
Improving Signatures by Locality Exploitation for Transactional Memory

Ricardo Quislant, Eladio Gutierrez, Oscar Plata and Emilio L. Zapata

Dept. of Computer Architecture

University of Malaga

Malaga, Spain

{quislant, eladio, oplata, zapata}@uma.es

Abstract—Writing multithreaded programs is a fairly com-
plex task that poses a major obstacle to exploit multicore
processors. Transactional Memory (TM) emerges as an alter-
native to the conventional multithreaded programming to ease
the writing of concurrent programs. Hardware Transactional
Memory (HTM) implements most of the required mechanisms
of TM at the core level, e.g. conflict detection. Signatures
are designed to support the detection of conflicts amongst
concurrent transactions, and are usually implemented as per-
thread Bloom filters in HTM. Basically, signatures use fixed
hardware to summarize an unbounded amount of read and
write memory addresses at the cost of false conflicts (detection
of non-existing conflicts).

In this paper, a novel signature design that exploit locality
is proposed to reduce the number of false conflicts. We show
how that reduction translates into a performance improvement
in the execution of concurrent transactions. Our signatures
are based on address mappings of the hash functions that
reduce the number of bits inserted in the filter for those
addresses nearby located. This is specially favorable for large
transactions, that usually exhibit some amount of spatial
locality. Furthermore, the implementation do not require extra
hardware. Our proposal was experimentally evaluated using
the Wisconsin GEMS simulator and all codes from the STAMP
benchmark suite. Results show a significant performance im-
provement in many cases, specially for those codes with long-
running, large-data transactions.

Keywords-Hardware Transactional Memory; Signatures;
Bloom filters; H3 Hashing; Memory locality

I. INTRODUCTION

With the development of multicore processors [1], the

common programmer must deal with the multithreaded

parallel programming model to extract the maximum per-

formance from the cores. In general, writing multithreaded

programs is a fairly complex task that poses a major obsta-

cle to exploit multicore processors. Shared data in critical

sections must be accessed in mutual exclusion to avoid

race conditions. Lock-based techniques are used to provide

mutual exclusion by serializing the execution of concur-

rent threads in critical sections. However, narrowing these

sections to minimize serialization could lead to convoying,

deadlock or priority inversion, problems difficult to detect.

In addition, threads and explicit synchronization make con-

structing abstractions difficult because the programmer must

be aware of implementation details. Transactional Memory

(TM) [2], [3] emerges as an alternative to the conventional

multithreaded programming to ease the writing of concurrent

programs. TM introduces the concept of transaction that

allows semantics to be separated from implementation. A

transaction is a block of computations that appears to be

executed with atomicity and isolation. Thus, transactions

replace a pessimistic lock-based model by an optimistic one

and solve the abstraction and composition problems.

Hardware Transactional Memory (HTM) implements

most of the required mechanisms of TM at the core level [4],

[5], [6], [7], [8]. HTM systems execute transactions in

parallel, committing non-conflicting ones. A conflict occurs

when a memory location is concurrently accessed by several

transactions and at least one access is a write. So, HTM

systems must record all memory reads and writes during

the execution of transactions in order to detect conflicts. Sig-

natures have been recently proposed to store the addresses

of such memory reads and writes. Examples of systems that

use them are BulkSC [9], LogTM-SE [10], and SigTM [11].

These systems implement signatures as per-thread Bloom

filters [12]. Basically, they use fixed hardware to summarize

an unbounded amount of read and write memory addresses

at the cost of false conflicts (i.e. non-existing conflicts).

Previous signature designs consider all memory addresses

as uniformly distributed across the address space. However,

in real programs the address stream is not random since it

exhibits some amount of spatial and temporal locality. A

first contribution of this paper is the proposal of a novel

signature design (called, locality-sensitive signature) that

exploits memory address locality in order to reduce the

number of false conflicts. Our proposal defines new address

mappings of the hash functions in order to reduce the

number of bits inserted in the filter for those addresses

with spatial locality (that is, nearby memory locations share

some bits of the Bloom filter). As a result, false conflicts

are significantly reduced for transactions that exhibit spatial

locality in their read or write sets, but the false conflicts rate

remains the same for transactions that do not exhibit locality

at all. This is specially favorable for large transactions, that

usually present a significant amount of spatial locality. In

addition, as our proposal is based on how memory addresses

are mapped into the signature filter, its implementation does

not require extra hardware. A second contribution of this pa-

per is the implementation of the proposed locality-sensitive

signature in an HTM simulator, in order to show how sav-

ings in false conflicts translate into important performance

improvements in the execution of concurrent transactions.

In particular, we evaluate our proposal using the Wisconsin

GEMS [13] simulator and on all codes from the STAMP [14]

benchmark suite. Results show a significant performance

improvement in many cases, specially for those codes with

larger transactions.

The rest of the paper is organized as follows. In next

section we present a background on signatures, describing

how they are usually designed and implemented. A brief

review of the related work is discussed. In Section III we

introduce our proposed locality-sensitive signature design,

discussing its basics, how they are implemented, and an

evaluation compared to the generic signature designs where

no memory locality is exploited. Section IV presents the

implementation of a locality-sensitive signature on the Win-

consin GEMS simulator, and discusses how our signature

design may improve the execution performance in several

cases, while never harm significantly the performance in any

case. Finally, Section V concludes the paper.

