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ABSTRACT The design of dual-band bandpass filters consisting of series short-circuited wire-bonded
multiconductor transmission lines and shunt open stubs is thoroughly carried out in this paper. Two different
configurations are studied and closed-form analytical design equations are derived to synthesize Chebyshev
filtering functions. A novel, simplified and time-saving synthesis procedure to design dual-band filters with
narrow or moderate broad bandwidths is finally presented, attending to the required final specifications and
the physical and manufacturing limitations. The usefulness and validity of the proposed analytical equations
are illustrated by designing, manufacturing, and measuring three different prototypes, showing an excellent
agreement between analytical and measured results.

INDEX TERMS Bandpass filter, Chebyshev response, coupled lines, dual-band, multiconductor transmis-
sion lines (MTLs), shunt stubs.

I. INTRODUCTION

Nowadays, the enormous growth of data traffic is promoting
new solutions which are used to transport this high amount
of data. To satisfy this demand, different techniques, such as
multiple-input-multiple-output systems, multicarrier, or car-
rier aggregation, are used. Nevertheless, not only signal pro-
cessing is important to achieve high data rates, but also every
part of the communication system can be enhanced. In the
RF domain, there are many improvements that are utilized,
such as the use of wider, double, triple band systems [1], [2].
In this sense, bandpass filters are one of the most important
components, and multiband responses have become essential
in the design of RF circuits [3], [4].

The main issue of double band filters is that they must be
designed and optimized for diverse specifications and appli-
cations, which could need broad or narrow bandwidths, large
or small frequency ratios and different in-band ripple factors
or return losses. Different topologies have been proposed to
achieve these specifications. The most straightforward ways
of designing dual-band filters is by cascading two single-band
filters [5] or combining a wideband filter with a bandstop
filter [6]. These methods are the simplest, but they usually
have problems with insertion losses and circuit size. For that

reason, the main topologies proposed by researches are based
on multimode resonator. These filters can be implemented
in different shapes and topologies, including open loop res-
onators [7], [8], ring resonators [9], [10], stepped-impedance
resonators [11], [12] or quadruple-mode resonators [13]. Fur-
thermore, the coupling between adjacent resonators is nor-
mally complicated, and there is a strong dependence on full-
wave simulations to characterize it. Therefore, the time spent
in the design and optimization process of filters based on
resonators is usually large. Transmission or coupled lines are
also quite used in planar dual-band bandpass filters, both in
single-layer [14], [15] as inmultilayer technologies [16], [17].
Under certain conditions, as proposed in this paper, it is possi-
ble to obtain analytical design expressions, even without the
use of electromagnetic simulators. Apart from that, mathe-
matical transformations from single-band to multiband filters
have been proposed, in order to synthesize multifrequency
responses from single ones [18].

In this work, two topologies of dual-band planar bandpass
filters based on series short-circuited multiconductor trans-
mission lines (MTLs) and shunt open stubs are proposed
and analysed through analytical equations. Previously, one of
these had been used by the authors for a design, without mak-
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FIGURE 1. Layout of the proposed circuit for the analysed dual-band bandpass filters: (a) prototype I and (b) prototype II.
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FIGURE 2. Equivalent circuit model for the proposed filters: (a) prototype I and (b) prototype II.

ing a deep analysis [19]. By using the proposed architectures,
dual-band filters with one or two poles in each band can be
achieved. As one of the main contributions, new design equa-
tions to synthesize filters with a Chebyshev-type response by
means of a quick and reliable procedure are deduced.

This paper is structured as follows. First, in Section II-A,
a circuit analysis of the two presented topologies is carried
out, in order to characterize the behaviour of both topolo-
gies separately. Subsequently, dual-band filtering functions
and a transformation between frequency and electric length
domains are presented in Section II-B. By using such trans-
formations, a synthesis procedure and a complete set of ana-
lytical equations for the design of Chebyshev-type dual band
filters are obtained in Section II-C. A design methodology,
taking into account the limitations of the filter, is proposed in
Section III. Finally, in Section IV, an experimental validation
is carried out, by designing, fabricating, and measuring three
filters, corroborating the developed theory and techniques.
Conclusions are given in the last section.

