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Introduction

The notion of ring of quotients has played an important role in the deve-

lopment of the theories of associative and commutative rings. Its origin can

be placed between 1930 and 1940 in the works of Ore and Osano on the

construction of the total ring of fractions.

In order to ease the difficult task of finding a ring of quotients of a given

ring, Ore proved that a necessary and sufficient condition (the well-known

right Ore condition) for a ring R to have a classical right ring of quotients

is that for any regular element a ∈ R and any b ∈ R there exist a regular

element c ∈ R and d ∈ R such that bc = ad.

At the end of 50’s, Goldie, Lesieur and Croisot characterized the rings that

are classical right orders in semiprime and right artinian rings. This result is

nowadays known as Goldie’s Theorem. (See [55, Chapter IV].) In 1956,

Utumi introduced in [82] a more general notion of right quotient ring, that

would generalize the others quotients: an overring Q of a ring R is said to be

a (general) right quotient ring of R if given p, q ∈ Q, with p 6= 0, there

exists a ∈ R such that pa 6= 0 and qa ∈ R.

In his paper, Utumi proved that every ring R without total left zero divisor

(it happens for example when R is semiprime) has a maximal right ring of

quotients Qr
max(R) and constructed it. Maximal in the sense that every right

quotient ring of R can be embedded into Qr
max(R) via a monomorphism which

is the identity when restricted to R.
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IV Introduction

The fact that, in the associative case, rings of quotients allow a deeper un-

derstanding of certain classes of rings motivated to several authors to extend

these notions and results to the non-associative setting.

The study of Jordan algebras of quotients has its origin in the question

raised by Jacobson [47, p. 426] of whether it would be possible to imbed a

Jordan domain in a Jordan division algebra, emulating Ore’s construction

in the associative setting. This problem inspired to many authors to study

suitable algebras of quotients for Jordan algebras and also to try to adapt

Goldie’s theory in the Jordan setting.

The search of a Jordan version of Goldie’s Theorem was solved in the case

of special Jordan algebras J = H(A, ∗) by D. J. Britten and S. Montgomery.

(See [20, 21, 22, 69].) A definitive solution for linear Jordan algebras was

given by E. Zelmanov in [85, 86] making use of his fundamental result on the

structure theory of strongly prime Jordan algebras. Later on A. Fernández

López, E. Garćıa Rus and F. Montaner extended [37] this result to quadratic

Jordan algebras.

Recently, C. Mart́ınez [25] solved the original problem of finding analogues

of Ore’s ring of fractions by a different approach. In her work, she gave an Ore

type condition for a Jordan algebra to have a classical algebra of fractions.

Moreover, making use of the Tits-Kantor-Koecher construction that relates

the Jordan and Lie structures, she built a maximal Jordan algebra of quotients

considering partial derivations.

The study of algebras of quotients for Lie algebras was initiated by M.

Siles Molina in [79]. She introduced, following the original pattern of Utumi,

the notion of a general (abstract) algebra of quotients of a Lie algebra: an

overalgebra Q of a Lie algebra L is said to be an algebra of quotients of

L if given p, q ∈ Q, with p 6= 0, there exists a ∈ L such that [a, p] 6= 0 and
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[a, adx1adx2 . . . adxnq], for every n ∈ N and x1, . . . , xn ∈ L.

In keeping with Mart́ınez’s idea of considering equivalence classes of par-

tial derivations, M. Siles Molina built the maximal algebra of quotients of a

semiprime Lie algebra. (See [79, Section 3].)

Using Siles Molina’s construction of maximal Lie algebras of quotients

and inspired by Mart́ınez’s idea of moving from a Jordan setting to a Lie one

through the Tits-Kantor-Koecher construction, E. Garćıa and M. A. Gómez

Lozano gave in [39] the notion of maximal Jordan system of quotients for

non-degenerate Jordan systems.

All these ideas have been the starting point for our work. Concretely, one

can regard the main part of this thesis as a development of the theory of

algebras of quotients of Lie algebras and of Jordan systems of quotients. We

will show that Lie algebras of quotients, in particular graded Lie algebras of

quotients, which will be introduced in Chapter 2, are the natural framework

were to settle the different quotients for Jordan systems that we have just

mentioned.