II. BACKGROUND

In the context of TM, each concurrent thread uses its

signatures to record all the memory addresses issued when

executing a transaction. These addresses are sorted out into a

read set (RS) and a write set (WS). Thus, each thread needs

a pair of private signatures. As they are used for conflict

detection amongst concurrent transactions, signatures do not

tolerate false negatives (undetected true conflicts) but may

assume false positives (false conflicts). On the other hand,

the RS and WS sizes are unknown in advance, therefore,

signatures should not limit the number of addresses to be

tracked. In addition, test and insertion of an address should

be fast operations.

Fulfilling the requirements above, Ceze et al. [7] proposed

a signature implementation with per-thread Bloom filters.

These filters were devised to test whether an element is

a member of a set in a time and space-efficient way. The

Bloom filter allows insertions of an unbounded number of

elements at the cost of false positives, but not false negatives

(elements can be added to the set, but not removed). It

comprises a bit array and k different hash functions that map

elements into k randomly distributed bits of the array. At

first, all the array bits are set to 0. Inserting an element into

the Bloom filter consists in setting to 1 the k bits given by

the hash functions. Test for membership consists in checking

that those k bits are asserted.

Bloom filters are also known as true or regular Bloom

filters. Sanchez et al. [15] proposed the parallel Bloom filter

as an alternative hardware-efficient implementation of regu-

lar Bloom filters. Whereas the regular filter is implemented

as a k-ported SRAM, the parallel one consists of k 1-ported

SRAMs, yielding the same or better false positives rate.

...

h
0

h
1

bit 2
m

h
k−1

1

0

0

0

1

1

0

...

..
.

insertion

query

INDEXES

REGULAR
BLOOM FILTER

bit 1

?

A
D

D
R

E
S

S

bit 0

...

h
0

h
1

0

1

of 2 /k bitsm
k segments

bit 2
m

h
k−1

1

0

1

0

..
.

insertion

query

INDEXES

BLOOM FILTER

...

PARALLEL

bit 0

bit 1

A
D

D
R

E
S

S

?

Figure 1. Regular Bloom filter vs. Parallel Bloom filter

Figure 1 shows the implementation of both filters, regular

and parallel.

The same paper [15] concludes that Bloom filters should

include H3 class hash functions [16], instead of bit-selection

hash functions [17], since they are closer to random distribu-

tion. However, H3 hashings are hardware expensive and need

an xor tree per hash bit. An alternative hardware-efficient

implementation of hash functions, Page-Block-XOR hashing

(PBX), has been proposed in [18].

Notary [18] also proposes a technique to reduce the

number of asserted bits in the signature. However, their

approach is completely different to ours and it is based

on segregating addresses into private and shared sets. Then,

only the shared addresses are recorded in the signature. This

solution requires support at the compiler, runtime/library and

operating system levels. In addition, the programmer must

define which objects are private or shared. Our approach,

however, require neither software support nor the help of

the programmer and, in any case, it could be used combined

with every technique in [18].

Signatures have been adopted by several HTM systems

instead of keeping transactional state in the cache memory.

Modifying caches to track transactional information have

been proved to pose major constraints into TM virtualization

since transactions are limited to cache sizes, scheduling

time-slice (quantum), migration problems,... Also, cache

memories are critical fine-tuned structures that should not

be modified by including additional hardware. Signatures

are used to enforce sequential consistency in BulkSC [9].

LogTM-SE [10] uses them in the directory and it en-

sures paging and context switching with global signatures.

SigTM [11] is similar to LogTM-SE. Finally, VTM [8] uses

a global signature for cache victimization.

III. LOCALITY SENSITIVE SIGNATURES

This section discusses how we can take advantage of the

memory reference locality property to reduce the probability

of false conflicts in signatures implemented as Bloom filters.

For subsequent use, we will consider a Bloom fil-

ter that maps a space of 2n memory addresses,

A = {0, 1, ...2n − 1}, into an array of 2m bits (indexes),

B = {0, 1, ...2m − 1}, m ≤ n, through a family of k hash

functions, {h0, h1, ...hk−1}. We will consider hash functions

of the class H3 because they exhibit a high quality behavior

for real memory address streams [15]. Functions in the

class H3 basically define a linear transform between an n-

bit word and an m-bit word: hi :GF (2)1×n → GF (2)1×m,

being GF (2) the Galois field of two elements [19], under the

bitwise xor. Two basic primitives over the Bloom filter are

defined: (i) inserting an address x by asserting its mapped

bits (hi(x) = 1), and (ii) checking if an address has been

already inserted by testing if all its corresponding mapped

bits are set to 1. We will denote as BF (x0, x1, ...xs−1) the

set of asserted bits in the Bloom filter after inserting the

sequence of s addresses x0, x1, x2...xs−1. This set is given

by
⋃s−1

i=0 BF (xi), being BF (x) =
⋃k−1

j=0 hj(x).
Note that false positives arise from two situations. First, an

address y (not inserted) gives rise to a false positive if there

exists x inserted in the Bloom filter and BF (y) = BF (x),
y 6= x. In such a case, we say that x and y are aliases,

that is, their mappings through the hash functions hi are the

same. In a Bloom filter, the probability of two addresses

being aliases depends on the particular hash functions and

the number of them, k. For higher k this probability be-

comes smaller. Second, a false positive may appear due

to the current occupancy of the filter. This happens for a

non inserted address y after the insertion of s addresses

if BF (y) ⊂ BF (x0, x1, ...xs−1) and y is not alias of

any xi. However, a false positive takes place. The higher

filter occupancy, the higher probability of false positive is

expected. In fact, if the filter saturates (all bits set to 1) all

subsequent queries for non-inserted addresses become false

positives.