II. ANALYTICAL DESIGN PROCEDURE
In this work, two circuit topologies, shown in Fig. 1, have
been analysed. The procedure used to analyse these circuits is
similar to the one in [20]–[24]. Firstly, the frequency response
of the circuits is computed (i.e., the S21 parameter). Then,
a proper filtering function for synthesizing dual-band band

pass filters (BPFs) is obtained, and finally, the circuit design
parameters are determined by equating the transfer functions
to the filtering functions. By means of this procedure, closed-
form analytical design equations are obtained to design dual-
band BPFs with known return losses and operating band-
widths.

A. CIRCUIT ANALYSIS
The proposed circuits (see Fig. 1) are composed of series
short-circuited MTLs and shunt open-circuited stubs. Two
symmetrical prototypes are considered in order to design
first- and second-order dual-band BPFs. The analysis of
both filters can be directly carried out by using the equiv-
alent circuit for a short-circuited MTL [25], consisting of a
transmission-line section and two shunt short-circuited stubs
with characteristic impedances Z0a and Zsca , respectively. The
equivalent circuit models based on transmission-line for both
prototypes are depicted in Fig. 2. On the one hand, the char-
acteristic impedances of the MTL, Z0a and Zsca , are given by

Z0a =
2

(k � 1)(Yoo � Yoe)
=

2ZoeZoo

(k � 1)(Zoe � Zoo)
(1a)

Zsca = Zoe

�
1 +

(k � 2)Zoo

Zoe + Zoo

��1

= Z0a

c
1� c

; (1b)
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where Zoe and Zoo denote the even- and odd-mode impedances
of a pair of coupled lines and k is the number of conductors. �a

is the electrical length of a MTL, computed as the arithmetic
mean value of the even- and odd-mode electrical lengths,
and c is related to the maximum coupling coefficient of a k-
lines quarter-wavelength four-port coupler [26], which can be
written as

c =
Zoe � Zoo

Zoe + Zoo

�
1� (k � 2)2ZoeZoo

(k � 1)(Zoe + Zoo)2

��1

: (2)

On the other hand, the open-circuited stubs are defined by
their characteristic impedance Z0b and their electrical length
�b.

To analyse these circuits the even- and odd-mode analysis
is employed. Once the even- (Zine ) and odd-mode (Zino ) input
impedances are calculated, the S-parameters of the filters are
determined as

S11 =
ZineZino � Z2

0

�
; S21 =

Z0 (Zine � Zino)

�
� = Z2

0 + Z0 (Zine + Zino) + ZineZino ;
(3)

being Z0 the characteristic impedance used to terminate the
input and output ports. These expressions can be simplified
because both, the wire-bonded MTL and the open stubs, are
chosen to be a quarter-wavelength long at the middle fre-
quency (fo) of the desired two passbands. Besides, assuming
a TEM propagation, it can be considered that

�a = �b = � = �o
f
fo

=
�

2

f
fo
: (4)

From (3) and after some algebraic transformations, the
squared magnitude of S11 and S21 can be expressed as

- Prototype I

jS11j2 =
F2

I

1 + F2
I
; jS21j2 =

1

1 + F2
I

(5a)

FI =
g4 tan4 � + g2 tan2 � + g0

tan �
�
1 + tan2 �

� (5b)

KI =
1

2c3 �Z0a
�Z0b

(5c)

g4 = �Z3
0a

c3KI (5d)

g2 =
�
�Z0ac + 2�Z0bc

2
�
1� �Z2

0a

��
KI (5e)

g0 = �2�Z0b

�
1� c2

�
KI (5f)

- Prototype II

jS11j2 =
F2

II

1 + F2
II
; jS21j2 =

1

1 + F2
II

(6a)

FII =
p4 tan4 � + p2 tan2 � + p0

tan2 � (1= sin �)
(6b)

KII =
1

2c2 �Z0a
�Z2

0b

(6c)

p4 = �Z2
0a

c2KII (6d)

p2 = �
�
2�Z0a

�Z0bc + �Z2
0b

c2
�
1� �Z2

0a

��
KII (6e)

p0 = �Z2
0b

�
1� c2

�
KII (6f)

where
�Z0a = Z0a=Z0; �Z0b = Z0b=Z0: (7)

The frequency response of both structures is perfectly char-
acterized by means of (5) and (6), and taking into account
the form of FI and FII , designing dual-band bandpass filters
with real transmission zeros at �z=z �

2 and z = 0,1,2,... is
possible. These transmission zeros are used to enhance both,
the isolation between two pass-bands and the rejection level
in the lower and upper stop-bands. The transmission zeros
at �z=z�2 , z=0,2,4,... are inherent to the series MTL while
the zeros at �z=z�2 , z=1,3,... are caused by the open stubs.
Moreover, because of the degree of the numerator of FI and
FII is four, both structures are, a priori, suitable to synthesize
fourth-order dual-band band-pass filters. By adding different
electrical length stubs, it could be possible to obtain multi-
band bandpass responses, forcing zeros in theMTL passband.
Notwithstanding, this feasibility will depend on the physical
realizability of the required values of Z0a , Z0b and c, which
also conditions the operating bandwidths and the pass band
frequency ratio.
Therefore, at this point it is important to highlight the ad-

vantages of using multiconductor transmission lines instead
of only a pair of coupled lines. The achievable values of Z0a

and c as a function of the line width W and spacing S for
several number of conductors k are shown in [27]. These
curves were calculated by using the Rogers 4350B substrate
with a dielectric constant of 3.66 and thickness of 30 mils.
This substrate will be used throughout the rest of this work. It
is straightforward to observe that by increasing the number of
conductors it is possible to reduce the value of Z0a with higher
coupling values (c), which can be directly translated into
wider bandwidths and higher frequency pass bands ratios.
This behaviour will be examined in Section III.

B. DUAL-BAND FILTERING FUNCTIONS
Given the transfer functions of the two configurations anal-
ysed (5), (6), it is necessary to compute adequate filtering
functions to properly synthesize the dual-band frequency re-
sponses. These functions have to be symmetric with respect to
the middle design frequency fo, with one or two transmission
zeros at �=�0=�=2. Two procedures are explored to calculate
such filtering functions. The first one uses a classical low-pass
Chebyshev prototype [28], [29] with a dual-band frequency
transformation (Fig. 3(a)) [18], [30], while the latter makes
use of a generalized Chebyshev prototype [31] with the well-
known Richard’s transformation (Fig. 3(b)) [22]. Neverthe-
less, it is important to know the limitations or particularities
of both methodologies. By using the first method, a dual-band
filter of order 2m will have m coincident transmission zeros
in the middle of the two pass bands (�0), while by means of
the generalized Chebyshev prototype, the number of zeros at
�0 will be one or an odd number.
As seen in Fig. 3, the filtering functions in the normalized

frequency ! corresponds to a conventional low-pass proto-
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FIGURE 3. Transformations from the normalized !-plane to the �-plane using a (a) conventional low-pass Chebyshev prototype or (b) a generalized
Chebyshev polynomial.

type (Fig. 3(a)) or a filter with two pass bands symmetrical
respect to !=0 (Fig. 3(b)). �1, �2, �-�2 and �-�1 relate to
the lower and upper cut-off frequencies of the two pass bands
with central frequencies given by �01 and �02 (being �02=�-
�01). By considering the desired fractional bandwidth of the
first band (FBW) and the central frequencies of the dual pass
bands (f01, f02), the required design parameters �1 and �2 are
obtained as

fo =
f01 + f02

2
; FBW =

f2 � f1
f01

=
�2 � �1

�01
;

�0 = �=2; �01 =
�

2

f01

fo
;

�1 = �01

�
1� FBW

2

�
; �2 = �01

�
1 +

FBW
2

�
;

(8)

and the frequency transformations are calculated as
� Conventional low-pass Chebyshev prototype [28] to

dual-band BPF

! = a tan � � b cot � (9a)

a =
1

tan �2 � tan �1
; b =

tan �1 tan �2

tan �2 � tan �1
(9b)

� Generalized low-pass Chebyshev prototype [31] to dual-
band BPF

! =
��

tan �
; � = tan �1; !1 =

tan �1

tan �2
: (10)

C. SYNTHESIS OF DUAL-BAND BANDPASS FILTERS
Once the transfer functions of the structures analysed have
been derived in Section II-A and the low-pass to dual-band
bandpass frequency transformations are known (9), (10), the
proper filtering functions are derived herein. Thus, the design

parameters Z0a , Z0b and c can be easily calculated equating
the transfer function of the circuits (FI , FII ) to the theoretical
filtering functions (Fn) as

�Fn(�) = FI ;II (�); (11)

where � is the in-band ripple factor related to a given return
losses LR in decibels as [32]

