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Abstract

The problem of managing multi-service applications on top of Cloud-Edge networks
in a QoS-aware manner has been thoroughly studied in recent years from a decision-
making perspective. However, only a few studies addressed the problem of actively
enforcing such decisions while orchestrating multi-service applications and consid-
ering infrastructure and application variations. In this article, we propose a next-gen
orchestrator prototype based on Docker to achieve the continuous and QoS-compliant
management of multiservice applications on top of geographically distributed Cloud-
Edge resources, in continuity with CI/CD pipelines and infrastructure monitoring
tools. Finally, we assess our proposal over a geographically distributed testbed across
Italy.
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1 INTRODUCTION

To support the growth of the Internet of Things (IoT) devices, new infrastructural architectures have been proposed, relying on
computing, storage and, networking resources along the so-called Cloud-Edge continuum1. Most of them – e.g., Fog, Edge, Mist
computing2,3 – are based on the idea of employing computational capabilities closer to application end-users or, more generally,
to data sources. Such a continuum is characterised by its high dynamicity, device/connection heterogeneity, and availability of
resources4.

In contrast with the Cloud paradigm, the Cloud-Edge continuum can better support the deployment of next-gen IoT applica-
tions, usually featuring strict run-time constraints on, for instance, required IoT devices, latencies, and bandwidth availability
(e.g., virtual reality, remote surgery, online gaming)5. Indeed, such applications are developed in the form of (possibly)

0Abbreviations: IoT, Internet of Things; CI/CD, Continuous Integration/Continuous Deployment; QoS, Quality of Service.
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FIGURE 1 Bird’s-eye view of FogArm.

hundreds of interacting microservices, each with its own peculiar requirements. As Cloud-Edge resources, also modern appli-
cations rapidly evolve over time, being continuously and collaboratively developed and released through automated tools in the
Continuous Integration/Continuous Deployment (CI/CD) pipelines6.

In this context, much literature focused on determining the best QoS- and context-aware placements1 of multiservice IoT appli-
cations to Cloud-Edge infrastructures, by mainly exploiting search-based and mathematical programming solutions, e.g.,7,8,
and9. However, even if the compelling need for QoS-aware methodologies to place and manage application services onto Cloud-
Edge infrastructure efficiently is evident10,11,12,13, most existing proposals only referred to simulated environments due to the
lack of orchestration platforms capable of monitoring the needed QoS attributes, and to limited availability of Cloud-Edge
testbeds14. Particularly, the problem of designing platforms and methodologies for the orchestration and management of multi-
service applications in a Cloud-Edge setting is a challenging one, having to deal with the scale and dynamicity of Cloud-Edge
networks and of next-gen applications, but has only been marginally addressed.

In light of these needs, new solutions to support the QoS-aware orchestration and management of next-gen multiservice
distributed applications suited for Cloud-Edge infrastructures could bring several benefits. To the best of our knowledge, none
of the most popular orchestrators for managing digital infrastructures and services (e.g., Docker Swarm, Kubernetes) supports
a continuous (i.e., incremental and differential) decision-making process that implements a scalable, QoS- and context-aware
orchestration of microservices, ensuring suitable service placement and deployment on top of highly dynamic infrastructures,
in continuity with the CI/CD pipeline and always (re-)considering the current infrastructure conditions.

In this article, we design and develop a next-gen prototype orchestrator2, FogArm, to achieve the continuous and QoS-
compliant management of multiservice applications on geographically distributed Cloud-Edge networks, in continuity with
CI/CD pipelines and infrastructure monitoring tools. We also assess the performance of our orchestrator over a real-world,
geographically distributed testbed.

As shown in Fig. 1 , FogArm, interacts with a monitoring tool (FogMon in our case15), and with FogBrainX16, a declarative
continuous reasoning3 the time needed to make informed management decisions. On the other hand, it can reduce the number of
management operations needed to adapt the current deployment to the new infrastructure conditions, by avoiding unnecessary
service migrations. engine to make informed service placement and migration decisions for next-gen multiservice applications.
FogBrainX, through continuous (i.e., incremental, differential) reasoning, provably reduces the time needed to make management
decisions when only part of running application deployment is affected by changes in the Cloud-Edge infrastructures (e.g.,
crash of a node hosting a service, degraded network QoS) or when the application itself changes (e.g., changed application
requirements, addition or removal of application services). FogArm integrates these two external tools to enhance its capabilities.
FogMon enables FogArm to continuously monitor the state of a distributed, Fog infrastructure and to spot QoS changes (e.g., link
degradation, node failure). FogBrainX, instead, is exploited by FogArm to compute on-demand suitable management decisions
(e.g., migration of a service) to always comply with the QoS application objectives.

To the best of our knowledge, FogArm represents a first complete prototype of a next-gen orchestrator for the continuous
QoS-compliant management of multiservice applications on top of geographically distributed Cloud-Edge infrastructures.

1A placement maps each managed microservice to a node of the infrastructure, in such a way all the application’s QoS requirements are satisfied.
2Freely available at: https://github.com/di-unipi-socc/FogArm
3By mainly considering the migration of services suffering due to such changes in the infrastructure or in the application, continuous reasoning, permits, on the

one hand, scaling to larger sizes of the placement problem by incrementally solving smaller instances of such a problem, thus acting as a booster for existing placement
strategies and reducing
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The rest of this article is organised as follows. Sect. 2 briefly presents the main peculiarities of the tools exploited by FogArm,
viz., FogMon (Sect. 2.1) and FogBrainX (Sect. 2.2). Then, Sect. 3 discusses the architecture and behaviour of FogArm. Sect.
4 illustrates the assessment of FogArm over a real Cloud-Edge testbed. Finally, Sect. 5 briefly discuss related work and Sect. 6
concludes the article by highlighting some possible directions for future work.

2 BACKGROUND

In this section, we briefly present FogMon15 (Sect. 2.1) and FogBrainX16 (Sect. 2.2) that are integrated with FogArm to equip
it with monitoring and reasoning capabilities, respectively.

2.1 FogMon: Lightweight Infrastructure Monitoring
FogMon is a TRL5 C++, distributed monitoring tool targeting Cloud-Edge computing settings4. FogMon measures and statis-
tically aggregates node capabilities (viz., CPU, RAM and HDD) as well as connected and available IoT devices and link QoS
(viz., latency and bandwidth). It leverages on a self-organising and self-restructuring peer-to-peer topology, that can run on any
TCP/IP network, based on a two-tier Leader-Follower architecture and gossiping protocols17 for communicating among peers.

Follower agents have the task of monitoring the capabilities on their associated node. They are divided into groups, each
group assigned to a specific Leader.

Leaders perform all the tasks of a Follower and periodically aggregate data gathered by the Followers in their group. Further-
more, through gossiping, Leaders share among them the aggregated data collected from their Followers. Moreover, periodically,
Leaders publish on a common endpoint a report containing all the gathered information both from their Followers and the other
Leaders. The most recent report received is published as the current global report on the monitored infrastructure. The published
reports and the communication between peers exploit JSON messages.