We describe now the organization of this thesis, namely, the content of the

chapters and their sections. The first chapter is devoted to the study of Lie

and graded Lie algebras of quotients; the original results can be found in the

papers [29, 78]. We start by collecting, in Sections 1.1, 1.2 and 1.3, the main

definitions and results that will be needed throughout the chapter and even

the thesis. The bulk of Section 1.4 is to extend the notion of (weak) algebra

of quotients of Lie algebras for graded Lie ones. We define:

Definitions 1.4.12. Let L = ⊕σ∈GLσ be a graded subalgebra of a graded

Lie algebra Q = ⊕σ∈GQσ.

– We say that Q is a graded algebra of quotients of L if given 0 6= pσ ∈

Qσ and qτ ∈ Qτ , there exists xα ∈ Lα such that [xα, pσ] 6= 0 and [xα, L(qτ )] ⊆
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L. The algebra L will be called a graded subalgebra of quotients of Q.

– If for any nonzero pσ ∈ Qσ there exists xα ∈ Lα such that 0 6= [xα, pσ] ∈

L, then we say that Q is a graded weak algebra of quotients of L, and

L is called a graded weak subalgebra of quotients of Q.

A necessary and sufficient condition for a graded Lie algebra to have a

graded (weak) algebra of quotients is given.

We show (see Proposition 1.4.18) that as it happens in the non-graded

case, graded algebras of quotients of graded Lie algebras inherit primeness,

semiprimeness and strongly non-degeneracy.

The relationship between Lie and associative quotients has studied by

F. Perera and M. Siles Molina in [75] being one of their main results the

following:

Theorem. ([75, Theorem 2.12 and Proposition 3.5]). Let A be a semiprime

associative algebra and Q a subalgebra of Qs(A) that contains A. Then

(i) A−/ZA ⊆ Q−/ZQ and [A, A]/Z[A,A] ⊆ [Q, Q]/Z[Q,Q] are dense exten-

sion.

(ii) Q−/ZQ is an algebra of quotients of A−/ZA and [Q, Q]/Z[Q,Q] is an

algebra of quotients of [A, A]/Z[A,A].

Our target in Section 1.5 is to extend the result above to skew Lie algebras.

We will prove the following theorem.

Theorem 1.5.19. Let A be a semiprime associative algebra with an involu-

tion ∗ and let Q be a ∗-subalgebra of Qs(A) containing A. Then the following

conditions are satisfied:

(i) KA is a dense subalgebra of KQ, and [KA, KA] is a dense subalgebra of

[KQ, KQ].
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(ii) KA/ZKA is a dense subalgebra of KQ/ZKQ , and [KA, KA]/Z[KA,KA] is a

dense subalgebra of [KQ, KQ]/Z[KQ,KQ].

(iii) KQ/ZKQ is an algebra of quotients of KA/ZKA , and [KQ, KQ]/Z[KQ,KQ]

is an algebra of quotients of [KA, KA]/Z[KA,KA].

To conclude the chapter we analyze, in Section 1.6, the relationship be-

tween graded (weak) algebras of quotients and (weak) algebras of quotients.

Following the construction given by Siles Molina in [79] of the maximal

algebra of quotients Qm(L) of a semiprime Lie algebra L, we build, in Chapter

2, a maximal graded algebra of quotients for every graded semiprime Lie

algebra. Taking into account that the elements of Qm(L) arise from partial

derivations defined on essential ideals, our ingredients now are graded partial

derivations and graded essential ideals. With this idea in mind we introduce

in Construction 2.2.3 a new Lie algebra denoted by Qgr−m(L). In Section

2.2 we show that Qgr−m(L) has good properties; let us point out here that it

is a graded algebra of quotients of L and cannot be enlarged.

Our objective in the rest of the chapter is to compute Qm(L) for some Lie

algebras. Specifically, we are interested in Lie algebras of the form L = A−/Z,

where A− is the Lie algebra associated to a prime associative algebra A with

center Z, and in Lie algebras of the form L = K/ZK , where K is the Lie

algebra of skew elements of a prime associative algebra with involution and

ZK its center. More concretely:

in Section 2.3 we compute Qm(A−/Z); it turns out that (under a very

mild technical assumption) it is equal to a certain Lie algebra that arises from

derivations from nonzero ideals of A into A. Its definition is a bit technical to

be stated here; let us just mention that this Lie algebra lies between Der(A)

and Der(Qs(A)), where Qs( . ) denotes the symmetric Martindale algebra of
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quotients of A. Section 2.4 yields similar results for K/ZK (the analogy with

the A−/Z case is perfect, the only difference is that we have to deal only with

derivations δ that preserve ∗; in the sense that δ(x∗) = δ(x)∗).

