25 para seleccionar los

términos más importantes de cada documento del flujo, para,

por una parte, extraer palabras clave (resumen del documento)

y, por otra, construir nubes de palabras para cada categoŕıa a

partir de las palabras relevantes más frecuentes (resumen au-

tomatizado de categoŕıas). Ofrecemos un repaso a la literatura

relevante sobre resumen automatizado de documentos, para a

continuación definir formalmente las tareas relacionadas, tales

como el problema de encontrar ı́tems frecuentes (en su versión

exacta y aproximada), o el problema de encontrar los k ele-

mentos con mayor frecuencia dentro de un flujo de datos.

Mostramos que esta es una tarea para la que se necesita una

gran cantidad de espacio, debido a la alta dimensionalidad de

los datos, producida por el tamaño de los vocabularios, por lo

que se necesitan algoritmos espećıficos (basados en contadores

o basados en sketches). Posteriormente nos centramos en las

técnicas basadas en sketches para aproximación de frecuen-

cias en flujos de datos, especialmente el algoritmo Count-Min

Sketch, junto con sus propiedades teóricas más importantes.

Proponemos una nueva metodoloǵıa, que denominamos TF-

SIDF para resumen aproximado de flujos de documentos de

texto, aplicándolos a conjuntos de datos médicos y de correo

electrónico. Esta metodoloǵıa se basa en usar sketches para

aproximar los contadores necesarios para evaluar diferente fun-

ciones de relevancia de atributos, en concreto TF-IDF y BM25.
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Demostramos emṕıricamente que esta técnica obtiene buenas

aproximaciones ahorrando espacio, sin que haya una diferen-

cia estad́ısticamente significativa con los resultados obtenidos

usando contadores exactos. Por lo tanto, resulta una estrate-

gia escalable a vocabularios de gran tamaño, y, en consecuen-

cia, esta propuesta es adecuada para ser usada en resúmenes

automáticos de flujos de texto.

• En el Caṕıtulo 8 exploramos la selección de atributos incre-

mental en flujos de texto. Justificamos la utilidad de los al-

goritmos sublineales para almacenar información relativa a

los atributos de clasificación, y mostramos que los cambios

de concepto en flujos de documentos son problemáticos para

la selección de atributos. Introducimos algunas técnicas adi-

cionales para resumen automatizado de flujos de datos y pre-

sentamos STFSIDF, una propuesta para llevar a cabo esta

selección de forma eficiente en cuanto al tiempo y al espa-

cio necesarios para la computación. STFSIDF está basado

en aplicar algoritmos basados en sketches para reducir el es-

pacio necesario para almacenar los contadores para calcular

los pesos de los distintos atributos, disminuyendo además el

número de actualizaciones completas de la lista de atributos,

evitando que se recalculen continuamente todos los atributos,

a diferencia de otras propuestas anteriores para selección in-

cremental de atributos. Tras formalizar nuestra propuesta,

presentamos una evaluación desde dos perspectivas diferentes:

una evaluación intŕınseca del modelo, con el objetivo de es-

tudiar la mejor parametrización, de forma que los atributos

obtenidos mediante el algoritmo exacto sean lo más parecidos

posibles a los obtenidos mediante STFSIDF, y una evaluación

extŕınseca, donde aplicamos nuestra metodoloǵıa para clasifi-

cación de correo electrónico y de art́ıculos de literatura médica.

Estudiamos mediante tests estad́ısticos la diferencia de de-

sempeño de los clasificadores que se obtiene de usar los atribu-

tos obtenidos por los algoritmos exactos y por los aproxima-

dos. Mostramos que esta diferencia no es significativa desde

el punto de vista estad́ıstico. Al ser los algoritmos aproxi-

madas más eficientes en tiempo y espacio, podemos concluir
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que hemos obtenido un esquema de selección de atributos ade-

cuado para su uso en flujos de datos.

• Por último, en el Caṕıtulo 9 ofrecemos las conclusiones de esta

tesis, y anticipamos el trabajo futuro que se deriva de ella.

A.4 Aportaciones de esta tesis

Los objetivos que perseguimos en esta tesis están relacionados con

la mineŕıa de flujos de texto en lenguaje natural, en escenarios con

espacio de atributos dinámico y cambios de en la distribución es-

tad́ıstica seguida por los datos a lo largo del tiempo. Se estudian

técnicas para atajar los problemas anteriormente mencionados, y los

comparamos con el estado del arte en clasificación de flujos de texto.