In general, small data set transactions, a common

case [20], occupy a small fraction of the Bloom filter and,

hence, show most of the false positives due to aliases and

only a few ones due to filter occupancy. However, large

data set transactions could exhibit an important amount of

false positives due to the high filter occupancy. Note that

reducing the number of hash functions, k, helps large data

set transactions but not small ones and vice versa [15].

Memory reference locality is a property that may be used

to favor small and large transactions at the same time. Our

proposal is to build a Bloom filter that maps locations far

away each other as normal Bloom filters do, but it maps

nearby locations sharing some bits, but not all. This way,

k can be chosen highly enough to favor small transactions

and, at the same time, favoring large ones by reducing the

occupancy of the filter thanks to locality.

Different locality or distance-sensitive hashing schemes

have been introduced in the literature. They are used to

formulate queries of similarity in metric spaces using com-

pact representations of objects [21], [22], [23]. Inspired by

such definitions we will now introduce a formal general

signature scheme that takes into account locality of reference

to lower the occupancy of the filter when nearby addresses

are inserted.

Definition 1: Let be a Bloom filter that maps a space

of 2n memory addresses, A, into a space of 2m bits, B,

m ≤ n, through a family of k hash functions of the class

H3, and let (A, d) and (℘(B), dh) be two metric spaces.

Such a Bloom filter is called (r, δ)-locality sensitive, with

r ∈ N and δ : N → N, if, for any x, y ∈ A, it satifies that,

• if 1 ≤ d(x, y) ≤ r then 1 ≤ dh(BF (x), BF (y)) ≤
δ(d(x, y)) < k,

In a Bloom filter designed according to this definition,

nearby locations assert not-disjoint bit sets into the bit array,

i.e. they share some bits. The function d returns the distance

between two addresses and may be considered as the value

of the bitwise xor, d(x, y) = x ⊕ y, although the euclidean

distance, d(x, y) = |x − y|, can also be suitable. Regarding

to dh, a usual metric of the distance between two sets is

the cardinality of the symmetric difference. Nevertheless,

we define dh(BF (x), BF (y)) = k − |BF (x) ∩ BF (y)|,
that basically measures the number of different hash function

outputs when addresses x and y are mapped. As |BF (x)| =
k, this metric is a half of the cardinality of the symmetric

difference of two sets.

Observe in Def. 1 that parameter r is the radius of action

of locality-sensitive signatures. Addresses whose distance is

greater than r are mapped as though by a generic Bloom

filter. As well, the function δ(d(x, y)) can be chosen to

increase with d(x, y), in such a way that nearer addresses

map into sets of bits less disjoint.

An example of a locality-sensitive signature scheme is

shown in Table I, where the output of the k hash functions

are computed for a sequence of adjacent locations. Observe

that for addresses with d(x, y) = x ⊕ y = 1, the number

of hashing outputs with different values is 1. Addresses

with distance 2 are different in no more than 2 hashing

outputs. On the other hand, addresses with distance greater

than 2k−1 − 1 may have no hashing outputs in common.

A. Implementation

This section introduces an implementation of a locality-

sensitive signature scheme by defining some particular hash

functions. Our implementation is an instance of Def. 1,

where k = 4, d(x, y) = x ⊕ y, dh(BF (x), BF (y)) =
k − |BF (x) ∩ BF (y)|, r = 2k−1 − 1 = 7 and:

δ(d(x, y)) =

1 if d(x, y) = 1
2 if 2 ≤ d(x, y) ≤ 3
3 if 4 ≤ d(x, y) ≤ 7

Next, we describe the way to define the H3 matrices corre-

sponding to the parameters above.

As H3 functions under consideration map addresses lin-

early into indexes, they can be completely characterized by

Table I
EXAMPLE OF LOCALITY-SENSITIVE SIGNATURE: ADDRESSES AND ITS

CORRESPONDING H3 INDEXES FOR A BLOOM WITH K=4, 2m=1024

Address h0 h1 h2 h3

0xffff0 240 158 889 554

0xffff1 586 158 889 554

0xffff2 90 347 889 554

0xffff3 736 347 889 554

0xffff4 181 906 484 554

0xffff5 527 906 484 554

0xffff6 31 591 484 554

0xffff7 677 591 484 554

0xffff8 718 497 62 163

0xffff9 116 497 62 163

0xffffa 612 52 62 163

0xffffb 222 52 62 163

0xffffc 651 741 675 163

0xffffd 49 741 675 163

0xffffe 545 800 675 163

0xfffff 155 800 675 163

a matrix in GF (2)n×m [19]:

H =

hn−1,m−1 hn−1,m−2 · · · hn−1,0

hn−2,m−1 hn−2,m−2 · · · hn−2,0

...
...

...

h0,m−1 h0,m−2 · · · h0,0

. (1)

Essentially, it is a (n×m) binary matrix whose coefficient

hi,j is 1 if the bit i of the address is an input bit of the xor

tree which computes the bit j of the index. The hash output

b = h(a) = [bm−1...b1b0] of an n-bit address with binary

expression a = [an−1...a1a0] is computed as follows:

[bm−1...b1b0] = [an−1...a1a0]H. (2)

For example, a hash function mapping a space of 24

addresses into 22 possible indexes is:

h(a) = [a3a2a1a0]

1 0
1 1
0 1
1 0

= [a3 ⊕ a2 ⊕ a0, a2 ⊕ a1].

