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A B S T R A C T

A new methodology based on expert knowledge and data mining is proposed to obtain data-driven models that
characterize household consumption profiles. These profiles are useful for electricity marketers to understand
their customers’ consumption. They could then adjust their electricity purchases in the market and provide
recommendations to their customers to manage their consumption. The novelty of this research work is
proposing a new procedure to determine an adequate number of clusters for a clustering task. Therefore, the
proposed new methodology includes this novel procedure to build the models in two phases. In the first phase,
clustering algorithms are used to group the data using different numbers of clusters. For the second phase,
a new procedure (k-ISAC_TLP) is proposed and used to select the most appropriate number of clusters. This
methodology allows the inclusion of domain information. In the case of household electricity consumption,
where only groups with a significant number are relevant as long as the error is small, it allows the use of
metrics like the mean absolute error and the number of observations (daily electricity consumption profiles).
According to experts, the results achieved in two real datasets (from Spain and Ireland), with millions of
observations support the methodology and reveal novel knowledge. In both cases, two and a half million
observations have been analyzed and around twenty electricity consumption profiles have been detected. The
methodology is easily extensible to problems of any domain where clustering algorithms are applicable. A
software solution has been implemented and made freely available.
1. Introduction

Nowadays, in order to discover hidden knowledge to deal with
complex problems involving large amounts of data and variables, data
mining techniques have proven to be able to do so accurately and
in a short time (Hastie et al., 2009). The significant increase in the
amount of data and information available in recent years has led to
the development of new data mining techniques to manage all this
information and allow automatic extraction of valuable and relevant
information.

Every data mining process usually consists of a first phase in which
the problem to be treated and the necessary data are studied (Martinez-
Plumed et al., 2021). Next, these data are processed and prepared, the
models are generated, and later they are evaluated to check if the initial
objectives have been achieved. The participation of experts in the entire
data mining process is essential to obtain the expected results. Without
the participation of experts, it would not be possible to discover if any
model should be discarded or if it is relevant, nor if the data are the
correct or if the problem is correctly understood.
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Electricity consumption data is a real example where smart meters
register vast amounts of data, and some different proposals transform
them into useful information (Rajabi et al., 2020). Individuals can adapt
and improve their lifestyle using the information that they themselves
generate, but it is also possible to obtain the consumption profiles of
domestic consumers from a global perspective. Discovering profiles,
also called patterns, from electricity consumption data is a data mining
task that will accelerate the transition towards future supply models,
energy uses, sustainability and competitiveness in the medium and long
term.

Having models that characterize the domestic hourly electricity
consumption profiles provides advantages to the main players in this
domain: (a) electricity marketers will be able to offer better tariffs
and personalized services to their customers, as well as being able to
better manage the electricity grid; (b) consumers could be advised to
shift their consumption to times when electricity prices are lower (or
null if it is produced by self-consumption facilities) or there is less
demand; and (c) the environment would be positively impacted by
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List of abbreviations

𝐶𝐷𝐼 Clustering Dispersion Indicator
𝐶𝐾𝑆𝐶 Combination of k-means and Spectral Clus-

tering
𝐶𝑉 𝐼 Clustering Validity Indices
𝐷𝐵 Davies–Bouldin index
𝐹𝐶𝑀 Fuzzy c-means
𝐺𝑀𝑀 Gaussian Mixture Model
𝐼𝑆𝐴𝐶 Identifier of Stable Areas in Curves
𝑘 − 𝐼𝑆𝐴𝐶_𝑇𝐿𝑃 k determination via ISAC method for TLP
𝑀𝐴𝐸 Mean Absolute Error
𝑀𝐼𝐴 Mean Index Adequacy
𝑀𝑆𝐸 Mean Squared Error
𝑃𝐶 Profile Classes
𝑆𝐼𝐿 Silhouette index
𝑆𝑂𝑀 Self Organized Maps
𝑇𝐿𝑃 Typical Load Profile
𝑊𝐶𝑆𝑆 Within-Cluster Sum of Squares

better management and use of the electricity grid, enabling the fight
against climate change, and in improving urban sustainability.

1.1. Related work on finding domestic electricity consumption profiles

The use of machine learning methods to discover consumer profiles
is a reality for some years now. Since the beginning of the century,
there are academic works that propose the use of the Kohonen self-
organizing map (SOM) to find customer clustering using a few tens or
hundreds of consumers (Figueiredo et al., 2003; Verdu et al., 2004).
However, despite the widespread use of SOM modeling, there are other
algorithms that achieve better performance (Rajabi et al., 2020).

More recent proposals, like the one presented by Räsänen et al.
(2010), continue using the same approach, but considering thousands
of consumers instead of the hundreds used in previous works, which
enriches the dataset and makes it possible to find a greater variety
of profiles. The authors combine some clustering methods (such as
k-means and hierarchical clustering) with SOM. But even with improve-
ments in HW, the computational limitations require a reduction of
the dataset. Thus, they process the raw data, reducing the length of
the initial time-series and retaining only 5%. To decide the number
of clusters to configure the k-means algorithm, they calculate the
Davies–Bouldin index and the average within cluster variance.

In other work, several load Profile Classes (PC) are proposed to
characterize the domestic customer electricity consumption (McLough-
lin et al., 2015). This PCs are then used to make a classification of
customers according to the sequence of consecutive PCs defining each
customer for six months. In the first step, where profiles have to be
discovered, unsupervised learning methods are used to characterize
diurnal, intra-daily and seasonal patterns of electricity use. The data
are taken from a dataset where 5000 Irish homes and businesses par-
ticipated (Irish Social Science Data Archive – ISDDA – (Commission for
Energy Regulation (CER), 2012)). This dataset, due to its availability,
is used in numerous works. This is the case of Sun et al. (2020) where
a new method (CKSC) that combines k-means and spectral clustering
is proposed. In this work, the Silhouette index (SIL) is used to support
the determination of the appropriate number of clusters, being one of
the most recently used metrics in this field.

In the review by Cembranel et al. (2019), a summary of the methods
used for clustering load electricity profiles is presented. They conclude
that the k-means algorithm presents the best results, although they
2

point out the problem of deciding the correct number of clusters. To
avoid this issue, the authors suggest using automatic algorithms, such
as G-means (Hamerly and Elkan, 2003) or X-means (Pelleg and Moore,
2000). These algorithms run the k-means algorithm in succession until
the acceptance of a condition stops the search, but they also present
limitations. For example, G-means is used in the domain of charac-
terizing electricity consumption (Mets et al., 2016) but original data
has to be approximated by a wavelet representation. The reduction
of dimensionality is needed because G-means requires not so highly
dimensional data. Regarding X-means, it is slow for large amounts of
data.

Another proposal that also faces the same dimensionality problem is
made by Yilmaz et al. (2019). They use only five features to define the
shape of household electricity consumption, instead of using all values
along the day.

A similar approach that describes the demand for every consump-
tion with seven calculated features is proposed by Kaur and Gabrijelčič
(2022).

In this area, the so-called ‘‘curse of dimensionality’’ problem ap-
pears, it is well known in the field of machine learning. This problem
affects both the number of features that define an observation and the
number of observations themselves.

Several clustering techniques (k-means, fuzzy C-means, hierarchical
clustering and SOM) used in the context of electrical load patterns are
compared by Rajabi et al. (2020). The clustering validity indices (CVI)
used are Mean Square Error (MSE), Silhouette (SIL), Davies–Bouldin
(DB), Mean Index Adequacy (MIA), Dunn, and the ratio of within-
cluster sum of squares to between-cluster variation (WCSS). The main
source of data is again the Irish dataset (ISDDA) where some filters
and transformations are applied to reduce the dimensionality. After
comparing the performance of clustering methods and cluster validity
indexes (CVIs) they propose different number of clusters depending on
the size and nature of the datasets built.

The growing use of smart meters is accelerating the emergence of
really large datasets that record hourly energy consumption (millions of
records). But the computational requirements of clustering algorithms
limit the number of records and variables that can be processed using
standard amounts of time and memory. One alternative is selecting a
subset from the whole dataset. This is the approach proposed by Kwac
et al. (2014) that starts with tens of millions of records and work
with one hundred of thousands (by selecting households in the same
location or by random sampling). The first stage in their methodology
is the creation of a load shape dictionary for representative load shapes.
They generate a dictionary with approximately 5K clusters for one
subset with about 140K load patterns (taken from a specific zip code).
Then the dictionary is reduced to 1K clusters that covers the 95%
of all load shapes over all the areas and periods. They assure that
the representative load shapes are consistent regardless of spatial and
temporal locality, but they do not check the consistence of different
dictionaries (clusters for load shapes) created from different subsets
(from other zip codes).