Leaders, also compute estimates of bandwidth and latency between Followers belonging to distinct groups. Indeed, Followers
inside the same groups directly measure the link performance among them, but to avoid network congestions due to the expo-
nential explosion of possible links between peers, QoS parameters between Followers in different groups are only estimated
and not directly measured. In detail, Followers directly measure the network parameters only among Followers in the same
group and with their Leader. Furthermore, Leaders directly measure the link performance among them. Thus, the QoS of a link
between two Followers in a different group is estimated by composing the measurements between each Follower and its Leader
and between the two Leaders.

Peers self-organise into an overlay peer-to-peer network constructed upon a proximity criterion based on latency distances
among nodes. Indeed, any new node joins as a Follower and eventually selects its own Leader the one with the minimum
measured latency. Periodically, during its activity, or after a failure, a node performs this procedure again to find the best suitable
Leader. This approach is designed to face the high dynamicity of the Cloud-Edge continuum and to continuously adapt to a
changing environment. For the same reason, also the role of Leader and Follower are dynamically assigned and can vary over
time, restructuring the network topology by exploiting the k-medoids algorithm18. Finally, the monitored data are also replicated
by each Leader that, together with the eventual consistency of such data achieved through gossiping, make FogMon capable of
resisting the failure of some Leaders.

FogMon shows a very low footprint in terms both of hardware and bandwidth resources, performing its probing tasks with low
overhead. Furthermore, the two-tier peer-to-peer architecture avoids (e.g., due to node or link failures) a single point of failure as
well as increases the scalability. FogMon is also released as a Docker image, thus being cross-platform on any Docker-compliant
node.

2.2 Declarative Continuous Reasoning in the Cloud-Edge Continuum
FogBrainX16 is a declarative continuous reasoning engine to make informed service placement and migration decisions for next-
gen multiservice applications in Cloud-Edge settings. The idea behind the use of continuous reasoning is to mainly consider the
migration of services in need of attention while preserving as much as possible the placement of the other services.

4Available at https://github.com/di-unipi-socc/FogMon.
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The continuous reasoning strategy employed by FogBrainX helps in reducing the time needed to make management decisions
while only a part of application deployment is affected by infrastructural changes (e.g., traffic congestion, node failures) or
triggers by a CI/CD pipeline (e.g., new service, requirements updates). Through continuous reasoning, we can scale our approach
to larger applications and infrastructures by incrementally solving smaller instances of the placement problem and at the same
time, reducing the number of management operations (e.g., avoiding unnecessary migrations).

FogBrainX reacts to changes in the infrastructure, in the application requirements and service addition and removal. Fog-
BrainX is designed as a booster for existing placement strategies, being able to adapt to different approaches, improving their
performance and reducing the size of the considered problem.

When FogBrainX is triggered, it verifies if a placement for an application already exists, if not, the default placement strategy
(e.g., exhaustive search, heuristics) is applied to find a valid placement. Otherwise, the continuous reasoning methodology is
performed. In this last case, FogBrainX first determines all services that have been added to the application from the latest
commit and the services that have to be migrated (due to infrastructural or requirements changes). Such services are given in
input to the default placement strategy to complete the partial placement of the services that have not been migrated, finding a
new valid placement.

FogBrainX has been successfully applied through simulations over a lifelike small use case based on real data, and assessed
at increasing infrastructure sizes and different variations rates up to thousands of nodes. It showed a speed-up of 50 to 1000× in
terms of average inferences across different large-scale infrastructure sizes (i.e., from 320 to 1280 nodes).

3 DESIGN & IMPLEMENTATION OF FOGARM

In this section, we illustrate the architecture and functionalities of FogArm, a next-generation orchestrator prototype designed
to perform continuous and QoS-compliant management of multi-service applications on top of highly dynamic and geograph-
ically distributed resources such as the Cloud-Edge continuum. Sect. 3.1 discusses the general component-wise architecture of
FogArm. Sect. 3.2 illustrates the run-time behaviour of our orchestrator, highlighting the interactions of the components through
three main scenarios. Finally, Sect. 3.3 describes the actual implementation of FogArm and its components.

3.1 Architecture of FogArm
FogArm enables:

• the integration with CI/CD pipelines and infrastructure monitoring tools (e.g., FogMon15),
• the execution of management decisions made by FogBrainX, and
• user interactions via a Web GUI and a Command Line Interface (CLI).

Fig. 2 sketches the overall architecture of FogArm, with the services that enable the above features. Namely:
FogArm Core, which retrieves, in continuity with one or more CI/CD pipelines, the information about the applications to be

managed and the current state of the infrastructure, exploited by FogBrainX to determine management decisions. Fog-
Arm then transforms such placement decisions, computed by FogBrainX, into executable actions and implements them
through Docker Swarm. It also offers a CLI through which users can interact by requesting the execution of actions and/or
by monitoring the current state of the managed resources and applications. FogArm Core needs two files for each man-
aged application, listed in Fig. 3 . The standard docker-compose.yml file (Fig. 3 a) contains information to configure
the application’s services and the requirements.yml file (Fig. 3 b) describes the software, hardware and IoT devices
requirements for each service reported in the docker-compose.yml file, as well as latency and bandwidth to other ser-
vices. These requirements are used to automatically generate a suitable Prolog file exploited by FogBrainX as application
specification.

FogWatcher, which is a daemon service that monitors whether updates have occurred in the specification of managed appli-
cations or the status of the infrastructure. It checks whether the desired and current application placements do not match
so as to trigger FogArm Core to enforce appropriate actions. Last, it checks user triggers coming from the Web GUI (e.g.,
updates on services’ requirements). By, automatically triggering FogArm Core, FogWatcher automatically guarantees the
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FIGURE 2 Architecture of FogArm.

version: "3.3"

services:

web:

image: localhost:5000/stackdemo

build: .

ports:

- "8000:8000"

redis:

image: redis:alpine

(a) docker-compose.yml

services:

redis:

hardware: 6

links:

web:

bandwidth: 20

latency: 150

web:

hardware: 3

links:

redis:

bandwidth: 50

latency: 500

(b) requirements.yml
FIGURE 3 The application specification files.

requirements of each application at run-time, without the need for human intervention. Thus, FogWatcher allows clos-
ing the management loop of an application in an automated cycle starting from the CI/CD pipeline, passing through its
deployment and any necessary migrations in the presence of infrastructural or application requirements changes.

Monitoring Tool, which takes care of retrieving the current state of all nodes and links in the considered infrastructure. This
information is converted into a series of Prolog facts ready to be used by FogBrainX. During our experiments, we employed
the FogMon monitoring tool (Sect. 2.1). An adapter downloads the latest available FogMon report and translates it into a
set of Prolog facts monitored by FogWatcher.

Web GUI, which shows all updates on the status of the infrastructure, applications’ requirements, and their current and desired
placement (Fig. 4 ). It allows users to monitor the global or individual status of nodes and links, and to read and modify
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application specifications. It also offers the possibility to observe on which node the various services are currently placed
and to manually request (and possibly actuate) the new placement for a given application, or to undeploy an application.