A Bloom filter with k hash functions is characterized by

k H3 matrices {H0,H1, ...,Hk−1}.

Hence, the locality-sensitive scheme with the aforemen-

tioned parameters can be implemented as k H3 matrices that,

when computing the function hl, l ∈ {0, 1, ..., k − 1}, the l
least significant bits of the address do not participate in the

computation. This results in a matrix for the hash function

hl of the form:

Hl =

hl
n−1,m−1 hl

n−1,m−2 · · · hl
n−1,0

hl
n−2,m−1 hl

n−2,m−2 · · · hl
n−2,0

...
...

...

hl
l,m−1 hl

l,m−2 · · · hl
l,0

0 0 · · · 0
... (l null rows)

...

0 0 · · · 0

. (3)

The example in Table I has been generated following this

scheme. This way, the 3 last rows of H3, the 2 last rows of

H2 and the last row of H1 are null, whereas H0 has no null

rows.

Since the proposed locality-sensitive signatures can be

considered as particular cases of Bloom filters, they do not

require any additional hardware. Furthermore, the xor trees

could be even simpler insomuch as several hash functions

do not make use of certain bits of the address. They can also

be implemented directly following a parallel Bloom organi-

zation [15]. In addition, this locality-sensitive scheme can

be easily combined or extended to other implementations,

like the PBX hashing [18].

B. Evaluation

We now present an evaluation of our locality-sensitive

signatures compared to the general case, which is discussed

in [15]. Consider a sequence of addresses, x0, x1, ...xs−1,

to be inserted in a generic Bloom filter. As each hash

function maps one address into one of 2m possible bits, the

probability of one bit being asserted is 1
2m

, assuming that

the outputs of the hash function are uniformly distributed.

Hence, the probability of a bit remaining zero is 1 − 1
2m

.

After the insertion of s addresses using k hash functions per

address, the probability of a bit being zero is

pZERO(m, k, s) =

(

1 −
1

2m

)sk

, (4)

assuming that the outputs of the hash functions are indepen-

dent.

To get a positive match, all the k bits checked must be

asserted. Thus, the probability of a positive is:

pPOSITIVE(m, k, s) = (1 − pZERO)
k =

(

1 −

(

1 −
1

2m

)sk
)k

.

(5)

A test for membership is a true positive for the s addresses

inserted so far, but not for the remaining R − s addresses

that also get a positive match, being R the number of total

positives. So, the probability of getting a false positive is

the probability of both getting a positive and not being an

inserted address [15]. According to Bayes’ rule:

pFALSE POSITIVE(m, k, s) = pPOSITIVE(m, k, s)
R − s

R
≈

≈ pPOSITIVE(m, k, s).
(6)

This approximation assumes that the number of total posi-

tives in the space under test is much larger than the number

of inserted addresses (R ≫ s).

We now proceed to adapt this general expression to

the locality-sensitive signatures of Def. 1. For the sake

of simplicity we analyze the case of d(x, y) = |x − y|,
δ(d(x, y)) = 1 and r = 1, that is, contiguous addresses

share k − 1 hash function outputs. Let f be the probability

of an address xj being contiguous to another address xi

already inserted in the filter:

f = Pr(d(xi, xj) = 1). (7)

Now, the probability of filter bits being zero for non

contiguous inserted addresses still follows the expression (4).

Nevertheless, two contiguous addresses do not assert k bits

each one. Instead, they assert only k + 1 bits between the

two of them, according to the definition and the chosen

δ(d(x, y)). Since the proportion of contiguous and non

contiguous addresses is fs and (1 − f)s respectively, the

probability of a bit remaining zero for the locality-sensitive

scheme can be written as:

plocal

ZERO
(m, k, s, f) =

(

1 −
1

2m

)s(1−f)k (

1 −
1

2m

)sf

. (8)

Thus, analogously to expressions (5) and (6), the prob-

ability of false positives for the locality-sensitive signature

can be expressed as:

plocal

FALSE POSITIVE
(m, k, s, f) =

(

1 −

(

1 −
1

2m

)s(1−f)k+sf
)k

.

(9)

However, the expression above must be adapted to our

locality-sensitive signature with the parameters described

in Section III-A. Indeed, we can observe in the example

in Table I that not all contiguous addresses share k − 1
hash function outputs. In fact, this happens only for a half

of the contiguous pairs. This involves that the distance

dh(BF (x), BF (y)) takes a range of values with certain

probability instead of a fixed value for addresses x, y at

distance 1. Considering our implementation with k = 4,

we can infer from Table I the average number of different

bits asserted by an address with respect to its preceding

contiguous one:

b̄ =

k
∑

i=1

i Pr(dh(BF (x), BF (y))= i | d(x, y) = 1) =

= 1 · 1/2 + 2 · 1/4 + 3 · 1/8 + 4 · 1/8 = 15/8.
(10)

Finally, this factor is inserted in expression (9) to correct

the false positives rate. Therefore, the probability of false

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
f=0

f=0.2

f=0.4

f=0.6

f=0.8

f=1

Number of addresses inserted

P
ro

b
a

b
ili

ty
 o

f
fa

ls
e

 p
o

s
it
iv

e
s

Generic vs Locality−sensitive signatures, 1024 bits

Generic k=4

Generic k=2

Generic k=1

Analytical locality k=4

Simulated locality k=4

Figure 2. Probability of false positives of generic and locality-sensitive
signatures varying f . Simulated values are also shown

positives of our proposed locality-sensitive scheme is:

plocal

FALSE POSITIVE
(m, k, s, f) =

(

1 −

(

1 −
1

2m

)s(1−f)k+sfb̄
)k

.