Toussaint and Moodley (2020) emphasize that selecting a useful
set of clusters to identify dominant electricity consumption profiles
of households requires extensive experimentation and domain knowl-
edge. Experts’ knowledge is important in this process and the authors
address this need by formalizing implicit expertise as external evalu-
ation measures. Thus, the evaluation of results is measured by using
internal metrics (like mean index adequacy, Davies–Bouldin index, the
Silhouette index or a new Combined Index) and external metrics (like
mean demand error or mean peak coincidence ratio). In addition to
their proposal, they also include an analysis of the most commonly
used clustering algorithms for this task in 25 academic works. K-means
is both the most used algorithm and the one that ends up achieving
the best results most frequently. This conclusion is also supported by
their own results, because they verify that k-means is the best clustering
algorithm between all experiments they conducted.
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This algorithm, k-means, is the selected option in very recent works
that has the discovery of relevant profiles as a crucial step in its method-
ology. Guo et al. (2022) and Rafiq et al. (2023) need to determine
those profiles, based on hourly consumption, because they try to predict
residential electricity consumption. It is an advanced task, but one
that relies for its development on a good determination of household
intraday electricity consumption profiles.

Losing variability is another issue present in this area. Aforemen-
tioned works by Kwac et al. (2014) or Yilmaz et al. (2019) show it.
The latter incorporated to the study the average household electricity
profiles (aggregated values) and detected 3 distinct clusters, instead of
the 4 clusters detected when not using aggregated data. They conclude
that averaging the data suppresses the diversity of the electricity use
profiles within the individual household, while demonstrating that the
raw daily profiles for a household differ significantly from its average
profile.

The most relevant data on datasets, algorithms and results of the
referenced research papers are summarized in Table 1. This summary
highlights the progress made to date, as well as identifying several gaps
that this work aims to fill:

• There are many configurations for carrying out the clustering
task (algorithms, distances, CVIs). K-means appears to be the
most used clustering algorithm in this context, maybe because its
low complexity (Xu and Tian, 2015), and the one that achieves
better results (Toussaint and Moodley, 2020). It is also an easily
parallelizable algorithm. Based on CVIs, the Silhouette index,
used in recent works in the area, can be used to assess the quality
of clusters, but sometimes tends to choose a smaller number
of clusters, which is not suitable for profile segmentation (Guo
et al., 2022). Combining this index with some other criteria could
improve the determination of the number of clusters.

• The dimensionality of the dataset, either by the number of in-
stances or by the number of variables defining them, is one of
the major limitations when running clustering algorithms. It is
relatively easy to learn from thousand of daily load profiles,
but the task becomes much more complicated when millions are
involved. It is usual to sample the dataset to use approximately
100K profiles at most. Considering 24 variables, one per hour
in a day, is also very common. Only recent works have used
millions of observations to group similar profiles in the same
cluster (Toussaint and Moodley, 2020; Guo et al., 2022). It is a
time consuming task that can be accelerated by using parallel
computing.

• Determining a single optimal number of clusters (𝑘) is a task that
is tackled from two different perspectives: considering multiple
values for 𝑘 and getting the best value a posteriori (checking
CVIs measures) or doing a succession of executions until the
acceptance of a condition stops the search. The sizes proposed
in different research works are very heterogeneous: from a few
clusters (less than 10) to many of them (even thousands) through
some tens (one to three tens). One of the main factors for this vari-
ability may be the inclusion of experts’ knowledge. This highlights
the importance of developing methodologies that allow for the
inclusion of experts’ experience. What seems to be agreed is that,
in general for this context, working with few clusters (less than
ten) is insufficient, but working with too many (more than thirty)
over-complicates the options being interpreted by the experts.

• It is important to use non-aggregated daily load profiles to avoid
the loss of variability observed in domestic load consumption (Yil-
maz et al., 2019). With the same intention of not conditioning
the results to be achieved, there are several strategies that could
be eliminated. For example, it is common to segment the data
prior to the clustering phase (weekday and weekend (Rajabi
et al., 2020), cooling-included and cooling-excluded (Rafiq et al.,
2023)), but biases can be introduced. Normalization is another
3

common phase in the preparation of the data (Toussaint and
Moodley, 2020; Kaur and Gabrijelčič, 2022), which, among other
objectives, allows to agglutinate patterns that share the same
shape and only differ in scale, but hinders a correct retrieval of
the original patterns.

Taking into account the progress in the characterization of house-
hold electricity consumption made to date, the limitations detected and
the opportunities, some research questions arise:

• Can the Silhouette index be complemented with some other cri-
teria to improve the determination of the number of clusters?

• Moreover, can an automatic method be proposed to determine
appropriate values for the number of profiles to be searched for?

• Is using a parallelizable version of k-means an advantageous
alternative for working with large volumes of data?

• Is there any advantage in simplifying the pre-processing step
before clustering the dataset?

1.2. Contributions and organization of the paper

In this paper, we present the advances achieved by combining the
experts’ knowledge inside a data mining process to characterize the
domestic hourly electricity consumption profiles. Some contributions
can be perceived from different perspectives, but the most relevant are
the following:

• A new methodology that automatically allows characterizing the
domestic hourly electricity consumption profiles through data-
driven models. Even with millions of daily load profiles, viable
alternatives, like big data algorithms, take advantage of com-
putational resources. An implementation of this methodology is
made available as open-source. This methodology simplifies the
pre-processing data steps.

• A new procedure to determine non-unique cluster numbers based
on the stability of different metrics recorded during the imple-
mentation of the methodology. Those candidates of the number
of clusters can then be used to select the most appropriate one.
This proposal can incorporate experts’ knowledge depending on
the domain problem.

• The domestic hourly electricity consumptions for two different
locations are characterized by using the proposed methodology.
They have been identified using clustering methods and consider-
ing knowledge provided by experts. Experimental results and ex-
pert advice suggest that this methodology is a valuable tool. One
of the datasets is public and available on request (Commission for
Energy Regulation (CER), 2012).

These contributions have direct application in the real world. For
example, the proposed procedure for determining the appropriate num-
ber of clusters, based on the stability of different metrics, can be applied
to any real-world domain where profile characterization is useful, such
as modeling electricity consumption profiles, modeling business study
dimensions, or modeling environmental phenomena for climate change
action. The profiles detected in the two localities can be used by
local electricity companies to give consumption recommendations, shift
consumption to cheaper hours or propose groups of consumers for
possible energy communities.

The rest of the paper is organized as follows. Background knowledge
used in this work is described in Section 2. It includes a description of
the clustering techniques used and the metrics and statistical validation
proposed for evaluating the models. The proposed methodology is ex-
plained in Section 3. The experimental design is described in Section 4,
including the description of the dataset and some details about the
implementation. Section 5 presents the intermediate results that guided
the methodology to a final result in real cases context. This section
also includes the evaluation done by experts in the domain. Finally,
Section 6 summarizes the main conclusions of the work.
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𝑒

Table 1
Summary of datasets, algorithms and results shown in the referenced research papers. References are presented in ascending chronological
order.

Country Observations Algorithms Cluster metric Best k Available dataset

Figueiredo et al. (2003) Portugal 165 SOM CDI 9 –k-means

Verdu et al. (2004) Spain 327 SOM – 5 –

Räsänen et al. (2010) Finland 3989 SOM + k-means DB 19 –SOM + hierarchical

Kwac et al. (2014) USA
Sample Adaptive

MSE –200K k-means + 1000
Consumers + hierarchical (16)

McLoughlin et al. (2015) Ireland 3941
SOM

DB 10 ✓k-means
k-medoids

Yilmaz et al. (2019) Switzerland 656 k-means SIL 4 –

Sun et al. (2020) Ireland
Sample

CKSC clust. SIL 6+6 ✓4181
Consumers

Rajabi et al. (2020) Ireland

Reduce SOM DB

✓

Data from k-means SIL
4141 Hierarchical MIA 16 + 16
Consumers FCM clust. . . .

Toussaint and Moodley (2020) 3.3MM
SOM DB +

59 ✓South k-means + SIL +
Africa SOM + k-means + MIA

Kaur and Gabrijelčič (2022) Slovenia 4963 GMM clust. mix 15 –

Guo et al. (2022) Ireland 1.9MM k-means SIL 6 ✓

Rafiq et al. (2023) Dubai 134K k-means WCSS 4+4 –

k-ISAC_TLP Spain 2.4MM k-means SIL 19 –

(this proposal) Ireland 2.5MM Bisecting k-means MAE 21 ✓
2. Background and preliminaries

Clustering is an unsupervised machine learning technique that is
used to separate and group the observations of a dataset into different
subsets. There are different applications, such as community detec-
tion (Berahmand et al., 2018) or customer segmentation (Figueiredo
et al., 2003). The observations in each subset should be as similar as
possible to each other in the subset, subject to a distance function.
Additionally, it is desirable that the distance between different subsets
is high.