(a) Application page.

(b) Node page.

FIGURE 4 The WebGUI.

FogArm operates autonomically by constantly monitoring the state of the infrastructure, the managed applications and their
placements. It fully exploits the incremental approach of continuous reasoning by reducing management operations only to
those services in need of attention, as identified by FogBrainX. Furthermore, FogArm is capable of simultaneously orchestrating
several different multi-service applications on highly dynamic and geographically distributed infrastructures.

Note that the choice of the CI/CD pipelines and the monitoring tools are completely orthogonal and transparent to FogArm.
Indeed, FogWatcher periodically checks if the information about the requirements of the applications and the state of the infras-
tructure has changed compared to the previous iteration and triggers FogArm Core when needed, independently from the entity
(tool or human) that updates those state information.

FogArm leverages Docker Swarm at a low level to be able to focus on the innovative aspects of the orchestration process,
delegating the basic mechanisms (e.g., deployment and allocation of resources) to a widely used and validated tool. We chose
Docker Swarm for two main reasons. On one hand, it relies on Docker containers to feature flexibility and ease of use, since
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Docker containers are the de facto standard to deploy microservices. On the other hand, it offers all the low-level features needed
for the management of clusters and the deployment of services.

Overall, FogArm translates FogBrainX’s decisions into actions on containers by exploiting Docker’s constraints 5. Constraints,
enable specifying that a given service must necessarily be deployed to a specific node (by its hostname). Note that when a
constraint is specified (or modified), if the service is on the wrong node, Docker automatically takes care of migrating from the
node where the service is located to the one requested in the constraint.

Thus, exploiting FogBrainX and Docker, FogArm performs a complete monitor-analyse-plan-execute flow through the con-
tinuous monitoring of services’ requirements and infrastructure status and, the interaction with Docker in Swarm mode, as
depicted in Fig. 1 .

3.2 FogArm’s Behaviour
In this section, we discuss and highlight the behaviour of FogArm, in terms of the interactions of its components, illustrating three
main scenarios viz., changes from the CI/CD pipeline, infrastructure changes and triggers from the Web GUI. These scenarios
are sketched in Fig. 5 .

FIGURE 5 Interaction diagram of FogArm.

Changes from the CI/CD pipeline
One of the most common scenarios working with FogArm is when a new commit is received through the CI/CD pipeline. In this
case, the remote application repository is updated with the new code and application requirements might change. Periodically,
FogWatcher checks whether changes have occurred in each managed repository. When a change is spotted, FogWatcher triggers
FogArm Core. FogArm Core collects the application requirements from the local repository (i.e., the docker-compose.yml and
the requirements.yml files) and the latest infrastructure report. This information is translated into a set of Prolog facts that
are given as input to FogBrainX. Eventually, FogBrainX (possibly) outputs a new placement. Then FogArm Core, computes the
differences between the current placement and the new one generated by FogBrainX. If the two differ, FogArm generates a set
of Docker commands to reconcile the actual placement with the desired one.
Infrastructure Changes
Similarly, if a change occurred on the infrastructure resources, FogMon publish it in the new report. Periodically, FogWatcher
verifies whether some changes have occurred in the infrastructure and triggers FogArm Core. The same procedure of the previous

5https://docs.docker.com/engine/reference/commandline/service_update/
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case is then performed, ending with the (possible) new sets of Docker commands to reconcile the current placement into the
new one determined by FogBrainX.
Triggers from the Web GUI
Finally, the last main source of updates is the Web GUI. Indeed users, besides monitoring the status of the infrastructure and the
managed application and services, can also change the docker-compose.yml and requirements.yml files through the GUI.
FogWatcher periodically checks if new updates are published by the Web GUI. If so, first the updates are saved in the local
repository and then FogWatcher triggers FogArm Core as in the CI/CD pipeline scenario.

3.3 FogArm’s Implementation
In the following paragraphs, we briefly discuss the design and implementation of FogArm components. Sect. 3.3.1 details the
technological aspects of the backend components, while Sect. 3.3.2 illustrates the frontend.

3.3.1 BackEnd
FogArm Core
It is the central component of the whole FogArm architecture. It is implemented in Python36 exploiting the argparse library to
implement the CLI, the Docker SDK for Python7 to interact with Docker and the PySwip8 library, which together with a Prolog
script, makes the interaction with FogBrainX possible. The main task of FogArm Core is to collect all the necessary information
on the applications and the state of the infrastructure, consult FogBrainX and actually apply its management decisions.

The main way to interact with FogArm Core, and more generally with FogArm, is through its CLI. Through it, it is possible
to add, remove and manage applications, as well as to interact with FogWatcher and consult the status of managed applications
and their placements. More in detail, the main CLI commands of FogArm are:
add which deploys, for the first time, the application specified in the path argument, if entered, otherwise in the current folder.
exec which performs a reasoning step, of one application if specified, otherwise for all the applications, by verifying if the cur-

rent placement is still valid and possibly carrying out the necessary operations to add, remove or migrate the application’s
services.

rm which removes one or all applications from the infrastructure.
status which, for each application displays the desired placement, the current one and checks if the two match or not.
watcher which enables starting, stopping, or restarting FogWatcher and displaying if it is running or not.

As for add and exec, the two commands perform rather similar functions, with the only difference that in the case of add,
being the first deployment, some additional information is stored by the system for future use and in the case of exec it is possible
to specify the application whose reasoning process the user wants to execute also by its name (or it is also possible to request
the execution of all applications).

Once the application to orchestrate has been identified, by path or name, and after any additional information has been saved,
FogArm Core proceeds by verifying the existence of docker-compose.yml and the possible existence of requirements.yml9.
Once the data have been retrieved, this information is used to generate a series of Prolog facts representing the application spec-
ifications. These facts together with the Prolog file containing the updated status of the infrastructure are passed to FogBrainX,
which checks whether a deployment already exists. If it exists, FogBrainX checks whether this is still valid, if not or if the
deployment does not exist, FogBrainX is asked to generate a new placement, possibly by applying continuous reasoning.

Three lists are then generated from the computed deployment, comparing the placement obtained with the previous one. The
services to be deployed (together with the relative chosen node, i.e., those services that are in the new placement but not in the

6https://www.python.org/
7https://docker-py.readthedocs.io/en/stable/
8https://github.com/yuce/pyswip
9With requirements.yml it possible to “annotate" each service reported in the docker-compose.yml file with quality and quantity requirements that the service

needs to be able to correctly perform its tasks. The conversion into a set of Prolog facts is then a simple 1-to-1 mapping.
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old one), those to be removed (i.e., those services that are in the old placement but not in the new one) and those to be migrated
from one node to another (i.e., those services that are in both placements but are assigned to different nodes). If a previous
deployment does not yet exist, all services are considered to be added.