(11)

We verified via simulation the expression (11). For that

purpose, synthetic address traces were generated fulfilling

the definition of f given by expression (7). The probability

of false positives was measured using these traces as input to

an implementation of our locality-sensitive signatures based

on GEMS H3 hash matrices (See Section IV-A). In these

simulations the probability of false positives was computed

traversing the whole address space keeping track of those

non inserted addresses that result in positive matches. Sim-

ulation results are depicted in Figure 2 together with the an-

alytical plots derived from expression (11). In addition, three

graphs are included corresponding to the generic Bloom

filter for different k values, according to expression (6).

Figure 2 shows that best results are obtained with k = 4
for small transactions (below 200 inserted addresses). How-

ever, for larger transactions the probability of false positives

increases rapidly if k = 4 and, best results are obtained in

this case if k = 1. Conversely, our locality-sensitive scheme

achieves the best of both situations, as long as the input

address sequence exhibits enough locality.

C. Locality in benchmarks

Prior to include locality-sensitive signatures in a cycle

accurate HTM simulator, a straightforward functional TM

system was developed to estimate the locality properties

of the benchmarks used to evaluate our proposal (see

Section IV-B). Intel’s PIN instrumentation tool [24] was

used to quickly implement the system. PIN intercepts the

0

10

20

30

40

50

60

BAYES

GENOME

IN
TRUDER

KMEANS

LABYRIN
TH

SSCA2

VACATIO
N

YADA

A
v
e
ra

g
e
 o

c
c
u
p
a
n
c
y
 s

a
v
in

g
 (

%
)

Occupancy saving of locality−sensitive
signatures with respect to generic ones

RS

WS

Figure 3. Average Bloom filter occupancy saving of locality-sensitive
signature with respect to generic signature

execution of the first instruction of a program and in-

struments it dynamically. To implement the TM system

we developed routines that analyse benchmark instructions

until an “open xact()” is found. Next, instrumentation code

keeps track of transaction data sets and the log. In case

of a conflict, the requester aborts. When a “commit xact()”

instruction is found, the transaction commits.

Our PIN TM simulator was programmed to record

the number of bits set to 1 on each signature (occu-

pancy) of committed transactions, for both generic and

locality-sensitive signatures. Figure 3 shows the aver-

age occupancy saving percentage of locality-sensitive sig-

natures with respect to generic ones for each bench-

mark (saving=
occupancy generic−occupancy locality

occupancy generic
). The results

have been obtained with 64K-bit filters in order to get

rid of occupancy conflicts. Occupancy saving involves to

diminish the probability of transactions stalling or aborting

due to false positives. Hence, these important savings in the

occupancy of the locality-sensitive signature are expected to

be translated into execution time improvements.

We can determine an effective value of the parameter

f , feff, for the different benchmarks in order to locate

them in Figure 2. Assuming s ≪ 2m, that is, the filter is

far from saturation, the locality-sensitive filter occupancy

can be obtained from the exponent of the expression (11),

s(1 − f)k + sf b̄, from which the values shown in Table II

are derived.

IV. EXPERIMENTAL EVALUATION

This section describes the simulation environment and

methodology (Section IV-A), the STAMP benchmark suite

used to evaluate our proposal (Section IV-B) and the

experimental results obtained from the simulator (Sec-

tions IV-C and IV-D).

Table II
ESTIMATION OF EFFECTIVE f FOR STAMP BENCHMARKS

Benchmark fRS
eff fWS

eff

Bayes 0.85 0.98

Genome 0.48 0.50

Intruder 0.44 0.41

Kmeans 0.96 0.96

Labyrinth 0.86 0.88

SSCA2 0.37 0.18

Vacation 0.32 0.57

Yada 0.67 0.75

A. Simulation environment and methodology

The simulation environment comprises a full system

execution-driven simulator called Simics [25] in conjunc-

tion with the HTM module GEMS [13] provided by the

Wisconsin Multifacet Project as open-source.

On one hand, Simics simulates the SPARC architecture

and it is able to run an unmodified copy of a Solaris

operating system. Solaris 10 was installed on the simulated

machine and all workloads run on top of it. On the other

hand, GEMS’s Ruby module implements the LogTM-SE

HTM [10] and also includes a detailed timing model for

the memory system. Ruby was modified to include our

locality-sensitive signature design, both parallel and regular.

Same H3 matrices of Ruby have been used to implement

the hash functions adding the modifications described in

Section III-A.

The base CMP system consists of 16 in-order, single-issue

cores. Each core has a 32KB split, 4-way associative, 64B

block private L1 cache. L2 cache is unified, 8MB capacity,

16-bank, 8-way associative, and 64B block size. A packet-

switched interconnect with 64B links connects the cores

and cache banks. Cache coherence implements the MESI

protocol and maintains an on-chip directory which holds a

bit vector of sharers. Main memory is 8GB.