In the context of household electricity consumption, there are no
predefined profiles and it is important to identify how many typologies
of consumption exist. Therefore, unsupervised learning is needed and
clustering becomes an appropriate tool to find those profiles.

In this section we describe the most relevant aspects to be consid-
ered for conducting a clustering task: distance between observations,
algorithms, indicators to evaluate the suitability of the model and
determination of appropriate number of clusters. In Section 3.2 we
complement with new proposals those described in this section.

2.1. Distance functions

A distance function is needed to measure the similarity between
observations described by quantitative attributes. Note that the clus-
tering process consists of grouping similar observations, so a form of
measurement is needed.

One of the most common functions is the Euclidean distance. In case
of considering 𝑚 variables (or attributes) to define an observation it can
be formulated (in 𝑚-dimensional Euclidean space) as:

𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡(𝑥, 𝑦) =
√

(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 +⋯ + (𝑥𝑚 − 𝑦𝑚)2 (1)

where 𝑥 and 𝑦 are two points in a 𝑚-dimensional space (R𝑚).
4

When calculating the error of fitting the whole dataset by a model,
the sum of the squared Euclidean (SSE) distances between each obser-
vation and the centroid of the corresponding cluster is used to get the
Mean Distortion (MD) in the whole model (Shi et al., 2021):

𝑆𝑆𝐸 =
𝑘
∑

𝑖=1

∑

𝑜𝑗∈𝐶𝑖

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡(𝑜𝑗 , 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑖)2 ; 𝑀𝐷 = 𝑆𝑆𝐸
𝑛

(2)

where 𝑘 is the number of clusters, 𝑛 is the number of observations, 𝑜𝑗 is
an observation (𝑗 ∈ [1, 𝑛]) assigned to the cluster 𝑖 (𝐶𝑖 where 𝑖 ∈ [1, 𝑘])
and 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑖 is the centroid of the cluster 𝑖.

Since each observation in this domain is the hourly consumption of
one day (𝑚 = 24), another types of distances could take into account the
form of the curves like Dynamic Time Warping (DTW) distance (Sakoe
and Chiba, 1978) or the kernel distance (Cuturi, 2011).

2.2. Clustering methods

There is a wide range of clustering algorithms (Xu and Tian, 2015)
that can be classified according to how they perform the clustering:
partitionally, hierarchically, based on density, based on graph partition.
Within all this variety of algorithms some of them are better prepared
to work with massive datasets in different domains. Attending to time
complexity, only algorithms with 𝑂(𝑛) or at most 𝑂(𝑛 ⋅ 𝑙𝑜𝑔(𝑛)) could be
used:

• Based on partition. K-means (MacQueen, 1967) starts selecting 𝑘
clusters each of which consists of a single random point (cen-
troid). Thereafter k-means adds each observation in the dataset
(𝑛 is the number of observations) to the cluster whose centroid
is nearest. An update process continues changing the centroids
until some criteria for convergence is met (𝑡 is the number of
iterations). This procedure is of low time complexity (𝑂(𝑘𝑛𝑡)), so
that it is feasible to process very large samples.
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Fig. 1. Methodology proposed to detect household electricity consumption profiles from daily hourly consumption data. It is divided into two phases, the first one to explore
different alternatives and the second one to propose one of them as a suitable model.
• Based on hierarchy. Bisecting k-means (Steinbach et al., 2000) is
a divisive hierarchical clustering algorithm that uses k-means to
refine successive divisions. Instead of partitioning the dataset into
𝑘 clusters from the beginning, bisecting k-means splits one cluster
into two sub-clusters at each bisecting step (by using k-means)
until 𝑘 clusters are obtained. Its time complexity is, like k-means,
linear in the number of observations (𝑛). If the number of clusters
is large, bisecting k-means could be even more efficient than
the classical k-means algorithm. Another approach with low time
complexity (𝑂(𝑛)) is BIRCH (Zhang et al., 1996). It creates and
dynamically updates a Clustering Feature Tree (CF tree), of which
one node stands for a subcluster. That information is used to
conduct an agglomerative hierarchical clustering algorithm that
create the final clusters in the model.

• Based on density. DBSCAN (Ester et al., 1996) is the most well
known clustering algorithm in this category. The basic idea is
grouping together those observations of the data space that are
in a region with high density. OPTICS (Ankerst et al., 1999) is
an evolution of DBSCAN that incorporate two parameters (the
radius of the neighborhood and the minimum number of points
in a neighborhood) to improve the induction of the model. Both
algorithms show slightly higher complexity than linear: 𝑂(𝑛 ⋅
𝑙𝑜𝑔(𝑛)).

• Based on graph theory. Power Iteration Clustering (PIC) (Lin and
Cohen, 2010) is a clustering technique based on graph theory.
It requires a row-normalized affinity matrix and it can find the
clustering partition using linear complexity in the number of
observations (𝑂(𝑛)). Although its complexity is low, it assumes
the existence of an affinity matrix. Previously to execute PIC
algorithm, or any other based in the idea of partitioning the graph
(like CLICK (Sharan et al., 2003)), an undirected weighted graph
must be constructed (Dhanapal and Perumal, 2016). Every obser-
vation in the dataset is a vertex and the similarity value between
any two observations is the weight of the edge connecting the
two vertices. Generating this matrix triggers the time complexity
(𝑂(𝑛2)).
5

2.3. Evaluation metrics

To evaluate the quality of the clustering models, there are many
indices, but only internal evaluation is possible when there is none
information about the real groups. Internal indicators usually evaluate
how similar the observations of the same cluster are (cohesion), and
how different they are with respect to the observations in other clusters
(separation). There is a wide diversity, but the most common metrics
used when clustering electricity consumption profiles are the following:

• Silhouette index (Rousseeuw, 1987) is a metric that combines (a)
the average dissimilarity of one observation to all other objects
of its own cluster (cohesion); and (b) the average dissimilarity
of one observation to all other objects of its most closest cluster
(separation). This combination results in the calculation of the
index for every observation 𝑠(𝑜𝑗 ). When this index is aggregated
for every observations in a cluster and then aggregated for all
the clusters, the overall average Silhouette width is obtained.
This overall value ranges between [−1,1], where higher values
indicates an appropriate modeling of the clusters.

• Davies–Bouldin index (Davies and Bouldin, 1979) measures the
similarity of clusters which are assumed to have a data density
which is a decreasing function of distance from a vector char-
acteristic of the cluster (centroid). It calculates, for every pair
of clusters, the ratio between (a) their intra-cluster dispersion
(or cohesion); and (b) the distance between their centroids (sep-
aration). Then averages the maximum ratios for every cluster.
Davies–Bouldin index ranges between [0,1], where lower values
mean better clustering models.

2.4. Determining the number of clusters

Finding how all data should be correctly assigned to different
clusters is a fundamental problem even when the optimal number of
clusters is known. But this problem is aggravated when that number
is unknown (Ezugwu et al., 2021; Rostami et al., 2023). There exist
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different alternatives to look for the appropriate numbers of clusters.
The two main approaches are: (a) creating clustering models with
different values of 𝑘 in a predefined range (𝑘 ∈ [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]) and
subsequently determining the best (unique or non-unique) values; and
(b) building a succession of clustering models, with increasing 𝑘, until
the acceptance of a condition stops the search.

There is a great diversity of methods and algorithms following the
first approach. One of the simplest is based on the aforementioned
Silhouette index values, since one way to choose 𝑘 is to select the value
that results in a higher value of the overall average Silhouette width.
Another idea is known as the elbow method, that considers the best
number of clusters to be that in which there is no longer a significant
change between the value of the index for that number of clusters
and the value of the index for the next proposed number of clusters.
This identification is manually done by visualizing a curve, which can
cause situations where experts cannot clearly identify the elbow point
(smooth curves). To overcome this difficulty, Shi et al. (2021) propose
the selection of the value of 𝑘 where the minimum angle between
consecutive values is observed. The combination of the elbow method
and Silhouette metric is one alternative (Raj and Vidyaathulasiraman,
2021) that attempts to minimize odd situations. The idea implemented
in NbClust package (Charrad et al., 2014) goes beyond and calculates
several metrics (even tens of metrics) and selects the value of 𝑘 voted
by the majority. They argue that it is difficult to reach a unanimous
decision on the optimal number of clusters.