� =
1p

10LR=10 � 1
: (12)

1) Prototype I
This prototype (Fig. 1(a)) has a polynomial FI of order four
with one real transmission zero at �=�=2, and thus, its fre-
quency response can be modelled by using the generalized
fourth-order Chebyshev function [31] and the Richard’s fre-
quency transformation. The transmission zeros of the S21 are
located in

tan � = 0;1; tan � = �j; (13)

which can be mapped to the normalized ! frequency as (10)

!z1 = 0; !z2 =1; !z3;z4 = �j� = �j tan �1: (14)

To compute the filtering function in the !-plane, once the
transmission zeros and the specifications of the pass bands
(�1 and �2) are given, the recursive formulas derived in [31]
are employed. Then, a filtering function for a fourth-order
dual-band bandpass filter can be obtained. However, it can
be demonstrated that, regardless of the values of Z0a , Z0b and
c, it is not possible to obtain four real transmission poles. The
roots of the numerator of FI can be calculated by solving the
quadratic equation

g4x2 + g2x + g0 = 0; (15)
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with x=tan2 �. However, because g0=g4 is always negative,
one root of (15) will be positive whilst the other negative
and, consequently, this structure is unsuitable to generate
four real poles. Nevertheless, under the condition �Z0ac=1, this
topology can be used to design second-order dual-band BPFs.
Imposing this relationship on (5), the new transfer function
reduces to

FI =
g2 tan2 � + g0

tan �
; KI =

1

2c2 �Z0b

g2 = KI ; g0 = �2�Z0b

�
1� c2

�
KI :

(16)

Note that this transfer function has only a transmission zero
at �=�=2 and, thus, the dual-band filtering function Fn can be
obtained using the two frequency transformations discussed
in Section II-B. It can be proved that both methods lead to the
same result. From a first-order Chebyshev polynomial in the
!-plane (Fn=!) and after the frequency mapping (9) to the
bandpass domain, the filtering function is given by

Fn(�) =
g2t tan2 � + g0t

tan �
g2t = a; g0t = �b:

(17)

Equating (17) to (16) the following relations between co-
efficients are obtained

g0

g2
=

g0t

g4t
; � =

g2

g4t
; (18)

that can be used to calculate the closed-form design equations
as

�Z0b =
1 + b�

2a�
(19a)

c =
1p

1 + b�
(19b)

�Z0a = 1=c: (19c)

For this configuration there is a single transmission pole
in each pass band, so that � determines the return losses
(LR) at the cut-off frequencies (�1 and �2). Mathematical
development of filtering functions for prototype I is described
in Appendix A.

2) Prototype II
This prototype (Fig. 1(b)) has two real transmission zeros
at � = �=2 (6b) and it can be designed to generate four
real poles. Therefore, the use of a conventional second-order
Chebyshev polynomial with the frequency transformation
indicated in (9) is used to obtain the required theoretical
filtering function. If the generalized Chebyshev low-pass pro-
totype presented in [31] was used, it would be possible to
generate only an odd number of transmission zeros at the
middle frequency of the two pass bands. However, with the
second-order polynomial and the low-pass to dual band-pass
transformation (9), a filtering function with two real trans-

mission zeros can be generated. The second-order Chebyshev
polynomial Fn = 2!2 � 1 is mapped to the �-plane as

Fn(�) =
p4t tan4 � + p2t tan2 � + p0t

tan2 �
p4t = 2a2; p2t = �(4ab + 1); p0t = 2b2;

(20)

and by equating this function with (6b), the following rela-
tionships are derived

p2

p4
=

g2t

g4t
;

p0

p4
=

g0t

g4t
; � =

p4

p4t
: (21)

Note that the term 1= sin � in (6b) is not in the filtering func-
tion obtained in (20). Therefore, the next design equations
will provide an approximated synthesis procedure. Neverthe-
less, once the design parameters are obtained, they can be
easily corrected by means of (6). From (21), the circuit design
parameters can be calculated as

�Z0a =

 
1 +

4ab
p

1� c2 � (4ab + 1)(1� c2)

2b2c2

! 1
2

(22a)

�Z0b = �Z0a

cp
1� c2

b
a

(22b)