Once these three lists have been defined, FogArm Core takes care of actually executing FogBrainX’s decisions by interacting
with the Docker CLI. If instead, the status is requested, the current placement of all managed applications is extracted and,
application by application it is compared with the one determined by FogBrainX. Finally, through the watcher command it is
possible to interact with FogWatcher being able to start, stop, or restart it on request.
From FogBrain’s Output to FogArm’s Constraints
As aforementioned, FogArm Core translates FogBrainX’s decisions into actions on containers by exploiting Docker’s constraints.
Through constraints, it is possible to specify that a given service must necessarily be deployed to a specific node (specified in
our case by the node’s hostname).

Currently, FogArm supports five main actions:
• the initial deployment of an application,
• the run-time addition of a service,
• the migration of a service from a node to another node,
• the removal of a service, and
• the removal of an application

In the following, we illustrate how FogArm enforces the execution of FogBrainX decisions through Docker. We rely on
examples to epitomise each case.
Initial Deployment of an Application When a new application has to be deployed for the first time, FogArm executes

docker stack deploy AppId

where AppId is the unique identifier of the application. For each service, then the deployment constraint for the node is
embedded with
docker service update --constraint-add node.hostname==NodeId AppId_ServiceId

where NodeId is the unique hostname of that node and AppId_ServiceId is composed by the identifiers of the applica-
tion (i.e., AppId) and of the service (i.e., ServiceId).

Example. Suppose we have a WebApp consisting of two microservices - Frontend and Backend - and an infrastructure
of three nodes: node1, node2, and node3. To ask FogArm to deploy the application10, our developer just needs to type
fogarm add .

then FogBrainX computes the initial placement, for instance
placement(webapp, [(frontend, node1), (backend, node2)]).

Last, FogArm converts such placement in a suitable set of Docker commands and constraints as follows
docker stack deploy webapp
docker service update --constraint-add node.hostname==node1 webapp_frontend
docker service update --constraint-add node.hostname==node2 webapp_backend

Run-time Addition of a Service When a service is deployed for the first time in an already running application, the constraint
is simply added through a suitable instantiation of the command

10For the sake of simplicity let’s suppose the user is currently executing FogArm in the folder of the application’s source code.
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docker service update --constraint-add node.hostname==NodeId AppId_ServiceId

where NodeId is the unique hostname of that node and AppId_ServiceId is composed by the identifiers of the applica-
tion (i.e., AppId) and of the service (i.e., ServiceId).

Example. Suppose our developer decides to add a database to the webapp, FogArm is then invoked by the developer or
by FogWatcher

fogarm exec webapp

the new placement is computed by FogBrainX as
placement(webapp, [(frontend, node1), (backend, node2), (database, node2)]).

FogArm eventually takes care of interacting with Docker via the commands
docker stack deploy webapp
docker service update --constraint-add node.hostname==node2 webapp_database

Migration of a Service If the service was already deployed, but FogBrainX decides to migrate the service to another node, the
previous constraint is first removed and a new one is added through the sequence of commands
docker service update --constraint-rm node.hostname==OldNodeId AppId_SId
docker service update --constraint-add node.hostname==NewNodeId AppId_SId

where OldNodeId is the unique hostname of the node where the service is already placed and NewNodeId is the unique
hostname of the new node where to deploy the service SId of the application AppId. When a constraint is specified (or
updated), if the service is on the wrong node, Docker automatically takes care of migrating such service from the node
where it is located to the one specified by the constraint.

Example. Assume node1, hosting the fronted, crashes, then FogBrainX updates the placement with the new information
placement(webapp, [(frontend, node3), (backend, node2), (database, node2)]).

and a new set of Docker constraints is generated
docker service update --constraint-rm node.hostname==node1 webapp_frontend
docker service update --constraint-add node.hostname==node3 webapp_frontend

Removal of a Service Similarly, it is possible to request the complete removal of a service through
docker service rm AppId_ServiceId

In this way, FogArm Core can manage the deployment and migrations of multi-service applications.

Example. After some more work, the developer decides to integrate the database inside the backend, the database

service is then no longer required
placement(webapp, [(frontend, node3), (backend, node2).

after which FogArm executes the following commands to remove the database service
docker service rm webapp_database

Removal of an Application Finally, when the removal of an entire application is requested through rm, the Docker CLI is once
again exploited to remove all the services of a given application, through
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docker stack rm AppId

Example. To remove the application, the developer just needs to type
fogarm rm webapp

and FogArm performs
docker stack rm webapp

FogWatcher
It is developed in Python3 exploiting the timeloop library to implement periodic checks. The main task of FogWatcher is to
periodically monitor whether updates have occurred in the infrastructure or the specifications of the applications managed,
triggering FogArm Core to perform the actions necessary to guarantee the desired QoS for each service, without the need for
human intervention.

FogWatcher periodically monitors, with independent and customisable periods11, four possible sources that may require
FogArm Core activation:
The CI/CD pipeline
For each managed app, it is periodically checked whether the docker-compose.yml or the requirements.yml files have
changed. For each of the files, a hash (exploiting the HASH256 function) of its content is computed. If the final hash does not
correspond to the previous one, then a change has happened and FogArm Core is invoked to carry out a reasoning step through
the exec command. In this way, FogArm Core, by invoking FogBrainX, checks for the application whether the required require-
ments are still satisfied after the specification change and, if not, carries out the necessary operations to add, remove and migrate
the services.
The infrastructure
Furthermore, also the file containing the updated status of the infrastructure is monitored. FogWatcher takes care of calculating
the hash of that file and if the calculated hash does not correspond to the previous one, then for all the managed applications it
is required to carry out a reasoning step.
The current placement
FogWatcher also periodically checks, for each application, whether the desired placement and the current one correspond. If
this is not the case, then the deployment computed by FogBrainX is removed and FogArm Core is invoked. Indeed, in a real
system it may happen that after a node or a Docker error, or if there has been a manual intervention on one or more services,
the current placement no longer corresponds to that requested by FogBrainX.
Live changes
Finally, FogWatcher regularly queries the Web GUI to check if the user has requested any operation, e.g., removal of an appli-
cation, execution of a reasoning step, update of the compose or requirements file, in which case the request is fulfilled and
eventually a reasoning step is carried out.
Integration with FogMon
In our implementation, FogMon allows FogArm to be always updated on the state of the infrastructure and to make informed
management decisions to comply with application requirements.

After installing a FogMon agent in each node of the infrastructure, such a tool periodically reports the updated status of the
infrastructure in the form of a JSON file. Such monitoring data is made available through FogMon’s REST APIs.

11Check periods, as well as other parameters of FogArm’s components, can be customised through a global configuration file, updatable on the fly.
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Then FogArm takes care to periodically consult that endpoint and obtain the latest available report. It checks whether the
report obtained is different from the previous one12 (by comparing the hash of the two reports). If so, the JSON report is mapped
into a set of Prolog facts and the input file is updated.

It will be the task of FogWatcher to note that an infrastructural change has happened and to invoke FogArm Core to verify if
service management operations are needed.

3.3.2 FrontEnd
The Web GUI
It is the main interface with which the user can interact with FogArm. On one hand, the Web GUI offers a higher-level control
of applications than the CLI. On the other hand, it enables to simply have an overall view of the entire system at a glance, with
the possibility of paying close attention to the characteristics and properties of a single application or specific node and/or link.