With regard to the second approach, there are also multiple alter-
natives. In Section 1.1 it is described that G-means and X-means have
been used in the context of domestic electricity consumption profiles.
Without restricting the scope to this domain, Ezugwu et al. (2021)
make a review where some other dynamic clustering algorithms are
compiled. But, independently of the domain, these authors conclude
that there is a big issue with large-scale datasets especially when
handling real-world clustering problems.

3. Methodology and new proposals

This section presents the proposed methodology to characterize
the domestic hourly electricity consumption profiles. Moreover, a new
proposal to determine the optimal number of these profiles is also
described.

3.1. Methodology

The process of characterizing consumption profiles is divided into
two phases. Fig. 1 represents these phases and how they combine to
induce the model that summarizes the knowledge in the available data.

• The first phase carries out an exploratory search guided by the
experts in the domain of electricity consumption and supported
by data scientists. Experts define the range for the number of
clusters (𝑘 ∈ [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]). They know that there exist a minimum
number of different profiles and estimate that considering a large
number of profiles would not provide useful information (usually
irrelevant and small groups are created). Data scientists conduct
different experiments with available algorithms and methods in
the range defined by the experts, assuming realistic conditions
(limiting available time and memory).
Depending on the size of the dataset, the variety of algorithms
that can be used changes. If the dataset is large, options with
time complexity beyond linear will not properly work. Even those
with the lowest time complexities can have limitations if tradi-
tional implementations are used. In the case of highly demanding
scenarios, big data clustering methods can be used (Dafir et al.,
2021), although there are far fewer options (Saeed et al., 2020).
Due to the lack of clustering algorithms that are able to cope
6

well with the high computational cost (Ezugwu et al., 2021), new
algorithms will be developed and they can be included in the
repository of methods available in the proposed methodology.
In this first phase, the Euclidean distance (Eq. (1)) is used to
assign the observations to the clusters. The assignment is done
by seeking to minimize this distance, because this minimizes the
mean distortion (Eq. (2)).

• In the second phase, the model that best characterizes the hourly
electricity consumption profiles is selected. Several stages go
extracting the relevant information and propose the model with
most appropriate 𝑘 clusters.

– Once the different clustering models have been generated,
the centroids for every cluster are calculated. This step
allows the calculation of the distance between observations
and centroids with a distance function different from the
usual Euclidean distance.
Since each observation in this domain is the hourly con-
sumption of one day (𝑚 = 24), the most appropriate dis-
tances could take into account the form of the curves.
Although alternatives exist in the time series domain based
on the shape of the curve (like DTW), experts in household
electricity consumption have suggested another measure-
ment: the Absolute Error (AE). Comparing two shapes of
equal length (𝑚 variables) is quadratic for DTW (𝑂(𝑚2)), but
calculating the Absolute Error (AE) takes linear time (𝑂(𝑚)).

𝐴𝐸(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2| +⋯ + |𝑥𝑚 − 𝑦𝑚| (3)

where 𝑥 and 𝑦 are two points in a 𝑚-dimensional space (R𝑚).
When calculating the error of the whole dataset using abso-
lute error leads naturally to the Mean Absolute Error (MAE)
measure:

𝑀𝐴𝐸 =

∑𝑘
𝑖=1

∑

𝑜𝑗∈𝐶𝑖
𝐴𝐸(𝑜𝑗 , 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑖)

𝑛 × 𝑚
(4)

where 𝑘 is the number of clusters, 𝑛 is the number of obser-
vations, 𝑚 is the number of variables, 𝑜𝑗 is an observation
(𝑗 ∈ [1, 𝑛]) assigned to the cluster 𝑖 (𝐶𝑖 where 𝑖 ∈ [1, 𝑘]) and
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑖 is the centroid of the cluster 𝑖.
Including the experts’ knowledge, we follow the recom-
mendation to align cluster evaluation measures with the
specific objective of the application because it is essential
to generate clusters that are helpful (Aggarwal, 2015).
For experts, it is important to include information about
the observed error in the model to validate its usefulness.
Therefore, the calculation of MAE (Eq. (4)), which uses the
definition of AE (Eq. (3)), provides relevant information on
this characteristic.
In addition to MAE values calculated for every model with
different 𝑘 values, Silhouette indexes are also calculated.
MAE and Silhouette metrics are plotted separately depend-
ing on the algorithm and presented to the experts.

– Taking into consideration the information calculated be-
fore (MAE and Silhouette), the experts, with the advice of
data scientists, select the algorithm that best groups the
observations. The main criterion is minimizing the MAE
values (minimizing the error), but in case of having similar
behavior, the Silhouette indexes can help in the decision.

– Finally, determining the most appropriate number of clus-
ters is crucial. Besides a unique proposal for such a number
(most methods find only one value for 𝑘), it is possible to
suggest additional proposals, resulting in non-unique cluster
numbers (Borjigin and Guo, 2013). In this methodology, a
new procedure to determine non-unique cluster numbers
and identify the most suitable one is proposed; it is called
k-ISAC-TLP and it is based on an also new method called
ISAC. Although both of them are described in the following
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Section 3.2, the general idea is given now to complete the
methodology description. ISAC method uses the shape of
curves and looks for regions of stability and absence of im-
provement. In this final stage, two curves are used: the MAE
for different 𝑘 values (calculated in the previous stage) and
a new metric that counts the number of small clusters (and
potentially useless) present for different 𝑘 values. When
combining the information obtained from both curves, a set
of candidate values is given, and an appropriate value can
be selected from this set.

.2. New procedure for determining an appropriate number of clusters

As discussed in Section 2.4, there are different methods to assess the
dentification of the most appropriate (or optimal) number of clusters to
onsider while performing a clustering task. One of the most commonly
sed is the elbow method (a manual and visual approach), which
ooks for points on a curve where there is no longer a significant
mprovement (the ‘‘elbow’’ of a curve) (Rafiq et al., 2023). But this
ethod suffers from some disadvantages, such as working with smooth

r noisy curves (where it is difficult to identify the ‘‘correct’’ elbow)
r the uncertainty of detecting a premature point (when there is some
oom for improvement).

This Subsection details a procedure called k-ISAC_TLP, designed to
utomate detecting the most appropriate number of clusters, avoiding
isual interpretation and preventing early detection (see 3.2.2). This
rocedure is based on a new method, called ISAC (Identifier of Stable
reas in Curves), which attempts to identify areas in a curve with low
ariability in the values while negligible improvement in the metric
easured by such values (see 3.2.1). These areas usually appear shortly

fter the elbow in a curve, so this search meets the needs of experts who
ish to avoid premature search stoppage and prefer more conservative
etections.

.2.1. ISAC method (Identifier of Stable Areas in Curves)
The main idea of this method is to construct consecutive triangles

long the path defined by a curve. From these triangles it is possible
o obtain relevant information: the areas of the triangles and the slopes
efined by the farthest vertices of the triangles.

Intuitively, the area of a triangle can show some information about
he alignment of the points that define its vertices: if these points are
ligned, the area tends to be zero. Therefore, finding triangles with
mall areas will suggest the existence of stable regions in the curve.

similar idea has been previously used for identifying stabilization in
he learning curve (Castillo and Gama, 2006; del Campo-Ávila et al.,
008).

In the same intuitive manner, the slope between the two farthest
ertices in the triangle can indicate the velocity of change in the curve:
slope close to zero suggests small progression. This type of progression
as a different interpretation depending on the metric. If the curve
escribes a metric that relates the complexity of a model and a metric
hat should be minimized (like error), a region with a small slope
ndicates that little improvement is expected even with more complex
odels (possible stop point). Reversely, if the curve describes a metric

hat worsens after an initial plateau (like the number of irrelevant rules
n a model), a slope with a significant value indicates the starting of a
egradation (possible stop point).

In Fig. 2 different curves are presented in which the casuistry
entioned above can be appreciated: triangles with different values

or the area and different slopes between the farthest vertices of the
riangles.

The goal of the ISAC method is to find the points where: (a) a series
f consecutive triangles have an area less than or equal to a maximum
rea (𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) , and (b) a slope greater than a minimum slope
𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). The definitions for calculating these areas and slopes
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re given below.
Let 𝑝, 𝑞 and 𝑟 be three points that define a triangle and 𝑝𝑥, 𝑝𝑦, 𝑞𝑥, 𝑞𝑦,
𝑟𝑥 and 𝑟𝑦 their coordinates for 𝑋-axis and 𝑌 -axis. The function that
calculates the area for that triangle is:

𝑎𝑟𝑒𝑎(𝑝, 𝑞, 𝑟) =
|

|

|

|

1
2
⋅ ((𝑞𝑥 ⋅ 𝑝𝑦 − 𝑝𝑥 ⋅ 𝑞𝑦) + (𝑟𝑥 ⋅ 𝑞𝑦 − 𝑞𝑥 ⋅ 𝑟𝑦)

+ (𝑝𝑥 ⋅ 𝑟𝑦 − 𝑟𝑥 ⋅ 𝑝𝑦))
|

|

|

|

(5)

Let 𝑝 and 𝑟 be the two farthest vertices in a triangle. The function
that calculates the slope (in degrees) is:

𝑠𝑙𝑜𝑝𝑒(𝑝, 𝑟) = arctan
( 𝑟𝑦 − 𝑝𝑦
𝑟𝑥 − 𝑝𝑥

)

⋅ 180◦∕𝜋 (6)

where 𝑎𝑟𝑐𝑡𝑎𝑛 is the function that calculates the arc whose tangent has
the value of the passed parameter.