Simulation experiments use perfect signatures (no false

positives, hardware unimplementable) as the goal to reach.

Regular and parallel signatures, both generic and locality-

sensitive ones, range from 64 bits to 8K bits length1 to gain

a comprehensive insight into locality-sensitive signatures

behavior. All signatures use 4 hash functions.

Finally, Ruby adds pseudorandom delays to the latency

of memory accesses to deal with variability in simulation

experiments. Therefore, multiple runs of each experiment

have been done to obtain confident error bars [26].

B. Workloads

All the workloads used in this paper belong to the

Stanford’s STAMP suite [14]. This suite is designed for

164 bits matches the word length in SPARC architecture whereas 8K bits
matches the performance of perfect signatures for the simulated benchmarks

Table III
WORKLOADS: INPUT PARAMETERS AND TM CHARACTERISTICS

Bench Input #xact Time Xact max max
in xact locality ¯|RS| ¯|WS| |RS| |WS|

Bayes -v32 -r1024 -n2 523 94% High 76.9 40.9 2067 1613

-p20 -s0 -i2 -e2

Genome -g512 -s64 -n8192 30304 86% Mid 12.1 4.2 400 156

Intruder -a10 -l128 -n128 -s1 12123 96% Mid 19.1 2.5 267 20

Kmeans -m40 -n40 -t0.05 1380 6% High 99.7 48.5 134 65

-i rand-n1024-d1024-c16

Labyrinth -i rand-x32-y32-z3-n64 158 100% High 76.5 62.9 278 257

SSCA2 -s13 -i1.0 -u1.0 -l3 -p3 47295 19% Low 2.9 1.9 3 2

Vacation -n4 -q60 -u90 24722 97% Mid 19.7 3.6 90 30

-r16384 -t4096

Yada -a20 -i 633.2 5384 100% High 62.7 38.4 776 510

Transactional Memory research and includes a wide range

of applications laying emphasis on those with long-running

transactions and large read and write sets. Such benchmarks

are of special interest for signature evaluation since they

put the most pressure in signatures. STAMP workloads have

been adapted to GEMS by applying Luke Yen’s patches from

the University of Wisconsin, Madison.

Specifically, the patches introduce the following changes

to the benchmarks: (i) every thread is bound to a processor

to keep the operating system from descheduling it; (ii) a

per-thread memory pool is used instead of “malloc” to

allocate dynamic data; (iii) these memory pools are traversed

before starting computation in order to avoid page faults

inside transactions; (iv) shared data structures are padded to

avoid false sharing at cache line level; (v) library functions

used inside transactions are also called before entering

transactions to let the linker fill in the Procedure Linkage

Table (PLT) (vi) some transactions in Vacation benchmark

have been split to improve scalability for small signatures;

(vii) in Labyrinth benchmark, the code that privatizes the

grid is enclosed in an open transaction to avoid inserting in

the signature those reads. Regarding change (ii), a modified

version of the memory pool library provided by STAMP was

used.

Table III summarizes the input parameters and main trans-

actional characteristics of the benchmarks. Column “#xact”

shows the number of committed transactions. Column “Time

in xact” lists the percentage of execution cycles of the

benchmark staying inside transactions. A metric for locality

in benchmarks, column “Xact locality”, was obtained from

Table II. The last columns stand for the average and the

maximum values of RS and WS size distributions in cache

lines.

C. GEMS results

The results obtained from each workload simulation are

shown in Figures 4 and 5. Figure 4 depicts the execution

time, measured in Ruby cycles, normalized to perfect sig-

natures (no false positives) comparing generic and locality-

sensitives schemes for both regular and parallel implemen-

tations. Figure 5 shows the results in terms of speedup.

Observe that locality-sensitive signatures perform better or

similar than generic ones for most cases. They slightly

increase the execution time only for a few configurations.

From these results we distinguish three different groups

of behavior, namely:

1) SSCA2: This workload exhibits the smallest transac-

tions of the whole suite. RS and WS maximum sizes

are only 3 and 2 cache lines, respectively. Moreover,

the benchmark spends most of the time outside trans-

actions (see Table III). Hence, SSCA2 is not signature

size sensitive, as Figures 4 and 5 show.

2) Kmeans, Vacation, Intruder and Labyrinth: These

benchmarks show similar behavior when signature

size decreases. Locality-sensitive signatures reduce,

in some cases considerably, the execution time. They

always either outperform or match the performance of

generic signatures.

Kmeans is low contended and spends only 6% of time

in transactions, so it is not too signature dependent

(Figure 5 shows a speedup of only 1.16 for the best

case). Even so, parallel locality-sensitive signatures

reduce execution time of generic ones when 128-bit

filters are used since transactions are medium size and

exhibit high locality (see Table II).

In Vacation, locality-sensitive signatures match the

execution time of generic signatures because of mid-

locality and medium-to-small transactions. It is 25%

better for 128-bit signatures since the maximum data

set size (max RS size is 90) is close to the signature

size and generic signatures have higher occupancy.

Vacation is high contended and does not scale for 64-

bit signatures and 4 hash functions.