The purpose of Chapter 3 is to determine when some important properties

of associative algebras of quotients remain true in the context of Lie algebras

of quotients. The problem of whether Qm(I), where I is an essential ideal

of a semiprime Lie algebra L, is equal to Qm(L) is considered in Section

3.1. It is well-known that this result is true in the associative case (see e.g.

[15, Proposition 2.1.10]). In the Lie setting, we will give a positive answer

provided that L is strongly semiprime: a Lie algebra L is said to be strongly

semiprime (respectively, strongly prime) if:

(i) L is semiprime (respectively, prime).

(ii) For each n, given 0 6= Un � . . .� U2 � U1 � L there exists 0 6= W � L

such that W ⊆ Un.

Theorem 3.1.7. Let I be an essential ideal of a strongly semiprime Lie

algebra L. Then Qm(I) is the maximal algebra of quotients of L, i. e. Qm(I) ∼=

Qm(L).

Once we have built the maximal graded algebra of quotients, it is natural

to ask, as we have just made in section above, whether Qgr−m(I) will be

isomorphic to Qgr−m(L), for a graded essential ideal I of a graded semiprime

Lie algebra L. This question will be treated in Section 3.2.

Finally, Section 3.3 is devoted to the question of whether Qm((Qm(L)) is

equal to Qm(L). While in the associative setting in which the answer to this

question is positive (see [15, Theorem 2.1.11]); we show that in certain special

situations this holds true, namely, if L is a simple algebra or if L = A−/Z,

where A is either a simple associative algebra (satisfying a minor technical
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assumption) or an affine PI prime algebra (i.e. a finitely generated prime

algebra which satisfies a polynomial identity). In general, however, it is not

true that Qm((Qm(L)) agrees with Qm(L); we give an example (see Example

3.3.7) by using the example that Passman gave in [73] to show that take Qs(.)

is not a closure operation.

The relationship between Lie algebras of quotients and Jordan systems

of quotients in the sense of [39] is studied in Chapter 4. It is divided in two

sections. The first one deals with 3-graded Lie algebras; we prove that for a

3-graded semiprime Lie algebra L, the maximal algebra of quotients of L is

3-graded too and coincides with the maximal graded algebra of quotients of

L. Namely, the result is the following:

Theorem 4.1.2. Let L = L−1⊕L0⊕L1 be a semiprime 3-graded Lie algebra.

Then:

(i) Qm(L) is graded isomorphic to Qgr−m(L).

(ii) If L is strongly non-degenerate and Φ is 2 and 3-torsion free, then Qm(L)

is a 3-graded strongly non-degenerate Lie algebra.

Finally, in Section 4.2, and making use of the Tits-Kantor-Koecher con-

struction, we relate maximal Jordan systems of quotients to maximal Lie

algebras of quotients. Our main results are the following:

Theorem 4.2.11. Assume that 1
6
∈ Φ.

(i) Let V be a strongly non-degenerate Jordan pair. Then

Qm(V ) =
(

(Qm(TKK(V )))1, (Qm(TKK(V )))−1

)
is the maximal Jordan pair of M-quotients of V .
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(ii) If L = L−1 ⊕L0 ⊕L1 is a strongly non-degenerate Jordan 3-graded Lie

algebra satisfying that Qm(L) is Jordan 3-graded, then

Qm(L) ∼= Qm(TKK(V )) ∼= TKK(Qm(V )),

where V = (L1, L−1) is the associated Jordan pair of L.

Theorem 4.2.22. Let T be a strongly non-degenerate Jordan triple system

over a ring of scalars Φ containing 1
6
. Then the maximal Jordan triple system

of M-quotients of T is the first component of the maximal algebra of quotients

of the TKK-algebra of the double Jordan pair V (T ) = (T, T ) associated to

T , i.e.,

Qm(T ) = (Qm(TKK(V (T ))))1.

Theorem 4.2.27. Let J be a strongly non-degenerate Jordan algebra over a

ring of scalars Φ containing 1
6
. Then

Qm(J) = Qm(JT ) = (Qm(TKK(V (JT ))))1,

is the maximal Jordan algebra of quotients of J , where JT denotes the Jordan

triple system associated to J and V (JT ) = (JT , JT ) is the double Jordan pair

associated to JT .

The reader can find the original results of Chapters 2, 3 and 4 in [19, 78].