The area calculation (Eq. (5)) is used in Algorithms 1 and 3 when
executing the 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑟𝑒𝑎(𝑝, 𝑞, 𝑟) method. Symmetrically, the slope
calculation (Eq. (6)) is used in Algorithms 1 and 4 when executing the
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑙𝑜𝑝𝑒(𝑝, 𝑟) method.

Besides the area and slope thresholds, some other parameters
needed must be configured, like the size of the triangles or the number
of consecutive stable triangles to avoid spurious results. A detailed
implementation of ISAC method is given in Algorithm 1.

The size of triangles is determined by separating the vertices con-
sidering concrete values in the 𝑋-axis. Given a vertex in the 𝑋-axis
(most left vertex in the triangle) and adding a distance twice (from the
first to the second vertex and from the second to the third vertex),
the triangle’s vertices are defined. The distance concerned is called
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 in Algorithm 1. The other parameter,
the number of consecutive stable triangles (called 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 in
the algorithm), is used to avoid spurious detections of stability in a
region. The three vertices of a triangle may be well aligned (with a
very small area in the triangle), but some instability can remain in
points that do not define the triangle, but are between the vertices that
define the triangle (only when 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 ≥ 2) .
Identifying stability is more confident when multiple and consecutive
small triangles are considered.

In summary, for the application of the ISAC method it is necessary
to give the input data, that is, the curve to be analyzed (defined by
𝑥_𝑣𝑎𝑙𝑢𝑒𝑠 and 𝑚𝑒𝑎𝑠𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑠), and to set some parameters. These param-
eters define the size of the triangles (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠),
the persistence of the condition that is fulfilled (𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) and
the thresholds for area and slope (𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 and 𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠𝑜𝑙𝑑).

3.2.2. k-ISAC_TLP procedure (k determination via ISAC method for typical
load profiles)

The ISAC method is a multipurpose method that can be used for
any curve. In this Subsection, it is customized for use in the field of
domestic electricity consumption, where it is crucial to discover typical
load profiles (TLP). The stabilization regions detected by ISAC can
evaluate the determination of the most appropriate number of profiles
(k) discovered by a clustering algorithm. Therefore, this procedure
using ISAC has been named k-ISAC_TLP.

According to experts’ knowledge there are two specific curves that
may be significant in selecting useful consumption profiles. They are
specifically defined as: (1) the Mean Absolute Error (MAE) of the
clustering models for each value of 𝑘, and (2) the number of irrelevant
clusters defined as those whose size is less than 1% of the whole dataset
for each 𝑘 value. In these curves the 𝑘 values are arranged on the 𝑋-
axis of the curve, and the measured values (MAE or number irrelevant
clusters) are placed on the 𝑌 -axis.

k-ISAC_TLP procedure uses ISAC method to detect the most relevant
points in each of the above curves. Non-unique cluster numbers are
obtained for both curves resulting in values candidates to be useful.
The combination of these non-unique cluster numbers can result in an
outstanding proposal for the most appropriate 𝑘 value. The following
criteria is used:
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1st: minimum common number to both curves, if none
2nd: minimum number detected in MAE curve, if none
3rd: minimum number detected in counting small clusters curve.

The parameter configuration is the last issue before executing the
ISAC method to complete the k-ISAC_TLP procedure. Considering the
same configuration determined in Castillo and Gama (2006) and del
Campo-Ávila et al. (2008) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 is set to 3.

y setting 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 = 3, the ISAC method uses
riangles that are neither too large nor too small. By considering
𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 3 we avoid early and inconsistent detections, while
educing the overly stringent stability requirements that would require
erfect scenarios. Regarding the area and slope thresholds, in the con-
ext of household electricity consumption, two different configurations
ave been selected depending on the curve:

• MAE curve: the range of MAE values depends on the dataset
and the error calculated when clustering it, so setting constant
thresholds would not allow the procedure to be adaptive. The area
and slope thresholds proposal should correspond with the whole
curve. An estimation of the global behavior is extracted from a
hypothetical triangle that starts at the beginning of the curve and
finishes at the end (with an intermediate point in the middle of
the curve). Therefore thresholds are defined as follows:

– The area threshold (𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is defined as the area of
a triangle proportional to the hypothetical one, but consid-
ering the smaller size of triangles that will be used in the
ISAC method.

– The slope threshold (𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is defined as the slope
between the first and last points in the curve.

• Curve for the number of irrelevant clusters: the range of this curve is
known. It usually starts with a few irrelevant clusters (0 or close
to 0) when considering the smallest 𝑘 values, and, at some point,
it usually starts increasing. The reason for that increment is the
occurrence of small clusters that takes a few observations that
could be integrated into another group. Still, those observations
8

are separated unnecessarily from a bigger cluster because one
(irrelevant) cluster is available and must be used.
Given that the behavior of this curve has been studied and given
that the size of triangles used in the ISAC method has been pre-
viously defined, constant values have been assigned to thresholds
as follows:

– The area threshold (𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is defined as 1.5, the
next size value reachable after 0 (area values increase by
1.5 units as triangles get larger).

– The slope threshold (𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is defined as 22.5◦,
that is half the 45◦ angle. When a model cannot be sub-
stantially improved by adding more clusters (increasing 𝑘),
every new cluster would be irrelevant, and the number of
irrelevant clusters will grow at the same rate that 𝑘 value.
That growth rate tends to have a 45◦ angle.

In summary, for the application of the k-ISAC_TLP procedure, de-
ailed in Algorithm 2, it is only necessary to give the input data, that
s, two curves to be analyzed (𝑀𝐴𝐸_𝑣𝑎𝑙𝑢𝑒𝑠 and 𝑖𝑟𝑟𝑒𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒𝑠).
t is not necessary to set any parameters, as it is the procedure itself
hat defines the parameters to call the ISAC method. These parameters
re set or calculated as follows: (a) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 =
, (b) 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 3, (c) 𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is calculated for the
AE curve as a proportion of the triangle defined by the complete

urve (see Algorithm 3), (d) 𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1.5 for the number of
rrelevant clusters curve, (e) 𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is calculated for the MAE
urve as the slope between the first and last points in the complete
urve (see Algorithm 4), and (f) 𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 22.5 for the number
f irrelevant clusters curve. This configuration has been proposed for
his domain after a close work with experts in the field.

. Experimental design

.1. Datasets

Nowadays, household electricity consumption datasets are collected
n private companies, but some are publicly available thanks to national
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Fig. 3. Comparison of the curves with the MAE and Silhouette index for the models generated with the k-means and bisecting k-means algorithms for the values of the range
𝑘 ∈ [10, 33] previously established by the experts. Lower MAE values are better. Higher Silhouette indices are better.
Data source: Spanish dataset presented in Section 4.1.

Fig. 4. Visual description of the automatic detection of 𝑘 value proposed by the k-ISAC_TLP procedure for the model induced for the Spanish dataset. Best 𝑘 value is 19, and the
lowest 𝑘 where both invocations to the ISAC method match. Starting from the value 𝑘 = 19, for both curves, the triangles generated with this value of k and the two following
ones have areas and slopes that satisfy the stopping conditions of the algorithm.