Nuestras principales aportaciones han sido las siguientes:

• Revisión del estado actual de diferentes áreas de trabajo rela-

cionadas con clasificación de textos, incluyendo clasificación

multietiqueta, mineŕıa de flujos de datos, detección de cambio

de concepto, evaluación de clasificadores online y algoritmos

aproximados para procesado de flujos de datos. Este estudio

sirve como base para el desarrollo posterior de nuestras solu-

ciones algoŕıtmicas y en forma de estructuras de datos.

• Propuesta y evaluación de una versión paralela de SANSPOS

para extraer subcadenas frecuentes a partir de secuencias de

ADN, junto al uso de la función AV para filtrar las palabras

más significativas.

• Uso de la estrategia anteriormente mencionada para visualizar

cadenas de ADN según sus subcadenas más significativas, aśı

como la diferencia entre organismos a nivel de subcadenas de

ADN.
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• Uso del espacio de atributos extráıdo siguiendo esta misma

metodoloǵıa para clasificación de cadenas de ADN mitocon-

drial en diferentes haplogrupos. A diferencia de otras pro-

puestas anteriores, no es necesario proporcionar a los algorit-

mos un conjunto prefijado de atributos de clasificación, sino

que son descubiertos automáticamente, obteniendo resultados

competitivos con el estado del arte.

• Evaluación de diferentes algoritmos multietiqueta con respecto

a diferentes medidas de desempeño, aśı como del efecto de

reducir el espacio de atributos. Nos centramos en el dominio

de la clasificación de correo electrónico. Estudiamos la relación

existente entre diferentes medidas y exploramos la influencia

de los procesos de selección de atributos y preprocesamiento.

Observamos que el uso de preprocesamiento lingǘıstico mejora

significativamente el desempeño de los algoritmos. Concluimos

que es más importante tener en cuenta las dependencias entre

etiquetas en las medidas de evaluación basadas en recall.

• Presentamos GNUsmail, una plataforma escrita en Java para

clasificación de flujos de correo electrónico. Se incluyen dife-

rentes herramientas para extracción de correo electrónico, se-

lección de atributos y algoritmos dinámicos para clasificación

y gestión del cambio de concepto. Esta herramienta se pu-

blica en forma de código abierto, poniéndola a disposición de

la comunidad.

• Usamos esta misma herramienta para estudiar diferentes es-

trategias de selección de atributos y adaptación a cambios de

concepto. Vemos que en los flujos de correo hay cambio de

concepto, que en muchas ocasiones es de tipo virtual.

• Se propone ABC-DynF, un framework de clasificación para

flujos de datos que, por una parte, suporta un espacio de

atributos dinámico a los largo del tiempo, y, por otra parte,

ofrece estrategias de control de cambio que previenen la so-

breadaptación y el sesgo (bias) de los clasificadores.
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• Estudiamos la reducción de ĺıneas usadas en un documento

como estrategia para reducción de dimensionalidad. Concluimos

que es una estrategia aceptable.

• Usando ABC-DynF, estudiamos el efecto de mejorar el clasifi-

cador (refinando los parámetros relativos a la probabilidad en

un clasificador Bayesiano) con respecto a mejorar el espacio

de atributos, concluyendo que es más importante mejorar el

clasificador de cara al desempeño.

• Estudiamos si vale la pena actualizar continuamente el espa-

cio de atributos usados por ABC-DynF, o si es suficiente con

invocar actualizaciones sólo en caso de que se detecte cambio

de concepto, o cuando se detecte que el clasificador ha dejado

de mejorar su desempeño. Descubrimos que, aunque los resul-

tados son mejores si se actualiza continuamente el espacio de

atributos, la diferencia no es significativa.

• Estudiamos soluciones sublineales para vectorización incremen-

tal de documentos, para cumplir con los requisitos computa-

cionales que exhiben los flujos de datos, especialmente los tex-

tuales, dada su alta dimensionalidad intŕınseca. Proponemos

y analizamos el uso de algoritmos basados en la noción de

sketches con el objetivo de mantener estad́ısticas sobre términos

del vocabulario, admitiendo pérdidas controladas de precisión

para lograr funcionar con complejidad espacial sublineal. Con-

cluimos que esta estrategia ahorra espacio sin afectar significa-

tivamente al desempeño. Estudiamos diferentes estrategias de

configuración de nuestra propuesta, a la que le damos el nom-

bre de TF-SDIDF / SBM25, observando que es mejor man-

tener sketches separados para el problema de los top-k atribu-

tos y el de la estimación de frecuencias.