During the author’s stay in the University of Maribor (Slovenia), she was

working, jointly M. Brešar and M. Grašič, in the problem of whether the

matrices Mn(B), where B is any unital algebra (over a fixed commutative

ring C), are zero product determined. We close this thesis with the results

obtained in [17].

The most important motivation to study this problem is the connection to

the thoroughly studied problems of describing zero (associative, Lie, Jordan)

product preserving linear maps (see e.g. [3, 8, 30, 31, 32, 33, 45, 46, 83]).
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S. Banach can be considered the encourager of this mathematical research

area. He was the first one who described isometries on Lp([0, 1]) with p 6= 2

(see [9]). Although Banach did not give the full proof for this case (this was

provided by J. Lamperti [58]), he pointed out that isometries must take func-

tions with disjoint support into functions with disjoint support. This property

arises in a variety of situations and was considered by several authors. For

example, in the theory of Banach lattices there is an extensive literature

about linear maps T : X → Y , where X and Y are Banach lattices, with the

property that

| T (x) | ∧ | T (y) |= 0

whenever x, y ∈ X are such that | x | ∧ | y |= 0. Such maps are called

disjointness preserving operators or d-homomorphisms. We refer the

reader to the monograph [1]. The notion of a disjointness preserving operator

was exported to function algebras by E. Beckenstein and L. Narici (see [12]

for general information). Let A and B be function algebras; linear operators

T : A→ B with the property T (a)T (b) = 0 are called Lamperti operators

or separating maps. They have been studied over many years and by many

authors; this concept of separating maps can be extended to pure algebra.

The most common and natural way is to consider literally the same condition,

that is, a linear map T from an algebra A into an algebra B is called a zero

product preserving map if

x, y ∈ A, xy = 0⇒ T (x)T (y) = 0.

In the recent paper [18], M. Brešar and P. Šemrl consider one of the

most studied linear preserver problems, that is, the problem of describing

commutativity preserving linear maps. It is said that a linear map S : A→ B



XII Introduction

preserves commutativity if

S(x)S(y) = S(y)S(x) whenever x, y ∈ A, xy = yx.

The assumption of preserving commutativity can be reformulated as the con-

dition of preserving zero Lie product, as follows:

if S : A → B is a linear map which preserves commutativity then the

bilinear map T : A × A → B defined by T (x, y) = [S(x), S(y)] clearly

satisfies

T (x, y) = 0 whenever [x, y] = 0,

which means that T preserves zero Lie product.

Brešar and Šemrl have proved (see [18, Theorem 2.1]) that in the simplest

case where B = C the matrices Mn(C) are zero Lie product determined. We

will obtain it as a consequence of our results. In Section 4.2 we show that

for the ordinary product Mn(B) are zero product determined for every unital

algebra B and every n ≥ 2, and in Section 4.3 we prove the same for the

Jordan product; however we will have to assume that n ≥ 3 and 2 invertible

in B. The behavior of the Lie product is very different; this case will be

treated in Section 4.4.



Resumen en español
Spanish abstract

La noción de anillo de cocientes jugó un papel crucial en el desarrollo de la

teoŕıa de los anillos asociativos conmutativos. Podemos situar sus oŕıgenes en

los años 30 y 40, en los trabajos de Ore y Osano acerca de la construcción de

un anillo total de fracciones.

La tarea de encontrar un anillo de cocientes de un anillo dado no es nada

sencilla, por lo que para facilitarla Ore provó que una condición necesaria

y suficiente (la hoy conocida por todos como condición de Ore por la

derecha) para que un anillo R tenga un anillo clásico de cocientes por la

derecha es que para todo elemento regular a ∈ R y todo b ∈ R exista un

elemento regular c ∈ R y un elemento d ∈ R tales que bc = ad.

A finales de los años 50, Goldie, Lesieur y Croisot caracterizaron los anillos

que son órdenes por la derecha clásicos en anillos semiprimos artinianos por

la derecha, resultado actualmente conocido bajo el nombre de Teoremas de

Goldie. (Ver [55, Chapter IV].) En 1956, Utumi introdujo en [82] una noción

más general de anillo de cocientes por la derecha que generalizaŕıa a los demás

cocientes: Se dice que Q ⊇ R es un anillo de cocientes (general) por la

derecha de R si dados p, q ∈ Q, con p 6= 0, existe a ∈ R tal que pa 6= 0,

qa ∈ R.