Fig. 5. Visual description of the automatic detection of 𝑘 value proposed by the k-ISAC_TLP procedure for the Irish dataset. Best 𝑘 value is 21, the lowest 𝑘 detected by the ISAC
method for the MAE curve. In this case there is no match between the curves, so priority is given to the MAE curve as defined in the methodology.
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Algorithm 1: ISAC method
Input: // DATA: List with totalObs values for independent

// variable x
𝑥_𝑣𝑎𝑙𝑢𝑒𝑠[1, 𝑡𝑜𝑡𝑎𝑙𝑂𝑏𝑠]
// DATA: List with measured values for totalObs

measures
𝑚𝑒𝑎𝑠𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[1, 𝑡𝑜𝑡𝑎𝑙𝑂𝑏𝑠]
// number of values in X-axis between points of each

triangle
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠
// number of consecutive triangles that have stable

conditions
𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
// minimum area value to consider that points in the

triangle are aligned
𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
// maximum slope value to consider small progression
𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Output: // x values where the curve satisfies area and
// slope criteria
𝑠𝑡𝑎𝑏𝑙𝑒_𝑥_𝑣𝑎𝑙𝑢𝑒𝑠[]

// Variables to store areas and slopes for every triangle built
on the curve

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 ← 𝑡𝑜𝑡𝑎𝑙𝑂𝑏𝑠 − (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 ⋅ 2);
𝑎𝑟𝑒𝑎𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠[1, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠] ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒;
𝑠𝑙𝑜𝑝𝑒𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠[1, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠] ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒;
// for every triangle built in the curve
for 𝑖 ← 1 to 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 do

// Update vertices for current triangle
𝑝𝑥 ← 𝑥_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖] ;
𝑝𝑦 ← 𝑚𝑒𝑎𝑠𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖];
𝑞𝑥 ← 𝑥_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠] ;
𝑞𝑦 ← 𝑚𝑒𝑎𝑠𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠];
𝑟𝑥 ← 𝑥_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖 + (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 ⋅ 2)] ;
𝑟𝑦 ← 𝑚𝑒𝑎𝑠𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖 + (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 ⋅ 2)];
// Calculate and store area and slope for current triangle
𝑎𝑟𝑒𝑎𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠[𝑖] = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑟𝑒𝑎(𝑝, 𝑞, 𝑟);
𝑠𝑙𝑜𝑝𝑒𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠[𝑖] = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑙𝑜𝑝𝑒(𝑝, 𝑟);

// for every triangle except last 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 triangles
for 𝑖 ← 1 to (𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 − 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) do

// Check for consecutive stable areas criteria
𝑖𝑠𝑆𝑡𝑎𝑏𝑙𝑒 ← 𝑡𝑟𝑢𝑒 ; 𝑗 ← 0 ;
while (𝑖𝑠𝑆𝑡𝑎𝑏𝑙𝑒 & (𝑗 < 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦)) do

𝑖𝑠𝑆𝑡𝑎𝑏𝑙𝑒 ← 𝑖𝑠𝑆𝑡𝑎𝑏𝑙𝑒 & (𝑎𝑟𝑒𝑎𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠[𝑖 + 𝑗] ≤ 𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
& (𝑠𝑙𝑜𝑝𝑒𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠[𝑖 + 𝑗] ≥ 𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑);

𝑗 ← 𝑗 + 1 ;
// Check for minimum slope criteria
if (𝑖𝑠𝑆𝑡𝑎𝑏𝑙𝑒 & (𝑠𝑙𝑜𝑝𝑒𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠[𝑖] ≥ 𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)) then

𝑠𝑡𝑎𝑏𝑙𝑒_𝑥_𝑣𝑎𝑙𝑢𝑒𝑠.𝑎𝑑𝑑(𝑥_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]) ;

organisms that support open data (Commission for Energy Regulation
(CER), 2012; Toussaint, 2019). To test the validity of the methodology
proposed in Section 3, two experiments have been carried out: the first
is a private dataset of electricity consumption in southeastern Spain,
and the second one is a public dataset from Ireland (Commission for
Energy Regulation (CER), 2012). Selecting two datasets we can easily
prove the methodology in two different regions with two different
climates (a relevant aspect as experts refer). Climate in southeastern
Spain is characterized by Mediterranean climate (hot dry summers and
humid, cool winters) and its average annual temperature is 18◦. Ireland
has a temperate oceanic climate (warm summers, without dry season
and cool winters) and its average annual temperature is 10◦.

Both datasets register hourly data of household electricity consump-
tion (Wh), so each observation has 24 values corresponding to the 24
hourly consumption of a consumer for a day. For the data preparation
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process the following filters suggested by experts have been applied:
Algorithm 2: k-ISAC_TLP procedure
Input: // DATA: values for 𝑘 to be considered in the range

// defined by the experts
𝑘_𝑣𝑎𝑙𝑢𝑒𝑠[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] = 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑖𝑛 + 1, ..., 𝑘𝑚𝑎𝑥
// DATA: List with MAE values measured for different 𝑘

values
// For simplicity, assume that indexes are named

𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑖𝑛 + 1, ..., 𝑘𝑚𝑎𝑥
𝑀𝐴𝐸_𝑣𝑎𝑙𝑢𝑒𝑠[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]
// DATA: List with the number of irrelevant clusters

modeled for
// different 𝑘 values
// For simplicity, assume that indexes are named

𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑖𝑛 + 1, ..., 𝑘𝑚𝑎𝑥
𝑖𝑟𝑟𝑒𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒𝑠[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]

Output: // values for 𝑘 that meet the criteria defined
// by experts
𝑏𝑒𝑠𝑡_𝑘_𝑣𝑎𝑙𝑢𝑒𝑠[]

// Configure parameters before calling ISAC method
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 ← 3;
𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 3;
// Area threshold for MAE curve
𝑀𝐴𝐸_𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐴𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑘_𝑣𝑎𝑙𝑢𝑒𝑠,

𝑀𝐴𝐸_𝑣𝑎𝑙𝑢𝑒𝑠,
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠);

// Slope threshold for MAE curve
𝑀𝐴𝐸_𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑆𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑘_𝑣𝑎𝑙𝑢𝑒𝑠,

𝑀𝐴𝐸_𝑣𝑎𝑙𝑢𝑒𝑠);
// Area threshold for curve with number of irrelevant clusters
𝑖𝑟𝑟𝑒𝑙_𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 1.5;
// Slope threshold for curve with number of irrelevant

clusters (degrees)
𝑖𝑟𝑟𝑒𝑙_𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 22.5;

// Variables to store best 𝑘 values for every curve
𝑏𝑒𝑠𝑡_𝑘_𝑣𝑎𝑙𝑢𝑒𝑠_𝑀𝐴𝐸[] ← 𝐼𝑆𝐴𝐶(𝑘_𝑣𝑎𝑙𝑢𝑒𝑠,𝑀𝐴𝐸_𝑣𝑎𝑙𝑢𝑒𝑠,

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠,
𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦,
𝑀𝐴𝐸_𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑀𝐴𝐸_𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑);

𝑏𝑒𝑠𝑡_𝑘_𝑣𝑎𝑙𝑢𝑒𝑠_𝑖𝑟𝑟𝑒𝑙[] ← 𝐼𝑆𝐴𝐶(𝑘_𝑣𝑎𝑙𝑢𝑒𝑠, 𝑖𝑟𝑟𝑒𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒𝑠,
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠,
𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦,
𝑖𝑟𝑟𝑒𝑙_𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑖𝑟𝑟𝑒𝑙_𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑);

𝑏𝑒𝑠𝑡_𝑘_𝑣𝑎𝑙𝑢𝑒𝑠[] ← 𝑐𝑜𝑚𝑚𝑜𝑛𝑉 𝑎𝑙𝑢𝑒𝑠𝑂𝑛(𝑏𝑒𝑠𝑡_𝑘_𝑣𝑎𝑙𝑢𝑒𝑠_𝑀𝐴𝐸,
𝑏𝑒𝑠𝑡_𝑘_𝑣𝑎𝑙𝑢𝑒𝑠_𝑖𝑟𝑟𝑒𝑙[]);

• All daily consumption associated with non-household consumers
has been removed. A non-domestic consumer is considered to
be any consumer who, at any hour of any day, has a electricity
consumption greater than 15 kWh.

• All observations where the consumption of any hour is missing
have been removed.

• All observations with total daily consumption less than 100 W
have been removed.

The final datasets to which it has been applied the methodology (see
Section 3.1) are described below:

• Dataset from southeastern Spain was recorded from January 2020
to December 2021 for more than 3000 users. A total of 2396,741
observations were used after filtering data.

• Dataset from Ireland has been collected from approximately 4000
users over two years (2009–2010). A total of 2,522,976 observa-
tions were used after filtering data.
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Fig. 6. The upper part of the figure shows the centroid representing the most frequently occurring cluster for the cities of Spain and Ireland. The lower part shows the percentage
of observations for every cluster in each city.
4.2. Software and hardware used

The pre-processing data steps, the induction of clustering models,
the calculation of metrics, the implementation of the ISAC method
and k-ISAC_TLP procedure, and other computational tasks are executed
mainly by using Python (Python Core Team, 2019), Spark (Zaharia
et al., 2016), and MLlib (Machine Learning for Spark) (Meng et al.,
2015).

The tool used for the implementation (scripts, proposed methodol-
ogy, modeling, algorithms, calculation of metrics and visualization of
results) was jupyter notebook.