• Proponemos el mecanismo citado anteriormente para extracción

de palabras clave y computación de nubes de palabras en flu-

jos de texto, como estrategia para resumen automatizado de

documentos.

• Asimismo, proponemos STFSIDF, un nuevo algoritmo eficiente

en tiempo y espacio para selección incremental de atributos
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en flujos de texto. Usamos funciones de pesado que evitan el

recálculo continuo de las estad́ısticas asociadas a cada término

del vocabulario.

• En relación con el último punto, se propone y estudia el uso

de algoritmos aproximados para reducir la complejidad espa-

cial asociada a la tarea anterior, y estudiamos cómo optimizar

la parametrización de nuestra propuesta para conseguir au-

mentar la precisión usando el mismo espacio. Concluimos que

el uso de algoritmos aproximados no afecta negativamente al

desempeño de los clasificadores.





Appendix B

Conclusiones y trabajo

futuro (español)

B.1 Conclusiones

La tendencia actual a fuentes de largos cada vez más largas es un

arma de doble file. Por una parte, esos datos hacen posibles apli-

caciones novedosas e interesantes, que combinan interés desde el

punto de vista de la investigación con un importante impacto so-

cioeconómico. Por otra parte, la fuentes de datos son cada vez más

complejas y voluminosas, lo que dificulta su procesado usando tec-

noloǵıas y herramientas clásicas. Por esta razón, en los campos de la

mineŕıa de datos y aprendizaje computacional se están investigando

técnicas que permitan hacer frente a estos desaf́ıos.

En particular, la mineŕıa de textos es de gran importancia, dado

que una gran parte de la información almacenada hoy en d́ıa está

en forma de lenguaje natural: páginas web, art́ıculos de noticias,

blogs, redes sociales, y otras. Como hemos discutido previamente,

el procesado automático de texto natural es una tarea dif́ıcil por

varias razones. Una de ellas es su alta dimensionalidad: los sistemas

que analizan textos deben ser capaces de reducir el espacio necesario

para representar las fuentes de datos de textos sin comprometer el

contenido semántico.

221
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Muchas fuentes de datos de la actualidad son ya no sólo cada vez

más grandes, sino que además no están acotadas, lo que significa que

no hay un conjunto de datos cerrado, sino un flujo de datos que llega

continuamente. Esto llega a desaf́ıos interesantes para la mineŕıa de

datos. Los algoritmos de aprendizaje tienen que ser incrementales,

esto es, tienen que ser capaces de incorporar información nueva sin

tener que reaprender el modelo. Es más, deben procesar los datos

de forma que se respeten limitaciones computacionales en términos

del espacio y tiempo necesarios. Los modelos deben ser capaces de

adaptarse a los nuevos conceptos que surgen a lo largo del tiempo,

ya que los flujos de datos no tienen que estar gobernados por dis-

tribuciones estad́ısticas de tipo estático.

En el caso de los flujos de texto, nos enfrentamos a algunas difi-

cultades espećıficas. Como hemos dicho previamente, es necesario

reducir la dimensionalidad de las fuentes de datos de texto, a causa

de su alta dimensionalidad. Pero, en el caso de los flujos de texto,

esto debe ser hecho en forma incremental, incorporando nueva in-

formación al modelo de preprocesado de forma continua. Esto es

un desaf́ıo desde el punto de vista de los recursos computacionales

requeridos. Además, esto tiene como consecuencia que los atributos

seleccionados pueden cambiar a lo largo del tiempo, por lo que los

modelos de aprendizaje deben ser capaces de asumir un espacio de

atributos dinámico.

En esta tesis estudiamos el problema de la mineŕıa de flujo de textos

y proponemos nuevas técnicas para tratar eficientemente con flujos

de datos cambiantes y de alta dimensionalidad. A continuación re-

sumimos las principales conclusiones de cada caṕıtulo.