En su art́ıculo, Utumi probó que todo anillo R sin divisores totales de cero

por la izquierda (esto se tiene, por ejemplo, cuando R es semiprimo) tiene un

XIII
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anillo de cocientes por la derecha maximal Qr
max(R) y dio su construcción.

Maximal en el sentido de que cualquier otro anillo de cocientes por la derecha

de R puede sumergirse en Qr
max(R) v́ıa un monomorfismo que restringido a

R es la identidad en R.

El hecho de que, en el caso asociativo, el uso de anillos de cocientes permi-

tiera un profundo estudio de ciertas clases de anillos motivó a diversos autores

a extender estas nociones a un contexto no asociativo.

El estudio de álgebras de cocientes de álgebras de Jordan comenzó a ráız

de la pregunta planteada por Jacobson [47, p. 426] acerca de cuándo es posible

sumergir un dominio de Jordan en un álgebra de Jordan de división, imitando

la construcción de Ore del caso asociativo. Este problema fue la fuente de

inspiración de varios autores para introducir nociones de álgebras de cocientes

para álgebras de Jordan en un intento de adaptar la teoŕıa de Goldie al

ambiente Jordan.

D. J. Britten y S. Montgomery [20, 21, 22, 69] dieron, para álgebras de

Jordan de la forma J = H(A, ∗), una versión de los Teoremas de Goldie. La

solución definitiva para álgebras de Jordan lineales fue dada por E. Zelmanov

[85, 86], haciendo uso de su resultado fundamental en la teoŕıa de estructuras

de las álgebras de Jordan fuertemente primas. Este resultado fue extendido

a álgebras de Jordan cuadráticas por A. Fernández López, E. Garćıa Rus y

F. Montaner en [37].

Más recientemente, C. Mart́ınez [25] resolvió el problema original de en-

contrar un análogo al anillo de fracciones de Ore, desde un punto de vista

totalmente distinto. En su trabajo, dio una condición de tipo Ore para que

toda álgebra de Jordan que la satisfaga tenga un álgebra clásica de fracciones.

Es más, haciendo uso de la construcción de Tits-Kantor-Koecher, la cual rela-

ciona las estructuras de Jordan y de Lie, construyó un álgebra de Jordan de
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cocientes maximal, considerando derivaciones parciales.

En el ambiente Lie, siguiendo el modelo original de Utumi, M. Siles Molina

inició en [79] el estudio de las álgebras de cocientes para álgebras de Lie

introduciendo la siguiente noción: Se dice que un álgebra de Lie Q ⊇ L es

un álgebra de cocientes de L si dados p, q ∈ Q, con p 6= 0, existe a ∈ L

tal que [a, p] 6= 0, [a, adx1adx2 . . . adxnq] ⊆ L, para cualesquiera n ∈ N,

x1, . . . , xn ∈ L.

Basándose en la idea de Mart́ınez de considerar clases de equivalencia de

derivaciones parciales, Siles Molina construyó en [79, Sección 3] el álgebra de

cocientes maximal de un álgebra de Lie semiprima. Usando esta construcción

e inspirándose en la idea de Mart́ınez de pasar del contexto Jordan al Lie a

través de la construcción de Tits-Kantor-Koecher, E. Garćıa y M. A. Gómez

Lozano introdujeron en [39] nociones de sistemas de cocientes maximales para

sistemas de Jordan no degenerados.

Estas ideas constituyeron el punto de partida de nuestro trabajo. Concre-

tamente, podemos ver parte de esta tesis como una contribución al progreso

de la teoŕıa de las álgebras de cocientes de álgebras de Lie y de sistemas de

cocientes de sistemas de Jordan. Veremos que los cocientes Lie, en particular

los cocientes de álgebras graduadas de Lie, que introduciremos en el Caṕıtulo

2, constituyen el marco perfecto en el que situar los cocientes Jordan que

acabamos de mencionar.

A continuación, describiremos cómo está organizada la tesis, es decir, el

contenido de los caṕıtulos y de las secciones. El primero de ellos se centra en el

estudio de álgebras de cocientes de álgebras de Lie (graduadas); los resultados

originales pueden verse en los trabajos [29, 78]. Para hacer autocontenida

esta memoria empezaremos recordando, en las Secciones 1.1, 1.2 y 1.3 las

principales definiciones y resultados que usaremos a lo largo de la misma. El
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objetivo de la Sección 1.4 es extender la noción de álgebra (débil) de cocientes

de álgebras de Lie a álgebras de Lie graduadas. Definiremos:

Definiciones 1.4.12. Sea L = ⊕σ∈GLσ una subálgebra graduada de un

álgebra de Lie graduada Q = ⊕σ∈GQσ.