The datasets used in the experimental design are big enough to
limit the various clustering algorithms used. Only a few algorithms
could carry out this task (k-means, BIRCH, DBSCAN, OPTICS, etc.), but
finally, only two of them completed the task (k-means and bisecting
k-means).

The experiments have been carried out using a MacBook Pro laptop
with an Intel i7 processor (2.7 GHz) with 6 cores and 16 GB of RAM.

5. Results

The goal of the first phase is to carry out an exploratory search of
data clusters. This search is guided by experts in the domain of elec-
tricity consumption. The experts defined a range of clusters between
10 and 33 (𝑘𝑚𝑖𝑛 = 10 and 𝑘𝑚𝑎𝑥 = 33), where relevant models should be
discovered. A smaller value could miss important groups, and a bigger
value could unnecessarily delay the search (more than 30 or 35 groups
and their profiles are difficult enough to be analyzed by experts).

In the first phase, several algorithms were applied to the datasets
of both countries. Thus, several models were generated to identify
consumption profiles using different values of number of clusters (𝑘).
Table 2 details the algorithms tested to induce clustering models. When
the algorithm has some problem in the execution is indicated. This table
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Table 2
Summary of the clustering algorithms used in the experiments: execution time, use of
parallelism, language and library.

Algorithm Time phase 1/2 (h) Library/language

K-means 4.8/0.15 skicit-learn/Python
Partitional (DTW) Memory overflow tsclust/R

Non- Partitional (GAK) Memory overflow tsclust/R
parallelized Bisecting k-means 5.1/0.15 skicit-learn/Python
algorithm BIRCH Time exceeded skicit-learn/Python

DBSCAN Time exceeded skicit-learn/Python
OPTICS Time exceeded skicit-learn/Python

Big data K-means 0.5/0.15 MLib/Python (Spark)
algorithm Bisecting k-means 0.6/0.15 MLib/Python (Spark)

also shows the processing times. The only algorithms capable of gener-
ating clustering models from both huge datasets have been k-means
and bisecting k-means, both in parallel and non-parallel computing.
The time reduction when using the parallel versions is remarkable.

In the second phase, the first stage is the selection of the algorithm.
As described in Section 3.1, two metrics have been used for this task:
the MAE and the Silhouette index. Lower MAE values are preferred,
while higher Silhouette values are better.

For MAE curve, k-means and bisecting k-means algorithms obtain
similar values, so the second criterion, the Silhouette index will help
with the selection. This metric, calculated for both algorithms, shows
that the clustering models obtained with k-means are better in terms
of cohesion and separability of the clusters. Fig. 3 shows results for the
Spanish dataset (the same behavior has been observed in Irish dataset).

The last stage in the second phase of the methodology is determin-
ing the number of clusters most appropriate for modeling the data with
the proposed k-ISAC_TLP procedure. As explained in a previous section,
the MAE and the number of small (and potentially useless) clusters
present for different 𝑘 values has been used.
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Fig. 7. Household electricity consumption profiles estimated from data of Spain. The X and 𝑌 -axis represent the time of day and the electricity consumption in Wh, respectively.
Executing the k-ISAC_TLP procedure on both datasets yields partly
similar and partly different results. The difference relates to the shape
of profiles detected, which are different for different types of users
(which makes sense considering two datasets from different countries).
The similarity lies in the number of profiles detected, that is similar. In
both cases, the proposed 𝑘 values are close to 20. Fig. 4 shows a visual
description of the process to determine the candidate as an optimal
number of clusters for Spain using the proposed k-ISAC_TLP procedure.
The smallest common 𝑘 value found is 19, so a model with 19 clusters is
proposed for Spain. For the Irish dataset, shown in Fig. 5, the proposed
𝑘 value is 21.

Once the most appropriate 𝑘 values have been determined, the
specific models induced are evaluated by the experts in the domain, to
check the validity of the methodology and, in addition, to potentially
discover novel knowledge.

Fig. 6 shows the percentage of observations in each cluster both
the Spanish and Irish data and the load profile of the most common
profiles in Spain and Ireland. The detailed electricity consumption
profiles of the households identified with the proposed methodology
are shown in Figs. 7–10. These consumption profiles are the centroids
of the estimated clusters for each dataset. Figs. 7 and 8 describe Spanish
profiles and Figs. 9 and 10 describe Irish profiles.

Although this research aims to present the methodology and not to
describe each profile point-by-point, a summary of them is presented
below. The objective is to prove the capabilities of the proposal, show
some improvements achieved over other methodologies and highlight
the advantages identified by the experts.
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For Spanish data, more than 28% of the curves are in cluster 12;
the consumption in this cluster ranges from 70 to 120 Wh with higher
values after 20:00. Similar shape has the consumption profile of cluster
11, with more than 24% of curves; in this cluster, the consumption is
higher and it ranges from 150 to 400 Wh. The consumption profiles of
clusters 10, 15, 17, 18, and 19 have similar shapes although different
values. They correspond to households where maximum consumption
is around 20:00, this maximum value is 1000 Wh for cluster 10 (with
8.6% of curves), 1500, 3000, 2000, and 1500 Wh respectively for
clusters 15, 17, 18, and 19. Clusters 1, 5, 8, 9, and 13 correspond to
consumption profiles with a maximum around midday; the maximum
consumption ranges between 1000 and 3000 Wh. Clusters 7 and 16
correspond to households where the maximum consumption is at 01:00
a.m. with a maximum consumption of 1600 and 1400 Wh respectively.
The rest of the clusters have less than 1% of observations and therefore,
they are not considered representative of any consumption profile.

For Irish data, more than 24% of observations are in cluster 6. The
consumption in this cluster has a peak in the evening around 20:00 h
with a consumption of 500 Wh and a consumption in the morning (but
the peak is smaller) around 400 Wh. Cluster 9 have a similar shape but
the values of consumption are greater, about 3000 Wh in the morning
and 3300 Wh in the evening, only 1.5% of the observation belong to
this cluster. The second group with more observations (almost 18%) is
cluster 1. The shape of this profile has a consumption in the morning,
about 8:00 h and then the consumption starts to increase at 15:00 with
a maximum consumption around 20:00. Similar shapes have clusters
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Fig. 8. Centroids for 19 types of consumptions profiles (Spain).
11, 17, 19, and 21, with a maximum consumption of 4000, 3000, 5000
and 6000 Wh respectively. The percentages of observations in these
clusters vary between 2.4 and 6.4. Observations in cluster 4 have also
consumption in the morning and a peak of consumption of 3000 Wh in
the evening but at 17:00. Clusters 7, 10, 12, 13, 18, and 20 correspond
to consumption profiles with a peak in the morning (between 2000
and 5000 Wh) and consumption in the evening (smaller than the
peak, between 1000 and 2000 Wh); around the 25% of observations
are in these clusters. Profile consumption of cluster 5 corresponds to
consumption that happens in the night, with consumption of 8000 Wh;
these observations correspond to non-domestic consumers. The rest of
the clusters (3, 2, 8, 14, 15, and 16) have a profile of consumption along
the day, from 9:00 (or 10:00) to 19:00 with values of consumption from
6000 to 9000 Wh; This consumption profile may be from businesses or
companies and does not seem to correspond to domestic users.

As regards previous results obtained for data from Ireland, in
McLoughlin et al. (2015) a part of the original dataset is used and a
comparison can be made. They used data from six months for 3941
consumers. They propose a total of 10 different profile classes (PCs)
of electricity load (or consumption) as a result of applying a series
of clustering algorithms (k-means, SOM, k-medoids) using the Davies
Bouldin index to determine the optimal number of clusters. Each one
of these profile classes are defined by 48 values (half hourly electricity
use).

Although their approach is different from the one proposed in our
methodology, the dataset they use is smaller (in users and months), and
the results are different (we find 21 profiles with 24 hourly values),
the load profiles can be compared to assess similarities and differ-
ences. According to the PCs presented in Figure 6 of the previous
work (McLoughlin et al., 2015), they seem to be coherent with those
obtained in this work. Specifically, PCs 1, 4, and 9 that correspond
13
to profiles with consumption less consumption in the morning and
increases in the evening around 19:00 (or 20:00) are similar to clusters
1 and 6 obtained in our models. PCs 2 and 7 in McLoughlin et al. (2015)
correspond to a profile consumption with the greatest consumption
in the midday; similar profiles are in clusters 12, 13, and 18 in our
analysis. In the same way, PCs 3 and 10 in that paper correspond to
consumption with a peak in the morning and smaller consumption in
the evening; similar profiles are in clusters 7, 10, and 20 in our analysis.