� =
1� c2

c2

1

4�Z0ab2
; (22c)

where �Z0a and �Z0b depend on both, the coupling factor and
the specifications of the pass bands (�1 and �2). Besides, from
(22a) and (22c) it is possible to find an expression that relates
c with the in-band ripple factor � (12) as

a4x4 + a3x3 + a2x2 + a1x + a0 = 0

a4 = 1� 8�2m2b2(1 + 4ab + 2b2)

a3 = 32�2m2ab3

a2 = 8�2m2b2(1 + 4ab + 4b2)

a1 = �32�2m2ab3

a0 = �16�2m2b4

m = 1= sin �01

(23)

where

c =
p

1� x2: (24)

In (23) the term sin �01 has been included to compensate
for the effect of 1= sin �. By means of this correction, it is
guaranteed that the desired return losses are achieved at the
central frequency of both pass bands. The analytical solution
of this quartic equation (23), using an efficient algorithm
proposed in [33], is described in Appendix B.

Consequently, once the specifications of the dual-band
bandpass filter are known, equations (22a) and (22b) can be
used along with (23) to determine the design parameters of
the filter.
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III. BANDWIDTH AND DESIGN CONSIDERATIONS
In the previous section, design equations for the two proto-
types shown in Fig. 2 are obtained. However, it would be de-
sirable to get a relation between the circuit design parameters
and both, the achievable operating bandwidth and the pass
band frequency ratio. Obviously, the performance of both
filters will be conditioned by the required design values for
the MTL and the shunt stub, and the limit values imposed by
the manufacturing process capability. Therefore, depending
on the obtained values, it is possible to establish some design
criteria. Figures 4 and 5 show several values of Z0a , c and
Z0b in order to achieve different combinations of fractional
bandwidth (FBW) and frequency ratio (r = f02=f01) for
prototypes I and II, respectively. LR=3 dB (�=1) is used for
prototype I, while for prototype II LR = 15 dB has been
employed. Thus, the 3 dB-fractional bandwidth is considered
for the former, while the fractional bandwidth with equal-
ripple response is defined for the latter. This definition is
shown in Fig. 6.

As seen in Fig. 4, prototype I allows narrower bandwidths,
independently of the separation between bands. Nevertheless,
to achieve high frequency ratios, low stub impedances (Z0b )
must be used. Furthermore, increasing the number of conduc-
tors (k) must be taken into account in order to get low MTL
impedances (Z0a ) and high coupling factors (c) [27]. Proto-
type II does not allow narrow bandwidths, because of large
stub widths would be needed. In addition, it is remarkable
that frequency ratio hardly varies with the MTL impedance.
As this impedance must be low, the number of conductors has
to be increased to achieve the desired MTL impedances [27],
justifying again the use of multiconductor transmission lines
instead of only a pair of coupled lines. Thus, prototype I is
more appropriate when using higher frequency ratios and nar-
row bandwidths, whereas prototype II is better suited to wide
bandwidths. Once these criteria are taken into account, the
design parameters can be effortlessly selected to synthesize
the desirable frequency response of the filter.

Taking into account the design considerations and limi-
tations previously mentioned, it is possible to elaborate a
design procedure to select the best prototype depending on the
required specifications. This procedure can be summarized as
follows.

� Step 1: From (8), calculate �01 and �02 according to the
desired central frequencies of both bands (f01, f02) and
the fractional bandwidth (FBW). Obtain the value of f0.

� Step 2: Choose the MTLs and stubs lengths to be a
quarter-wavelength long at f0.

� Step 3: Obtain the values of a and b using (9).
� Step 4: Look at Figs. 4 and 5 and decide which proto-

type is more suitable for the given specifications, taking
into account the fractional bandwidth definition. When
choosing the first prototype, consider LR=3 dB (�=1), but
for the second one, obtain the in-band ripple factor �,
depending on the desired return losses LR (12).

� Step 5: Use (19) or (22) and (24), depending on the
chosen prototype, to calculate the required values of Z0a ,
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FIGURE 4. Z0a , c and Z0b
values for prototype I, depending on the

fractional bandwidth (FWB) and the frequency ratio (r), calculated using
(19).

c and Z0b .

Finally, verify that the accomplished values are physically
achievable by the manufacturing process.

IV. EXPERIMENTAL VALIDATION
In order to assess the developed theory and techniques, three
filters have been designed, fabricated and measured. For
prototype I, the centre frequency was f0 = 3:9 GHz, using
the analytical equation (19) to choose its parameters. For the
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