64 128 256 512 1K 2K 4K 8K
0

1

2

3

4

5

6

7
Bayes

Signature size (bits)

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
 t
o
 P

e
rf

e
c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

64 128 256 512 1K 2K 4K 8K
0.5

1

1.5

2

2.5

3

3.5

4
Genome

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

64 128 256 512 1K 2K 4K 8K
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Intruder

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

64 128 256 512 1K 2K 4K 8K
0.95

1

1.05

1.1

1.15

1.2

1.25
Kmeans

Signature size (bits)

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
 t
o
 P

e
rf

e
c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

256 512 1K 2K 4K 8K
0

5

10

15

20

25

30

35

40
Labyrinth

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

64 128 256 512 1K 2K 4K 8K
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Ssca2

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

128 256 512 1K 2K 4K 8K
0

1

2

3

4

5

6
Vacation

Signature size (bits)

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
 t
o
 P

e
rf

e
c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

64 128 256 512 1K 2K 4K 8K
1

2

3

4

5

6

7

8

9
Yada

Signature size (bits)

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
 t
o
 P

e
rf

e
c
t)

Reg Generic

Reg Locality

Par Generic

Par Locality

Figure 4. Execution time normalized to perfect signature (no false positives) comparing generic and locality-sensitives schemes for both regular and
parallel implementations, with k=4

64 128 256 512 1K 2K 4K 8K
0.5

0.75

1

1.25

1.5

1.75

2
Bayes

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

64 128 256 512 1K 2K 4K 8K
0.5

0.75

1

1.25

1.5
Genome

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

64 128 256 512 1K 2K 4K 8K
0.5

0.75

1

1.25

1.5
Intruder

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

64 128 256 512 1K 2K 4K 8K
0.5

0.75

1

1.25

1.5
Kmeans

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

256 512 1K 2K 4K 8K
0.5

1

1.5

2

2.5

3

3.5

4
Labyrinth

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

64 128 256 512 1K 2K 4K 8K
0.5

0.75

1

1.25

1.5
Ssca2

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

128 256 512 1K 2K 4K 8K
0.5

0.75

1

1.25

1.5
Vacation

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

64 128 256 512 1K 2K 4K 8K
0.5

1

1.5

2

2.5

3
Yada

Signature size (bits)

S
p

e
e

d
u

p

Regular

Parallel

Figure 5. Speedup of locality-sensitive signatures over generic versions for both regular and parallel implementations, with k=4

Table IV
RETRIES PER TRANSACTION AND AVERAGE ABORT DELAY IN CYCLES

(RETRIES/ABORT TIME) FOR BAYES, YADA AND GENOME

BENCHMARKS. SIGNATURE SIZE IS 256 BITS.

Signature Bayes Genome Yada

Reg Generic 41.5/2467 0.139/46603 5.2/2844

Reg Locality 33.7/2495 0.137/47538 4.6/3512

Par Generic 46.3/2324 0.139/46503 5.2/2844

Par Locality 44.3/2385 0.136/51221 4.5/4216

Intruder shows a behavior similar to Vacation with

25% execution time reduction for small signatures.

Finally, Labyrinth shows up a great improvement

in performance. Regular locality-sensitive signatures

exhibit a speedup of almost 4 for 512-bit signatures.

High locality, large transactions in average (both RS

and WS) and high contention make locality-sensitive

signatures to remarkably outperform generic ones.

3) Bayes, Genome, Yada: Locality-sensitive signatures

yield better results than generic ones for large sig-

natures but they are slightly worse for small ones

in these benchmarks. This behavior is related to the

way in which LogTM-SE resolves conflicts. LogTM-

SE stalls transactions that request for a conflicting

address, retries its coherence operation, and aborts on

a possible deadlock cycle.

Table IV shows the number of retries (aborts) per

transaction along with the average abort delay for

the three benchmarks and the four different signatures

when the signature size is 256 bits. These statistics

show up that locality-sensitive signatures decreases

the number of aborts but the abort delay increases.

Hence, transactions are able to run for a longer time

before encountering a conflict, since locality-sensitive

signatures yield better false conflict rate even on small

signatures, but on abort they must undo the log that

is now longer than if the conflict was detected earlier.

Note that decreasing false positive rate in signatures

does not necessarily involve a direct improvement in

performance. Other factors, like abort patterns, may

prevail.

Even despite of the aforementioned execution time

loss, locality-sensitive signatures still perform bet-

ter than generic ones for large signatures in these

benchmarks. Yada shows a significant execution time

saving for 2K-bit signatures. Regular locality-sensitive

signatures are up to 3 times faster than generic ones.

D. Saving hardware

Locality-sensitive signatures can be thought of to enable

smaller signature sizes opposed to only improving false-

conflicts.

Figure 4 shows that Yada and Labyrinth yield the same

results if we use a parallel locality-sensitive signature with

half size of generic ones. Intruder and Genome behave sim-

ilar but we get slightly worse results halving the signature.

Vacation and Bayes could be in the same group as Yada and

Labyrinth, however, we should not halve the signature size

from 256 bit downward.

V. CONCLUSIONS

A novel signature design that takes advantage of locality

of memory references has been proposed in the context of

transactional memory. Our proposal, called locality-sensitive

signature, is based on Bloom filters with H3 hash functions,

and it is aimed to reduce the number of false positives ex-

isting in generic schemes with the expectation of improving

the execution of concurrent transactions.

We have implemented locality-sensitive signatures in the

Wisconsin GEMS simulator and we have evaluated them

using the STAMP benchmark suite. Results show that our

signature proposal improves benchmark performance in

most cases, specially for large-set long-running transactions,

where the probability of false positives may be higher.