One important difference is that the clustering algorithms and the
validation index have been applied in McLoughlin et al. (2015) to a
series of daily consumption samples taken randomly from the original
dataset. Besides the instability problem, sampling implies clustering
models with a smaller number of clusters that cannot reflect the knowl-
edge obtained by working with the entire dataset. Considering the
whole dataset, as the methodology proposed in this paper does, can
have a higher computational cost but gives a greater diversity of
profiles. Using big data clustering algorithms allows the huge dataset
to be processed entirely. Applying the proposed methodology allows
for generating models that detect more electricity consumption pro-
files than other methodologies. For example, profiles associated with
non-domestic consumers (businesses or companies) are detected.

In addition to not having to sample, some additional advantages
observed by experts are related to the low level of pre-processing
carried out:

• Only some filters are defined to eliminate incomplete or ex-
tremely odd observations.

• The normalization step, usually included in many methodologies,
is not applied here. This can reveal that some profiles, whose
shape can be similar but with different consumption ranges, are
related to the same behavior of electricity use. The differences



Engineering Applications of Artificial Intelligence 129 (2024) 107653F. Rodríguez-Gómez et al.
Fig. 9. Household electricity consumption profiles estimated from data of Ireland. The X and 𝑌 -axis represent the time of day and the electricity consumption in Wh, respectively.
derived from the range can be related to the household config-
uration (number of members or type of appliances) and can be
a source of study and improvement. An additional advantage is
the absence of the denormalization step, a complex task that can
insert some errors into the process.

• The segmentation process of the dataset, usually performed to
apply a cascading clustering, is not applied here. This idea reduces
the bias introduced by the segmentation and does not force the
repetition of several clustering processes in isolated subsets. This
approach also makes comprehension of the profiles easier because
there is no need to analyze all the clusters for all the segmented
subsets.

Regarding the other works using the Ireland data, in Rajabi et al.
(2020), both the clustering of one residential customer and the clus-
tering of a large number of users are analyzed. For this second type,
they found 16 different types of clusters for weekdays and another
16 for weekends. It is not possible to compare the results directly
because they use half-hour recordings. In Sun et al. (2020), although
they also use the data from Ireland, data are sampled only over the
period 1st December to 31st December. For this period, they found 6
typical daily load profiles on weekends and 6 on weekdays for half-hour
data. Finally, in Guo et al. (2022), both household characteristics and
historical and contemporary electricity usage data are used to segment
consumers.
14
6. Conclusions and future works

This paper has presented a new methodology for discovering house-
hold electricity consumption profiles. In the first phase, it is essential
to delimit a range for the search space in which the number of clusters
must be found. Subsequently, multiple clustering algorithms can be
used. Still, a crucial point is the definition of the measures to be opti-
mized, considering the domain (such as the accumulated consumption
error in the model or the number of irrelevant clusters). Its main
novel aspects arise from close work with experts in the field. An
important point is the incorporation of the error metric as a criterion
to complement the clustering validity indices. Another highlight of this
methodology is a new procedure to automatically search for the most
appropriate number of clusters in the range defined by the experts.

This simple methodology has been implemented as open-source
software and has proven helpful in helping experts learn from huge
datasets by minimizing pre-processing steps. Considering the entire
dataset, induced models avoid the usual sampling instability. By work-
ing with the complete data set, profiles are revealed that would not
be discovered using sampling. By removing the normalization step,
the complex denormalization task is not needed. At the same time,
avoiding normalization, all the profiles can be compared directly, and
profiles with common shapes but different ranges are identified. By
dispensing with data pre-processing, which segments the dataset into
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Fig. 10. Centroids for 21 types of consumptions profiles (Ireland).
different types of days, months or seasons, this methodology identifies
the profiles regardless of these temporal aspects.

The models obtained help experts quickly gain new knowledge in
the field of household electricity consumption. They also can directly
impact the fight against climate change and the improvement of urban
sustainability.

The methodology is easily extensible to problems of any domain
where clustering algorithms are applicable and experts can put their
knowledge to good use. The proposed procedure to identify an appro-
priate number of clusters is also extensible to other fields and will be
the subject of future work.

Further research will make it possible to assign defining character-
istics to each profile. Those characteristics may not be unique because
the same profile can be repeated in different seasons, months or days
for the same or different users. Therefore, the typical load profile
classification for a user on a specific day will be more flexible.

One of the main limitations of the proposed methodology is that it
can become inefficient for very wide ranges of 𝑘, since it is necessary
to generate a model for each value of 𝑘 with each of the proposed al-
gorithms and calculate the metrics for each of them. A more intelligent
search for the optimal number of clusters, without having to calculate
models for all possible values, would be useful.

Another limitation is the difficulty of finding suitable parameters of
the ISAC algorithm depending on the application domain. Therefore, it
would also be desirable to work on the proposal and analysis of new
curves, metrics and parameter configurations of the ISAC algorithm
in order to obtain a general configuration valid for a wide variety of
domains.

Reproducibility and released software

To contribute by sharing the proposed methodology, we provide
the code that implements the methodology. In https://github.com/
15
ursusdm, in the repository called consumptionprofiles, we distribute:
(1) scripts with the proposed methodology, (2) scripts with a new
procedure to determine appropriate numbers of clusters (𝑘), and (3)
instructions with the steps to follow.

For privacy reasons, sharing the datasets from Spain has not been
possible, but the Irish dataset is available (Commission for Energy
Regulation (CER), 2012).
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Appendix A. Auxiliary algorithms

Algorithm 3: estimateAdaptiveAreaThreshold
Input: // DATA: values for 𝑘 to be considered in the range

// defined by the experts
𝑘_𝑣𝑎𝑙𝑢𝑒𝑠[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] = 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑖𝑛 + 1, ..., 𝑘𝑚𝑎𝑥
// DATA: List with MAE values measured for different 𝑘

values. For simplicity, assume that indexes are
named 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑖𝑛 + 1, ..., 𝑘𝑚𝑎𝑥

𝑐𝑢𝑟𝑣𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]
// number of values in X-axis between points of each

triangle
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠

Output: // Area threshold
𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

// Largest triangle in the curve
𝑝′𝑥 ← 𝑘𝑚𝑖𝑛 ; 𝑝′𝑦 ← 𝑐𝑢𝑟𝑣𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑝′𝑥];
𝑞′𝑥 ← ⌈(𝑘𝑚𝑖𝑛 + 𝑘𝑚𝑎𝑥)∕2⌉ ; 𝑞′𝑦 ← 𝑐𝑢𝑟𝑣𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑞′𝑥];
𝑟′𝑥 ← 𝑘𝑚𝑎𝑥 ; 𝑟′𝑦 ← 𝑐𝑢𝑟𝑣𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑟′𝑥];
// Triangle proportional to largest triangle
// Share middle vertex (𝑞′𝑥). Change extreme vertices (𝑝′′𝑥 and 𝑟′′𝑥 )
𝑝′′𝑥 ← 𝑞′𝑥 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠;
𝑝′′𝑦 ← 𝑞′𝑦 + ((𝑝′𝑦 − 𝑞′𝑦) ⋅ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠)∕(𝑞′𝑥 − 𝑝′𝑥);
𝑟′′𝑥 ← 𝑞′𝑥 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠;
𝑟′′𝑦 ← 𝑞′𝑦 + ((𝑟′𝑦 − 𝑞′𝑦) ⋅ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇 𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑃 𝑜𝑖𝑛𝑡𝑠)∕(𝑟′𝑥 − 𝑞′𝑥);
𝑎𝑟𝑒𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑟𝑒𝑎(𝑝′′, 𝑞′, 𝑟′′);

Algorithm 4: estimateAdaptiveSlopeThreshold
Input: // DATA: values for 𝑘 to be considered in the range

// defined by the experts
𝑘_𝑣𝑎𝑙𝑢𝑒𝑠[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] = 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑖𝑛 + 1, ..., 𝑘𝑚𝑎𝑥
// DATA: List with curve values measured for different 𝑘

values
// For simplicity, assume that indexes are named

𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑖𝑛 + 1, ..., 𝑘𝑚𝑎𝑥
𝑐𝑢𝑟𝑣𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]

Output: // Slope threshold
𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

// Largest triangle in the curve
𝑝′𝑥 ← 𝑘𝑚𝑖𝑛 ; 𝑝′𝑦 ← 𝑐𝑢𝑟𝑣𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑝′𝑥];
𝑟′𝑥 ← 𝑘𝑚𝑎𝑥 ; 𝑟′𝑦 ← 𝑐𝑢𝑟𝑣𝑒_𝑣𝑎𝑙𝑢𝑒𝑠[𝑟′𝑥];
𝑠𝑙𝑜𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑙𝑜𝑝𝑒(𝑝′, 𝑟′);
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