B.2 Conclusiones por caṕıtulo

En el caṕıtulo 2 hemos introducido el campo de la clasificación de

textos, discutiendo campos de estudios relacionados, aśı como las

principales técnicas y algoritmos. Presentamos la clasificación de

textos como una subdisciplina de la mineŕıa de textos, es decir, la

aplicación de técnicas de mineŕıa de datos a datasets compuestos
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de documentos en lenguaje natural. En este caṕıtulo hemos visto

que la complejidad de este tipo de datos hace necesario hacer uso de

técnicas de extracción de información y procesamiento de lenguaje

neutral, especialmente para transformar los documentos de su forma

original a un tipo de representación más adecuada desde el punto

de vista informático, que capture la semántica subyacente de estos

documentos mientras se reduce la dimensionalidad de los datos y

se eliminan atributos irrelevantes y redundantes. Una vez que los

documentos han sido transformados a una representación adecuada,

se pueden usar algoritmos de mineŕıa de datos. Las técnicas de

evaluación estándar pueden ser usadas para estudiar la efectividad

de los modelos obtenidos, teniendo en cuenta que la naturaleza de

las fuentes de datos textuales hacen que unas medidas de evaluación

puedan tener más sentido que otras. Hemos mencionado también al-

gunos benchmarks comunes para comparar sistemas de clasificación

de texto.

A continuación, en el caṕıtulo 3 hemos mostrado que las técnicas

de mineŕıa de textos pueden ser aplicadas para extracción de carac-

teŕısticas en el dominio de las secuencias de ADN. Hemos propuesto

un algoritmo paralelo capaz de extraer subsecuencias significativas

de las cadenas completas de ADN. Estas subcadenas pueden ser

usadas como palabras, lo que permite trabajar con cadenas de ADN

como si se trataran de documentos, es decir, como una secuencia de

palabras. A diferencia de otros trabajos, la longitud de los atributos

de clasificación no tiene que ser fijado previamente. Hemos mostrado

que esta idea puede ser usada para visualización de cadenas, aśı como

para clasificación de haplogrupos de ADN mitocondrial, obteniendo

resultados competitivos usando exclusivamente técnicas de mineŕıa

de textos, sin atributos propuestos por expertos en bioloǵıa.

Después, en el caṕıtulo 4 hemos extendido la clasificación de tex-

tos al escenario multietiqueta, explicando la importancia de esta

paradigma para muchas fuentes de datos y centrándonos en el caso

de la clasificación de correo electrónico. Hemos presentado un es-

tudio del desempeño de diferentes métodos multietiqueta en combi-

nación con algoritmos que trabajan con una sola etiqueta, usando

diversas métricas especificas para conjuntos de datos multietiqueta.
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Hemos mostrado que reducir la dimensionalidad mejora el desempeño

de aprendizaje. La mayoŕıa de las veces se consigue una mejoŕıa

significativa desde el punto de vista estad́ıstico. Los resultados con-

seguidos por SVM son uniformemente mejores que los de los demás

algoritmos. En conjunto, los mejores algoritmos multietiqueta son

RAkEL, EPPT y CLR. En conjunto, hemos encontrado que la mejor

combinación es usar RAkEL sobre SVM, excepto cuando se opti-

mizar la micro-precisión, caso en el que es preferible usar árboles de

decisión. Asimismo, hemos encontrado que tener en cuenta la de-

pendencia entre etiquetas es más importante para el recall que para

la precisión.

En el caṕıtulo 5 hemos presentado el concepto de clasificación de flu-

jos de texto, aśı como los cambios de concepto. Hemos presentado la

plataforma GNUsmail para clasificación online de correo electrónico,

y la hemos usado para llevar a cabo un estudio sobre el efecto de dife-

rentes tipos de cambio de concepto en diferentes datasets de correo

electrónico. A partir de este estudio hemos podido concluir que,

aunque el proceso de adaptación mejora la precisión de los modelos

de aprendizaje, el cambio de concepto resulta ser virtual y no real,

al estar causado por la asimetŕıa estad́ıstica de la distribución de los

datos a lo largo del tiempo.

En el caṕıtulo 6 nos hemos centrado en la comparación de varias

estrategias de selección de atributos y estrategias adaptativas para

clasificación de correo electrónico usando el dataset de Enron con

una plataforma de clasificación adaptativa que hemos propuesto,

ABC-Dynf. Esta plataforma soporta conjuntos cambiantes de atri-

butos, manteniendo una lista de los top-k atributos, que serán usados

por el modelo de aprendizaje. ABC-DynF también permite añadir

nuevas categoŕıas conforme pasa el tiempo. No hemos encontrado

evidencia que nos permita afirmar que el desempeño es significati-

vamente diferente cuando se usa un número diferente de ĺıneas para

extraer atributos. Podemos corroborar que el uso de Iterative Bayes

mejora de forma significativa el desempeño del Näıve Bayes incre-

mental. Actualizar los atributos de clasificación, para hacer frente a

cambio de concepto contextual, también tiene un impacto positivo
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en la clasificación de forma significativa. Por lo tanto podemos con-

cluir que monitorizar las categoŕıas más importantes a lo largo del

tiempo, incluyéndolas en el modelo de clasificación, tiene una gran

importancia a la hora de mejorar el desempeño de los modelos.