As a remarkable feature our proposal do not require extra

hardware with respect to generic signatures.

We may conclude that parallel locality-sensitive signatures

are a good alternative to generic ones since they yield similar

or better performance at the same cost.

ACKNOWLEDGMENT

The authors would like to thank Dr. Luke Yen from the

University of Wisconsin, Madison, for providing his patches

to adapt STAMP workloads to GEMS simulator. This work

has been supported by the Ministry of Education of Spain

with project CICYT TIN2006-01078.

REFERENCES

[1] D. Geer, “Industry trends: Chip makers turn to multicore
processors,” IEEE Computer, vol. 38, no. 5, pp. 11–13, 2005.

[2] J. Larus and R. Rajwar, Transactional Memory. Morgan &
Claypool Pub., 2007.

[3] M. Herlihy and J. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” in 20th Ann. Int’l.
Symp. on Computer Architecture (ISCA’93), 1993, pp. 289–
300.

[4] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,
B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun, “Transactional memory coherence and consis-
tency,” in 31th Ann. Int’l. Symp. on Computer Architecture
(ISCA’04), 2004, pp. 102–113.

[5] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson,
and S. Lie, “Unbounded transactional memory,” in 11th
Int’l. Symp. on High-Performance Computer Architecture
(HPCA’05), 2005, pp. 316–327.

[6] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood,
“LogTM: Log-based transactional memory,” in 12th
Int’l. Symp. on High-Performance Computer Architecture
(HPCA’06), 2006, pp. 254–265.

[7] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disam-
biguation of speculative threads in multiprocessors,” in 33th
Ann. Int’l. Symp. on Computer Architecture (ISCA’06), 2006,
pp. 227–238.

[8] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional
memory,” in 32th Ann. Int’l. Symp. on Computer Architecture
(ISCA’05), 2005, pp. 494–505.

[9] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC:
Bulk enforcement of sequential consistency,” in 34th Ann.
Int’l. Symp. on Computer Architecture (ISCA’07), 2007, pp.
278–289.

[10] L. Yen, J. Bobba, M. Marty, K. Moore, H. Volos, M. Hill,
M. Swift, and D. Wood, “LogTM-SE: Decoupling hardware
transactional memory from caches,” in 13th Int’l. Symp. on
High-Performance Computer Architecture (HPCA’07), 2007,
pp. 261–272.

[11] C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun, “An effective
hybrid transactional memory system with strong isolation
guarantees,” in 34th Ann. Int’l. Symp. on Computer Archi-
tecture (ISCA’07), 2007, pp. 69–80.

[12] B. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the ACM, vol. 13, no. 7, pp.
422–426, 1970.

[13] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood, “Mul-
tifacet’s general execution-driven multiprocessor simulator
GEMS toolset,” ACM SIGARCH Comput. Archit. News,
vol. 33, no. 4, pp. 92–99, 2005.

[14] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun,
“STAMP: Stanford Transactional Applications for Multi-
Processing,” in IEEE Int’l Symp. on Workload Characteri-
zation (IISWC’08), 2008, pp. 35–46.

[15] D. Sanchez, L. Yen, M. Hill, and K. Sankaralingam, “Imple-
menting signatures for transactional memory,” in 40th Ann.
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO’07),
2007, pp. 123–133.

[16] L. Carter and M. Wegman, “Universal classes of hash func-
tions,” J. Computer and System Sciences, vol. 18, no. 2, pp.
143–154, 1979.

[17] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient
hardware hashing functions for high performance computers,”
IEEE Trans. on Computers, vol. 46, no. 12, pp. 1378–1381,
1997.

[18] L. Yen, S. Draper, and M. Hill, “Notary: Hardware techniques
to enhance signatures,” in 41st Ann. IEEE/ACM Int’l Symp.
on Microarchitecture (MICRO’08), 2008, pp. 234–245.

[19] H. Vandierendonck and K. De Bosschere, “XOR-based hash
functions,” IEEE Trans. on Computers, vol. 54, no. 7, pp.
800–812, 2005.

[20] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D.
Carlstrom, C. Kozyrakis, and K. Olukotun, “The common
case transactional behavior of multithreaded programs,” in
12th Int’l Symp. on High Performance Computer Architecture
(HPCA’06), 2006, pp. 266–277.

[21] M. Charikar, “Similarity estimation techniques from rounding
algorithms,” in 34th Ann. ACM Symp. on Theory of Comput-
ing (STOC’02), 2002, pp. 380–388.

[22] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in 30th Ann.
ACM Symp. on Theory of Computing (STOC’98), 1998, pp.
604–613.

[23] A. Kirsch and M. Mitzenmacher, “Distance-sensitive bloom
filters,” in 8th Workshop on Algorithm Engineering and
Experiments (ALENEX’06), 2006, pp. 41–50.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood, “PIN:
Building customized program analysis tools with dynamic
instrumentation,” in ACM SIGPLAN Conf. on Programming
Languages Design and Implementation (PLDI’05), 2005, pp.
190–200.

[25] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, B. Werner,
and B. Werner, “Simics: A full system simulation platform,”
IEEE Computer, vol. 35, no. 2, pp. 50–58, 2002.

[26] A. R. Alameldeen and D. A. Wood, “Variability in archi-
tectural simulations of multi-threaded workloads,” in 9th
Int’l Symp. on High-Performance Computer Architecture
(HPCA’03), 2003, pp. 7–18.