The Web GUI is therefore designed to be primarily a monitoring interface with which to observe the actual status and the
evolution of the system and be able to pay attention to detailed aspects, but which still offers the main functions for interacting
with FogArm and its managed applications.

The Web GUI is implemented through Node-RED13, a flow-based development tool built on Node.js, and it is divided into
two main pages, Application and Nodes. The former focuses on the global status of applications and services, with the ability
to analyse a single application. The latter allows users to observe the overall state of the infrastructure and study a single node
and/or a single link.

We illustrate in more detail such two views of the Web GUI:
Applications The Applications page (Fig. 4 b), allows the users to monitor the overall state of the managed applications as well

as analyse in detail the state of a particular application and interact with it, also offering the possibility to view and update
its docker-compose.yml and requirements.yml files.
The page is divided into five panels.

• Statistics: It allows having some global statistics on the current state of managed applications. In detail, it displays
the total number of applications and services currently deployed as well as how the number of deployed services has
varied over time.

• Overview: This panel displays which applications are currently deployed and the current placement of each service
belonging to those applications (i.e., on which node each service is deployed). It also reports when the last update
was received and allows one to select a particular application to focus on.

• docker-compose.yml & requirements.yml: They show the last known state of the two related files of the application
selected in the previous panel and offer the possibility to modify them live and send the changes to be implemented.
Sending a change also automatically activates the execution of a reasoning step. If, on the other hand, a change has
been applied but not yet sent, with a refresh button it is possible to return to the unmodified version. Cancel instead
deletes all the contents allowing to rewrite the file from scratch.

• Application’s Detail: Shows various information about the application selected in the Overview panel. In particular,
it displays when the last update for that particular application was received, the uptime and, for each service of
that application, the desired and actual placement. A LED allows checking at a glance whether the two placements
match (green light) or if they differ (red light). It is also possible to request the execution of a reasoning step for that
application or remove it from the infrastructure.

Nodes The Nodes page (Fig. 4 b) allows monitoring the current state of the whole infrastructure, also offering the users the
possibility to focus their analysis on a specific node and/or link.
The Nodes page is divided into five panels.

12Note that, thanks to the sensitivity configurable parameter (i.e., threshold relative difference on average and variance to send differential reports) of the FogMon
agents, only variations that exceed the threshold level are reported. Thus, small fluctuations will not result in changes in the report. Hence, a change in the report implies
the presence of at least one significant infrastructural change, which therefore needs attention.

13https://nodered.org/



G. BISICCHIA ET AL. 13

• Overview: Displays when it received the last update, the current number of available nodes and the evolution of that
number over time. Allows also the users to select a particular node (among all the nodes of the infrastructure, not
only the currently available ones) and/or link, specifying the two endpoints of the link.

• Node’s Detail: Shows if the selected node is online and its last knows status, in terms of available free hardware
(i.e., RAM) and its evolution over time, and the available IoT devices and software (if any).

• Link’s Detail: Displays if the selected link is actually available and the last known value of the available bandwidth
and latency.

• Link’s History: Allows the users to view how the bandwidth and latency of the selected link are changed over time.
• Applications: Shows when the last updates for the applications are received and the current placement of the whole

available services of all the deployed applications. If a node is selected, it also displays which services are deployed
on that specific node (if any).

4 EXPERIMENTAL ASSESSMENT

In this section, we first illustrate the experimental assessment, that is performed on a real distributed cloud infrastructure manag-
ing real microservices applications14, of FogArm at varying infrastructure sizes and a number of applications over a real-world
testbed (Sect. 4.1). We then show how continuous reasoning can boost decision-making and application management times in
a testbed made of 60 nodes and running 400 services (Sect. 4.2).

In each experiment, the infrastructure is configured through an automatic script to guarantee the reproducibility of the
procedure and results.

4.1 Scalability assessment
We perform a scalability assessment of FogArm to evaluate how scaling the size of the infrastructure and the number of managed
applications and services might affect the orchestrators’ performance.
Experimental Setup.
The assessment is divided into three experiments at increasing size of the infrastructure (viz. 15, 30 and 60 nodes) and number
of application15 replicas (viz. 10, 25 and 50). Each composed of 8 services (viz. a total of 80, 200 and 400 services, respectively).
Testbeds span three regions spread across Italy (viz., Catania, Palermo and Turin), with nodes evenly distributed among each
region. Each node hosts a FogMon agent to monitor available resources16. We use replicas of the “Docker Swarm Demo"
application17, composed of 8 services (Fig. 6 ) and which mimics a real-world application. For each replica, we actuate changes
through the CI/CD pipeline, by randomly producing a new commit and/or updated service requirements18. Finally, we run and
monitor experiments for 5 hours after the initial deployment of all applications. During each experiment FogArm was invoked
from a minimum of 100 times to a maximum of 250 times, performing from a minimum of 23 migrations to a maximum of 247
migrations when applying continuous reasoning, and a maximum of 340 migrations when performing the exhaustive search.
Experimental Results.
maybe here the other graphs?

14We run all experiments over Virtual Machines (VMs) featuring 1 vCPU and 6GB of RAM, and running Ubuntu 20.04.3 LTS, provided by the GARR Consortium
and spread across 3 regions (viz., Catania, Palermo and Turin). Nodes run Python 3.8.10, Docker 20.10.12, docker-compose 1.25.0 and SWI-Prolog 8.4.2 to support the
correct execution of FogBrainX and FogArm. A node in the Catania region is chosen as the leader from which the orchestration process is actually executed, interacting
with the FogArm CLI and the Web GUI.

15Available at: https://github.com/michal-bures/docker-swarm-demo
16In detail, whenever a new FogMon report is received, we artificially reduce the available node’s RAM of a value picked at random from a Gaussian distribution

centred at 750MB with a standard deviation of 375MB. For each link, we artificially increase the latency by adding a random value from a Gaussian distribution centred
at 50 ms and with a standard deviation of 25 ms. Similarly, the bandwidth is artificially reduced by a value picked at random from a Gaussian distribution centred at 12.5%
of the available bandwidth and a standard deviation of 6.25%. Last, nodes and links have a failure probability of 5%.

17https://github.com/michal-bures/docker-swarm-demo
18Each service can require from 250MB to 750MB of available RAM. For each service-to-service communication a latency from 200ms to 750ms and an available

bandwidth from 10Mbits/s to 30Mbits/s. Furthermore, each service has a different probability, from 75% to 100%, of being added to the last generated commit, so to also
experiment with the addition and/or removal of services at run-time.
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FIGURE 6 Example application.

(a) Average times. (b) Average migrations.

FIGURE 7 Results for the scalability assessment.

Fig. 7 a illustrates the experimental results in terms of the average FogArm execution times at increasing sizes of the infras-
tructure and number of managed services. Execution times sum up both the time needed by FogBrainX to make management
decisions and by FogArm to actuate such decisions by interacting with Docker Swarm. Fig. 7 b shows the average percentage of
migrations per execution step over the total number of services that could be migrated (i.e., thus excluding from the considered
set of services those that are about to be added or removed).