En el caṕıtulo 7 nos hemos enfrentado con el proceso de vectorización

de documentos que llegan de un flujo de datos, y hemos propuesto

funciones de relevancia como mecanismo para resumir documentos.

De manera más espećıfica, usamos funciones de pesado para ex-

traer las palabras más relevantes de los documentos, y usamos estas

palabras para construir incrementalmente listas de palabras clave

y nubes de palabras. Mostramos que los cálculos necesarios pre-

sentan un grave problema de complejidad, por lo que proponemos

TF-SIDF como solución novedosa. Mostramos que, para un mismo

tamaño total del sketch, son preferibles configuraciones que tengan

relativamente pocas funciones hash. En lo relativo a los resúmenes

basados en nubes de etiquetas, hemos probado que usar un sketch

para computar la función de relevancia y otro para computar los

top-k atributos de cada etiqueta es la solución más apropiada.

Finalmente, en el caṕıtulo 8 hemos lidiado con el escenario de apren-

dizaje online donde sólo las palabras más importantes deben ser usa-

das como atributos, para evitar problemas de complejidad. Es im-

portante tener algoritmos eficientes que acepten un espacio dinámico

de atributos. Nuestra contribución principal en este caṕıtulo ha

SIDO STFSIDF, una estrategia para calcular un valor aproximado

de la función TFIDF usando el algoritmo Min-Count Sketch como

herramienta básica para reducir el espacio necesario, posibilitando

la gestión de espacios dinámicos de atributos con unos requisitos

de tiempo y memoria reducidos. Los resultados experimentales

muestran que, en general, no hay una diferencia significativa en el

comportamiento del algoritmo cuando se usan funciones exactas o

aproximadas, lo que demuestra que nuestra propuesta tiene utilidad

práctica en los flujos de datos de texto, al hacer posible reducir la

complejidad sin afectar significativamente a los algoritmos de clasi-

ficación.
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B.3 Trabajo futuro

Hay varias cuestiones que todav́ıa están abiertas, aśı como diferentes

mejoras y extensiones a las propuestas presentadas en esta tesis.

Algunas posibilidades para trabajo futuro son las siguientes:

• Una posibilidad de trabajo futuro es extender GNUsmail a

otros dominios basados en texto, tales como entradas de blogs

o tweets. La arquitectura actual está especializada en correo

electrónico, y trae incluidos componentes para análisis y ex-

tracción de atributos a partir de emails. Esta arquitectura se

podŕıa extender a otras fuentes de datos. Esto conllevaŕıa im-

plementar otros módulos de extracción de datos, aśı como usar

atributos especializados en cada tipo de datos.

• En el futuro planeamos extender los estudios presentados en

esta tesis a diferentes algoritmos de estimación de frecuencia

que usen espacio sublineal.

• Estamos interesados en estudiar el desempeño de TF-SIDF con

otros tipos de funciones de relevancia diferentes a las propues-

tas.

• Otra ĺınea de trabajo futuro es la adopción de medidas para

gestionar la degradación del desempeño de los sketch debida

a la saturación. Esta saturación es inherente a los algoritmos

basados en sketches, debido a las colisiones producidas por

la gran cantidad de elementos con cuentas pequeñas. Esta

saturación se podŕıa reiniciando periódicamente los contadores

contenidos en los sketches.

• Pretendemos estudiar el problema de clasificación multieti-

queta bajo la óptica del aprendizaje online, donde los ejemplos

llegan de uno en uno, de forma que no tenemos un dataset fijo

al principio del proceso de aprendizaje.

• Respecto a ABC-DynF, planeamos experimentar con funciones

de relevancia diferentes a chi-cuadrado, aśı como con otros

clasificadores base.
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• Estamos también interesados en el desarrollo de nuevos algo-

ritmos para el escenario de espacios dinámicos de atributos con

presencia de cambio de concepto.