– Diremos que Q es un álgebra graduada de cocientes de L o que

L es una subálgebra graduada de cocientes de Q si para cualesquiera

0 6= pσ ∈ Qσ, qτ ∈ Qτ , existen xα ∈ Lα tales que [xα, pσ] 6= 0, [xα, L(qτ )] ⊆ L.

– Si para todo pσ ∈ Qσ existe xα ∈ Lα tal que 0 6= [xα, pσ] ∈ L, diremos

que Q es un álgebra graduada débil de cocientes de L, o que L es una

subálgebra graduada débil de cocientes de Q.

Daremos una condición necesaria y suficiente para que un álgebra de Lie

graduada tenga un álgebra graduada (débil) de cocientes.

Probaremos (véase Proposición 1.4.18) que, al igual que sucede en el caso

no graduado, las álgebras graduadas de cocientes de álgebras de Lie graduadas

heredan la primidad, la semiprimidad y el carácter no degenerado.

F. Perera y M. Siles Molina estudiaron en [75] la relación que existe entre

los cocientes asociativos y los cocientes Lie, siendo el siguiente teorema uno

de sus principales resultados:

Teorema. ([75, Theorem 2.12 and Proposition 3.5]). Sea A un álgebra asocia-

tiva semiprima y sea Q una subálgebra de Qs(A) que contiene a A. Entonces

(i) A−/ZA ⊆ Q−/ZQ y [A, A]/Z[A,A] ⊆ [Q, Q]/Z[Q,Q] son extensiones

densas.

(ii) Q−/ZQ es un álgebra de cocientes de A−/ZA y [Q, Q]/Z[Q,Q] lo es de

[A, A]/Z[A,A].

Nuestra tarea en la Sección 1.5 será extender el resultado anterior a las

álgebras de Lie de tipo skew. Obtendremos el siguiente teorema:
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Teorema 1.5.19. Sea A un álgebra asociativa semiprima con involución ∗ y

sea Q una ∗-subálgebra de Qs(A) que contiene a A. Entonces se satisfacen

las siguientes condiciones:

(i) KA es una subálgebra densa de KQ, y [KA, KA] lo es de [KQ, KQ].

(ii) KA/ZKA es una subálgebra densa de KQ/ZKQ , y [KA, KA]/Z[KA,KA] lo

es de [KQ, KQ]/Z[KQ,KQ].

(iii) KQ/ZKQ es un álgebra de cocientes de KA/ZKA , y [KQ, KQ]/Z[KQ,KQ]

lo es de [KA, KA]/Z[KA,KA].

Acabamos el caṕıtulo analizando en la Sección 1.6 la relación entre

álgebras graduadas (débiles) de cocientes y álgebras (débiles) de cocientes.

Siguiendo la construcción, dada por Siles Molina en [79], del álgebra de

cocientes maximal Qm(L) de un álgebra de Lie semiprima L construiremos,

en el Caṕıtulo 2, un álgebra de cocientes maximal graduada para cada álgebra

de Lie graduada semiprima. Teniendo en cuenta que los elementos de Qm(L)

provienen de derivaciones parciales definidas en ideales esenciales, nuestros

ingredientes serán ahora derivaciones parciales graduadas e ideales esenciales

graduados. Con esta idea en mente, introduciremos en Construcción 2.2.3

una nueva álgebra de Lie, que denotaremos por Qgr−m(L). En la Sección 2.2

probaremos que Qgr−m(L) tiene buenas propiedades.

Nuestro objetivo en el resto del caṕıtulo será calcular Qm(L) para ciertas

álgebras de Lie. Concretamente, nos centraremos en las álgebras de Lie de

la forma L = A−/Z, donde A− es el álgebra de Lie asociada a un álgebra

asociativa prima A de centro Z, y en las de la forma L = K/ZK , donde K es

el álgebra de Lie de los elementos skew de un álgebra asociativa prima con

involución y ZK su centro. En la Sección 2.3, calcularemos Qm(A−/Z); se
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tiene que (bajo ciertas hipótesis) Qm(A−/Z) coincide con una cierta álgebra

de Lie que proviene de derivaciones parciales de A. Debido a que la definición

es un poco técnica para darla aqúı, diremos que dicha álgebra vive entre

Der(A) y Der(Qs(A)), donde Qs( . ) denota el álgebra de cocientes simétricos

de Martindale de A. En la Sección 2.4, obtendremos resultados similares para

K/ZK (este caso es totalmente análogo al de A−/Z, la única diferencia es que

tendremos que considerar derivaciones δ que preserven ∗, en el sentido de que

δ(x∗) = δ(x)∗).