Execution times (Fig. 7 a) increase as the scale of the experiments increases, even if in all considered scenarios, the minimum
time was 0.05 seconds.. Indeed, we experience an average execution time of 20 seconds and a median of 0.33 seconds when
managing 80 services on 15 nodes (i.e., around 250 ms on average for each service). When managing 400 services, instead
we experience an average execution time of 180 seconds (i.e., around 450 ms per each managed service) and a median of 130
seconds. We have, then, an increase of less than 2× on the average execution times, while increasing by 5× the number of
services and 4× the number of nodes. This behaviour relates to the variation of the average amount of required migrations over
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the experiments. Indeed, in smaller scenarios, we experience near-to-zero migrations, while we reach more than 60% average
migrations per execution step in larger scenarios (Fig. 7 b).

Overall, we observe an exponential increase both in execution times and migrations. Indeed, as the size of the infrastructure
and the number of managed services increase, more resources are required by FogMon to monitor the infrastructure state and
by Docker to enact management decisions. Additionally, the larger number of managed services leads to a more dynamic sys-
tem that, therefore, requires more migrations to maintain its optimal state. When the number of services and nodes increases,
the chances of resource congestion and failures naturally increase and cause more migrations to satisfy application require-
ments. These results further highlight the need for efficient resource management strategies that can scale with the size of the
infrastructure and the number of managed services.

4.2 Continuous Reasoning assessment
Experimental Setup.
In this section, we compare the continuous reasoning approach of FogArm against a version exploiting exhaustive search,
i.e., possibly migrating services that are not affected by infrastructure changes or CI/CD triggers. The exhaustive search is a
commonly adopted strategy, as we will discuss in Sect. 5, and was, therefore, a natural candidate as a baseline to compare the
performance of management decisions with and without continuous reasoning.

We consider the same settings of the largest scenario of the scalability assessment (i.e. 60 nodes evenly spread in 3 regions
across the Italian national territory and 50 applications with most 8 services, for an overall number of 400 services). We also
employ the same approach for generating application commits and changing infrastructure capabilities. Also in this case exper-
iments last 5 hours. FogArm was invoked every 5 minutes - around 60 times - both for the continuous reasoning and exhaustive
search. Continuous reasoning performed around 250 migrations, the exhaustive approach performed around 350 migrations.
Experimental Results.
Fig. 8 a compares the average execution times featured by FogArm exploiting the continuous reasoning and the exhaustive
search. The continuous reasoning strategy allows the orchestrator to save 35 seconds on average (i.e., around 15%) while deter-
mining and enforcing a given placement in comparison with the exhaustive search. We can relate such improvement with the
different number of migrations performed on average by the two strategies. Indeed, the exhaustive search enforces, on average,
33% more migrations, increasing also the execution time required to enforce a given placement.

It is worth noting that these results confirm those of the simulations we carried out in16. Such results can be explained
considering that FogBrainX, and hence FogArm, tries to preserve the current deployment as much as possible. FogArm, there-
fore, migrates only those services in need of attention due to infrastructure changes (e.g., due to link QoS degradation or node
overloading) or CI/CD triggers.

On the other hand, the exhaustive search does not pay any attention to preserving the current deployment, limiting itself only
to finding a placement among all those admissible and possibly leading to migrating more services than necessary. Overall, the
results indicate that the continuous reasoning strategy is more efficient than the exhaustive search strategy in terms of execution
time because it performs fewer migrations on average. Indeed, the continuous reasoning approach is designed to take into account
and preserve the current deployment as much as possible while minimising the number of migrations required to achieve the
desired placement.

Finally, note that the exhaustive search is not QoS-aware, so we have no guarantees that the placement found meets the given
requirements. FogArm, instead, is designed to find only QoS-aware placements and to modify such placements when a CI/CD
trigger or an infrastructure change occurs.

4.3 Threats to Validity
In this section, we briefly discuss some threats to validity that might affect our experimental assessment. In pursuit of this
objective, we employ commonly acknowledged criteria to analyse and assess validity, adhering to the framework outlined by
Wohlin et al.19.
Internal Validity. It concerns the cause-and-effect relationship, i.e., whether the observed effect is a result of changes intro-

duced by the researcher or stems from some other unidentified cause. In our experiments, this means that the behaviour
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(a) Average times. (b) Average migrations.

FIGURE 8 Results for the continuous reasoning assessment.

of our experimental setup incorporates factors beyond our control. To the best of our knowledge, our prototype imple-
mentation of FogArm is faithful to the description provided in this article. All measurements related to execution times
and migrations were conducted under consistent machine configurations throughout all experiments to prevent any instru-
mentation biases and they were guaranteed by relying on a set of automatic scripts to deploy and set the infrastructure as
well as to run the actual experiments, thus requiring no manual intervention during the whole experimentation.

External Validity. It focuses on the possibility to generalise the obtained results. In this context, the experimental assessment
is crafted to encompass, at varying scales, all defining characteristics of realistic medium-scale Cloud-Edge infrastruc-
tures and medium to large multi-service applications. These characteristics include considering different features of the
infrastructure nodes (i.e., the hardware capacity, the offered software and available IoT devices) and links (i.e., bandwidth
and latency - both upload and download), as well as service requirements (in terms of hardware, software and IoT devices)
and service-to-service interactions (in terms of minimum bandwidth and maximum latency). Our approach is further jus-
tified by previous work, which proved the potential of FogBrainX to model and analyse various Cloud-Edge scenarios
(e.g.16). To further enhance our results we artificially - and in a controlled way - varied the parameters of the infrastruc-
ture nodes and links so as to mimic different infrastructure behaviours and to improve the reproducibility of our results.
It is important to acknowledge that fully generalising our experimental results to every conceivable Cloud-Edge scenario
is not feasible. However, we are confident that the chosen setup represents reasonably general settings. Furthermore, the
open-source availability of our code is intended to empower other researchers and practitioners to assess FogArm (or its
extensions) on diverse infrastructures, applications, and scenarios.

Construct Validity. It underscores our capacity to measure the intended variables. To address potential threats to construct
validity, we have employed common and popular open-source software and tools to conduct our experiments (as Docker),
already published and assessed tools (such as FogBrainX and FogMon) or common and heavily employed Python libraries
(as Fabric and OpenStack).

Conclusion Validity. It outlines the ability to draw statistically valid conclusions from experimental measurements. Our exper-
iments were carried out on increasing scale infrastructure up to realistic medium-scale Cloud-Edge infrastructure of 80
nodes deployed on a national scale. Each experimentation was performed during a time span of 5 hours executing hun-
dreds of operations and migrations for hundreds of deployed and interacting microservices. Across all the experiments
both the infrastructure data and application specifications significantly change.