• Finalmente, consideramos el uso de otros tipos de atributos

para clasificación, tales como las anotaciones semánticas.
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IDA, volume 2189 of Lecture Notes in Computer Science,

pages 228–237. Springer, 2001. ISBN 3-540-42581-0.

[24] William J. Rapaport. A history of the sentence

‘buffalo buffalo buffalo buffalo buffalo’, 2000. URL

http://web.archive.org/web/20070320205923/http://

www.cse.buffalo.edu/~rapaport/buffalobuffalo.html.

[25] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.

Thumbs up? sentiment classification using machine learning

techniques. CoRR, cs.CL/0205070, 2002.

[26] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent

dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March

2003. ISSN 1532-4435. URL http://dl.acm.org/citation.

cfm?id=944919.944937.

[27] M. E. Maron. Automatic indexing: An experimental inquiry.

J. ACM, 8(3):404–417, 1961.

[28] Philip J. Hayes and Steven P. Weinstein. Construe/TIS: A

system for content-based indexing of a database of news sto-

ries. In 2nd Annual Conference on Innovative Applications of

Artificial Intelligence., pages 1–5, 1990.

[29] Norbert Fuhr, Stephan Hartmann, Gerhard Lustig, Michael

Schwantner, Konstadinos Tzeras, Technische Hochschule

Darmstadt, Fachbereich Informatik, and Gerhard Knorz.

Air/x - a rule-based multistage indexing system for large sub-

ject fields. In Proceedings of RIAO’91, pages 606–623, 1991.

[30] Javier Sánchez-Monedero, Manuel Cruz-Ramı́rez, Francisco

Fernández-Navarro, Juan Carlos Fernández, Pedro Antonio

Gutiérrez, and César Hervás-Mart́ınez. On the suitability of

extreme learning machine for gene classification using feature

selection. In ISDA, pages 507–512. IEEE, 2010.

http://web.archive.org/web/20070320205923/http://www.cse.buffalo.edu/~rapaport/buffalobuffalo.html
http://web.archive.org/web/20070320205923/http://www.cse.buffalo.edu/~rapaport/buffalobuffalo.html
http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937


Bibliography 241
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[55] J. Demšar. Statistical comparisons of classifiers over multi-

ple data sets. Journal of Machine Learning Research, 7:1–30,

2006.

[56] William Hersh, Chris Buckley, T. J. Leone, and David Hickam.

Ohsumed: an interactive retrieval evaluation and new large

test collection for research. In Proceedings of the 17th annual

international ACM SIGIR conference on Research and devel-

opment in information retrieval, SIGIR ’94, pages 192–201,

New York, NY, USA, 1994. Springer-Verlag New York, Inc.

ISBN 0-387-19889-X. URL http://dl.acm.org/citation.

cfm?id=188490.188557.

[57] Ken Lang. Newsweeder: Learning to filter netnews. In in

Proceedings of the 12th International Machine Learning Con-

ference (ML95), 1995.

[58] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li.

Rcv1: A new benchmark collection for text categorization

research. J. Mach. Learn. Res., 5:361–397, December 2004.

ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?

id=1005332.1005345.

[59] Keh-Jiann Chen and Shing-Huan Liu. Word identification for

mandarin chinese sentences. In COLING, pages 101–107, 1992.

[60] Joon Ho Lee and Hyun Jung Lee. Combing different statistical

evidence for chinese word segmentation.
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Garćıa, and Rafael Morales Bueno. A comparative study

on feature selection and adaptive strategies for email folder-

ing. In Intelligent Systems Design and Applications (ISDA),

2011 11th International Conference on, pages 1294 –1299, nov.

2011. doi: 10.1109/ISDA.2011.6121838.
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Matemática, Univeridade de Aveiro, 2006.

[120] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis P. Vla-

havas. On the utility of incremental feature selection for the

classification of textual data streams. In Panhellenic Confer-

ence on Informatics, pages 338–348, 2005.

[121] Brent Wenerstrom and Christophe Giraud-Carrier. Temporal

data mining in dynamic feature spaces. In Proceedings of the

Sixth International Conference on Data Mining, ICDM ’06,

pages 1141–1145, Washington, DC, USA, 2006. IEEE Com-

puter Society. ISBN 0-7695-2701-9. doi: 10.1109/ICDM.2006.