As per the external validity, the assessment discussed above would benefit from assessments carried out on other real mon-
itored infrastructure data and to larger infrastructures — which, to the best of our knowledge, are currently not yet available -
while orchestrating more applications and services.
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5 RELATED WORK

The problem of designing platforms and methodologies for the orchestration and management of multi-service applications in the
Cloud-Edge continuum is a very well-known problem7,10,11,12,13. The main difficulties are given by the scale, heterogeneity and
diversity of the node’s infrastructures. Another important factor is the high dynamicity, in terms of resource capabilities variation
(e.g., memory and bandwidth), failures of nodes and links and, devices or users distribution, with their possible movements4.
Additionally, applications are composed of several different and heterogeneous software components with possible dependencies
among them20.

Addressing these issues,21 proposes a device-aware, greedy approach to incrementally build service provisioning solutions.
The authors divided infrastructure into two layers (viz., Fog and End devices), with the Fog layers subdivided into two sublayers
(viz., High Fog and Mist). Considering such structure, the process iteratively decomposes an application into sub-components
and greedily places each component considering its requirements. The process is repeated until all solution components are
provisioned. With respect to FogArm, in21 a structural division of the infrastructure is proposed, while in our work we consider
infrastructure as a graph of nodes. Indeed, we believe that a plain representation fits better the heterogeneity and pervasiveness
of the Cloud-Edge continuum.

Still dividing the Fog level,22 proposes a hybrid choreography/orchestration hierarchical strategy for service management in
Fog environments, dividing the infrastructure into three layers (viz., IoT, Fog and Cloud). At the IoT level devices are organised
in virtual clusters supporting the possibility of mobile devices. At such a level the management devices cooperate among them,
in a choreography fashion, offering low response time and high resilience in the presence of a device movement (i.e., shift into a
different virtual cluster). At the Fog level, both strategies are performed depending on whether the fog device is in the south (i.e.,
closer to the IoT) or north (i.e., closer to the Cloud) region. Choreography is performed in the south region, orchestration in the
north region and on the Cloud. The three-level architecture offers higher dynamism to the lower levels while keeping a global
view of the higher levels, in which possible optimisation is performed. As discussed for21 also here a structural representation
of the infrastructure is proposed. Furthermore, it is not clear how the services’ requirements are managed and checked by their
Resource Manager. Finally, no prototypes are implemented for this work and there is also a lack of experimental results, instead,
we proposed and assessed a fully automatic orchestrator, also gathering experimental results in an actual infrastructure.

In23, an orchestration middleware for IoT systems is presented. The orchestrator features a three-level architecture. Each layer,
from the topmost to the bottom, comprises, namely, a system description language to describe fog infrastructures and services,
persistent data storage and a management engine to formulate constraints that encode system properties and requirements in the
form of satisfiability modulo theory (SMT). Such an engine enables the use of SMT solvers to determine a valid configuration
at run-time. Despite, the description language proposed is powerful and flexible it requires a greater effort by the developers
with respect to that required by FogArm in compiling the requirements.yml file and in23 users are required to compile also a
description of the possible nodes’ templates while in FogArm the management of the nodes is fully transparent and automated.
Finally, in the proposed version only the nodes’ failures are accounted for, on the contrary, FogArm is capable of managing
nodes, networks and service failures.

In24, the authors propose a container scheduling system in a Cloud-Edge environment. Their system leverages native Docker
and features a master/worker-based design pattern. Their approach is designed to minimise edge resource utilisation rate and save
cloud resource costs. The strategy is divided into two stages, viz., node filtering to filter out nodes that do not meet the minimum
resource requirements of the container, then the remaining nodes are comprehensively scored, and then sorted according to the
value of the score. However, their approach does not scale with the size of the managed Cloud-Edge infrastructure due to the
exhaustive analysis that must be carried out on all the nodes. FogArm, instead, features a continuous reasoning approach that
enables high-scalability.

Working on Osmotic computing,25 discusses an orchestration architecture in which managed IoT applications, deployed in
distributed environments, are modelled as a graph of MicroELements (MELs). A MELs graph models microservices, which
implement specific functionalities, as well as microdata, representing information flows from/to IoT devices. The proposed
orchestrators, through a Deep Learning process, generate MELs deployments based on previous experiences and eventually
execute the obtained deployments manifest. However, this work is only a theoretical work so neither a working prototype nor an
experimental assessment is proposed. Furthermore, using a Deep Learning process usually decreases the explainability of the
orchestrator, making it difficult to understand why a certain management decision was taken. Instead, the engine of FogArm,
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FogBrainX, thanks to its declarative nature is explainable and it is possible to trace all the decision steps performed. A model-
driven approach is also exploited in26, which proposes an attribute-driven framework for application development and service
orchestration, assisting developers through the entire development lifecycle through a set of formal rules.

Exploiting Software Defined Networking,27 presents a service orchestration mechanism to meet the latency and reliability
requirements of IoT applications. Through a target optimisation function, a differentiated task offloading strategy is applied
considering task attributes as well as communication and computation energy consumption and pre-estimated task offloading
costs. Similarly, the problem of the placement of Virtual Network Function is studied in28, through a multi-objective optimisation
problem model that is converted to a problem which is solved by a Markov approximation technique.

Moving on to industry tools, the most popular solutions are based on container orchestration. In this field, the orchestrator
manages the entire lifecycle of a container ranging from its creation to its destruction or termination and scaling or migrating
containers if needed. Among the most widely used we have Docker in its Swarm mode19 and Kubernetes20, targeting clusters
and datacenters. Both solutions do not offer high awareness of the services’ requirements. Docker Swarm offers a system of
constraints based on the labelling of nodes and services (i.e. placing a service if its labels match those of the nodes), while
Kubernetes allows specifying simple CPU, memory and storage constraints. At the same time, these solutions are carried out
manually, thus not coping with the high dynamism of Cloud-Edge infrastructures.

Finally, Topology and Orchestration Specification for Cloud Applications (TOSCA)29 is one of the first and main proposals
for standardising the service orchestration in an extensible and flexible way30,31. TOSCA is an open-source language to define
an interoperable model of cloud applications. TOSCA describes the components as well as the relationship and dependencies
between them and their requirements and capabilities, thus enabling portability and automated management. With TOSCA
applications are described as a typed, direct topology graph, representing components as nodes and the dependencies between
them as links. For each component is also possible to describe its requirements as well as the needed operations and policies.

In32, the TOSCA standard and the Docker ecosystem are exploited to propose an orchestration strategy for the management
of multi-component applications based on a TOSCA-based representation. The approach allows specifying software compo-
nents and Docker containers to form an application and automatically deploy and manage such applications. With respect to
FogArm in this work, the management of the applications is performed in a single machine and not on a distributed infrastruc-
ture. Furthermore, the orchestrator requires already developed management plans and it is not capable of finding the placement
automatically. On the contrary,33, proposes a TOSCA-based orchestration tool for automating the process of federating Kuber-
netes container clusters even across different cloud providers. However, both the orchestrators illustrated do not support the
connection with a CI/CD pipeline, and thus the modification of the applications’ topology or requirements at runtime.