157. URL http://dx.doi.org/10.1109/ICDM.2006.157.

[122] Pedro Domingos and Geoff Hulten. Mining high-speed

data streams. In Knowledge Discovery and Data Mining,

pages 71–80, 2000. URL citeseer.ist.psu.edu/article/

domingos00mining.html.

[123] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Min-

ing time-changing data streams. In Proceedings of the seventh

ACM SIGKDD international conference on Knowledge discov-

ery and data mining, KDD ’01, pages 97–106, New York, NY,

USA, 2001. ACM. ISBN 1-58113-391-X. doi: http://doi.acm.

org/10.1145/502512.502529. URL http://doi.acm.org/10.

1145/502512.502529.

[124] João Gama, Pedro Medas, and Ricardo Rocha. Forest trees for

on-line data. In Proceedings of the 2004 ACM symposium on

Applied computing, SAC ’04, pages 632–636, New York, NY,

http://dl.acm.org/citation.cfm?id=1368018.1368022
http://dl.acm.org/citation.cfm?id=1368018.1368022
http://dx.doi.org/10.1109/ICDM.2006.157
citeseer.ist.psu.edu/article/domingos00mining.html
citeseer.ist.psu.edu/article/domingos00mining.html
http://doi.acm.org/10.1145/502512.502529
http://doi.acm.org/10.1145/502512.502529


Bibliography 253

USA, 2004. ACM. ISBN 1-58113-812-1. doi: http://doi.acm.

org/10.1145/967900.968033. URL http://doi.acm.org/10.

1145/967900.968033.

[125] Qiang Ding, Qin Ding, and William Perrizo. Decision tree

classification of spatial data streams using peano count trees.

In Proceedings of the 2002 ACM symposium on Applied com-

puting, SAC ’02, pages 413–417, New York, NY, USA, 2002.

ACM. ISBN 1-58113-445-2. doi: http://doi.acm.org/10.

1145/508791.508870. URL http://doi.acm.org/10.1145/

508791.508870.

[126] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Min-

ing concept-drifting data streams using ensemble classifiers.

In Proceedings of the ninth ACM SIGKDD international con-

ference on Knowledge discovery and data mining, KDD ’03,

pages 226–235, New York, NY, USA, 2003. ACM. ISBN 1-

58113-737-0. doi: http://doi.acm.org/10.1145/956750.956778.

URL http://doi.acm.org/10.1145/956750.956778.

[127] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrish-

nan. Mining data streams under block evolution. SIGKDD

Explor. Newsl., 3:1–10, January 2002. ISSN 1931-0145.

doi: http://doi.acm.org/10.1145/507515.507517. URL http:

//doi.acm.org/10.1145/507515.507517.

[128] Spiros Papadimitriou, Anthony Brockwell, and Christos

Faloutsos. Adaptive, hands-off stream mining. In Proceed-

ings of the 29th international conference on Very large data

bases - Volume 29, VLDB ’2003, pages 560–571. VLDB En-

dowment, 2003. ISBN 0-12-722442-4. URL http://dl.acm.

org/citation.cfm?id=1315451.1315500.

[129] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.

Yu. On demand classification of data streams. In Proceed-

ings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’04, pages 503–

508, New York, NY, USA, 2004. ACM. ISBN 1-58113-888-

1. doi: http://doi.acm.org/10.1145/1014052.1014110. URL

http://doi.acm.org/10.1145/1014052.1014110.

http://doi.acm.org/10.1145/967900.968033
http://doi.acm.org/10.1145/967900.968033
http://doi.acm.org/10.1145/508791.508870
http://doi.acm.org/10.1145/508791.508870
http://doi.acm.org/10.1145/956750.956778
http://doi.acm.org/10.1145/507515.507517
http://doi.acm.org/10.1145/507515.507517
http://dl.acm.org/citation.cfm?id=1315451.1315500
http://dl.acm.org/citation.cfm?id=1315451.1315500
http://doi.acm.org/10.1145/1014052.1014110


Bibliography 254

[130] Mohamed Medhat Gaber, Arkady B. Zaslavsky, and Shonali

Krishnaswamy. Mining data streams: a review. SIGMOD

Record, 34(2):18–26, 2005.

[131] Mark Last. Online classification of nonstationary data

streams. Intell. Data Anal., 6:129–147, April 2002. ISSN

1088-467X. URL http://dl.acm.org/citation.cfm?id=

1293986.1293988.

[132] Francisco Ferrer-Troyano, Jesús S. Aguilar-Ruiz, and
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