In34, the authors present a technology-agnostic method in their paper, utilizing Business Process Model and Notation (BPMN)
and TOSCA standards for modeling function orchestrations and their deployment. They introduce a unified, technology-agnostic
approach for function orchestration modeling, employing BPMN, and a TOSCA-based method for deploying function orches-
trations. This allows for the declarative modeling of serverless application deployments with serverless function orchestrations
using a standards-based toolchain. It’s worth noting that their system focuses on serverless function orchestration deployment,
while our proposal is more versatile, catering to simple multi-container applications. Despite this, we aim to explore how FogArm
can enhance support for serverless functions in a dedicated manner.

Focusing on continuous methodologies, in35 the authors leverage the continuous reasoning approach of FogBrainX to propose
a new DevOps practice to support application management in continuity with CI/CD pipelines based on requests for microservice
workflows. In36, instead, the authors illustrate a framework for the continuous evaluation of the QoS of distributed mobile
applications.

Concluding, to the best of our knowledge, none of the existing orchestration solutions (e.g., Docker Swarm, Kubernetes),
unlike FogArm, supports continuous reasoning or more generally a continuous (i.e., incremental and differential) scheduling
process that makes QoS- and context-aware management of microservices, possibly ensuring the optimisation of the allocation
of services on highly dynamic infrastructures, in continuity with the CI/CD pipeline. Furthermore, most existing proposals only
referred to simulated environments due to the lack of orchestration platforms capable of monitoring the needed QoS attributes,
and to the limited availability of Cloud-Edge testbeds14.

19https://docs.docker.com/engine/swarm/
20https://kubernetes.io/
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FogArm, instead, is capable of autonomously adapting the deployment of the application in response to changes to the
application specification coming from the CI/CD pipeline and to variations infrastructural detected through a distributed moni-
toring tool. When triggered FogArm applies a continuous reasoning approach, through the interaction with FogBrainX. Finally,
FogArm is assessed in an actual geographically distributed infrastructure over the Italian national territory.

6 CONCLUSIONS

6.1 Summary
In this paper, we proposed FogArm, a next-gen orchestrator prototype that performs fully automated and QoS-compliant
continuous management of multiservice applications on top of highly dynamic and geographically distributed infrastructures.

To perform the orchestration process FogArm interacts with different tools viz., FogMon to gather the current status of the
infrastructure’s resources, FogBrainX to exploit its continuous reasoning approach to find a valid placement in a continuous and
scalable way and finally, Docker Swarm to implement the low-level operations through Docker’s constraints.

FogArm continuously monitors the status of the infrastructure, the application’s requirements and the current deployments
searching for changes. When a change occurs, FogArm verifies through FogBrainX if a new placement is required. If so, FogArm
generates the suitable management operations to accomplish the desired placements and interacts with Docker to perform the
operations.

Through FogArm, developers are required only to define the requirements of each application’s service. The whole process
of deployment and management is fully automated without any required user action. FogArm works also in continuity with the
CI/CD pipelines, supporting the current iterative and incremental development process. Additionally, users can interact with
FogArm through a CLI or a Web GUI.

To the best of our knowledge, FogArm represents a first complete prototype of a next-gen orchestrator for the continuous QoS-
compliant management of multi-service applications on geographically distributed Cloud-Edge infrastructures. FogArm proved
to be able to scale up to tens of nodes and hundreds of managed services while also reducing execution times and migrations
thanks to continuous reasoning. Our experiments have shown how FogArm can scale even on high dynamic, geographically
distributed infrastructures with up to 60 nodes spread across Italy while managing up to 400 services from 50 applications,
and continuously interacting with the CI/CD pipelines. Furthermore, the continuous reasoning methodology proved to save
more than 15% of the execution time (i.e., around 35 seconds) while migrating on average 33% services fewer than the version
of FogArm featuring only the popular exhaustive search strategy. Interestingly, the obtained results are in line with those we
obtained in Forti et al.16.

6.2 Known Limitations
FogArm is still an initial prototype of a next-gen orchestrator based on continuous reasoning to achieve the continuous and
QoS-compliant management of multi-service applications on geographically distributed Cloud-Edge networks, also capable of
working in continuity with the CI/CD pipeline and infrastructure monitoring. Thus, we consider here some possible limitations
to our proposal. The current implementation of FogArm works by interacting with Docker, but to improve the execution times
it could be interesting to substitute Docker with a more advanced tool (e.g., Kubernetes) or to work directly with a container
run-time environment (e.g., containerd), thus excluding the interactions with intermediates.

Such improvements should be accompanied by the development of strategies and techniques to support stateful migrations of
services, thus enabling the persistency of the data over time and nodes. While this manuscript primarily focuses on providing
key low-level functionalities for our orchestrator, the absence of higher-level features such as strategies and techniques for
supporting data persistency across time and nodes do not support smooth data transfer during migrations and maintaining data
consistency. However, developing strategies to enable data persistence, particularly during stateful migrations of services is still
an active research topic and very few orchestrators currently support them. We plan to investigate how to incorporate them in
future releases.

Currently, FogArm reasons only on software, IoT devices and RAM requirements. However, FogBrainX could be extended
to support more expressive policies managing a richer infrastructure model including, for example, CPU, HDD and security
requirements. Additionally, in the current prototype, the user has to manually insert the service’s requirements. However, a
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useful extension could include a process of data mining to automatically generate, possibly exploiting a system of code’s anno-
tations, the service requirements. It would be very interesting to design such a process also exploiting a continuous reasoning
methodology to speed up the process of requirements extraction.

As a final limitation, our experimental assessment was carried out by comparing the continuous reasoning approach only with
the exhaustive search. Indeed, the nature of the solution - a next-gen orchestrator for the managing of multi-service applications
on Cloud-Edge settings - limits direct comparisons with other state-of-the-art research and orchestrators. To the best of our
knowledge, there are no other orchestrators with compatible characteristics to perform a more extensive and holistic comparison.
To overcome the current limitation on suitable orchestrators, we plan to develop more sophisticated placement policies to embed
directly on FogArm to be able to carry out a more extensive experimental assessment comparing different strategies.

6.3 Directions for Future Work
To conclude, we discuss some future research lines:
Developing new placement strategies Continuous reasoning is designed to boost the performance of a given placer, reducing

the size of the considered problem and re-using previously computed results as much as possible. Following this princi-
ple, FogBrainX could support several different placement strategies (e.g., genetic algorithms), possibly providing either
a logic programming implementation of the desired approach or a logic interface to the implementation of the placer.
Furthermore, the application and infrastructure models can be enriched by considering other QoS requirements/capabil-
ities (e.g., security properties, and energy consumption). Additionally, data persistency, data consistency, and a stateful
migration mechanism could be studied to better support the application orchestration.

Extending run-time decisions Our methodologies could be extended by considering other management decisions (e.g., appli-
cation scaling, service adaption), possibly including explanations on why a certain management decision was (not) taken.
This would enrich the capabilities of our orchestrator, enabling both more sophisticated application management and
improving visibility into the decision-making process.

Workload stress test A further assessment of FogArm could involve studying its behaviour under stressful conditions through
increasing workload on the managed services, thus even overloading both the node and links on the infrastructure through
experimenting with the actual flow of data and users’ interaction even in difficult condition with service crash or data loss.
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