El propósito del Caṕıtulo 3 es determinar bajo qué condiciones algunas

propiedades importantes de los cocientes asociativos continúan siendo ciertas

para los cocientes Lie. En la Sección 3.1, estudiaremos el problema de cuándo

Qm(I), donde I es un ideal esencial de un álgebra de Lie semiprima L, coin-

cide con a Qm(L). Se sabe que este resultado es cierto en el caso asociativo

(ver, por ejemplo [15, Proposition 2.1.10]); en el contexto Lie, podremos dar

una respuesta afirmativa imponiendo que L sea fuertemente semiprima: se

dice que un álgebra de Lie L es fuertemente semiprima (respectivamente,

fuertemente prima) si:

(i) L es semiprima (respectivamente, prima).

(ii) Para cada n, dados 0 6= Un � . . .� U2 � U1 � L existe 0 6= W � L tal

que W ⊆ Un.

Teorema 3.1.7. Sea I un ideal esencial de un álgebra de Lie fuertemente

semiprima L. Entonces Qm(I) es el álgebra de cocientes maximal de L, es

decir Qm(I) ∼= Qm(L).

Una vez que hemos construido el álgebra graduada de cocientes maximal,

es natural preguntarse, al igual que hicimos en el caso no graduado, cuándo
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Qgr−m(I) será isomorfo a Qgr−m(L), para I un ideal graduado esencial de un

álgebra graduada semiprima L; trataremos esta cuestión en la Sección 3.2.

Cerramos este tercer caṕıtulo analizando en la Sección 3.3 cuándo

Qm((Qm(L)) es igual a Qm(L). A diferencia del caso asociativo en el que

siempre se tiene esta igualdad (ver [15, Theorem 2.1.11]), probaremos que

en ciertas situaciones especiales, a saber, si L es un álgebra de Lie simple o

si L = A−/Z donde A es un álgebra asociativa simple (satisfaciendo ciertas

hipótesis técnicas) o A es un álgebra finitamente generada que satisface una

identidad polinómica, la respuesta sigue siendo positiva, pero que en general

Qm((Qm(L)) no coincide con Qm(L); damos un ejemplo (veáse Ejemplo 3.3.7)

haciendo uso del ejemplo dado por Passman en [73] con el que mostró que

tomar Qs(.) no es una operación cerrada.

En el Caṕıtulo 4, estudiaremos la relación existente entre los cocientes Lie

y los cocientes Jordan en el sentido de [39]. Consta de dos secciones; en la

primera de ellas probaremos que para las álgebras de Lie 3-graduadas semipri-

mas, el álgebra de cocientes maximal es de nuevo 3-graduada y coincide con el

álgebra graduada de cocientes maximal. Concretamente, el resultado obtenido

es el siguiente:

Teorema 4.1.2. Sea L = L−1 ⊕ L0 ⊕ L1 un álgebra de Lie 3-graduada

semiprima. Entonces:

(i) Qm(L) es isomorfa graduada a Qgr−m(L).

(ii) Si L es fuertemente no degenerada y Φ es 2 y 3 libre de torsión, entonces

Qm(L) es un álgebra de Lie 3-graduada fuertemente no degenerada.

En la Sección 4.2, haciendo uso de la construcción de Tits-Kantor-Koecher,

relacionaremos los sistemas de Jordan de cocientes maximales con las álgebras

de Lie de cocientes maximales. Los principales resultados son:
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Teorema 4.2.11. Supongamos que 1
6
∈ Φ.

(i) Sea V un par de Jordan fuertemente no degenerado. Entonces

Qm(V ) =
(

(Qm(TKK(V )))1, (Qm(TKK(V )))−1

)
es el par de Jordan de M-cocientes maximal de V .

(ii) Si L = L−1 ⊕ L0 ⊕ L1 es un álgebra de Lie de Jordan 3-graduada

fuertemente no degenerada tal que Qm(L) es de Jordan 3-graduada,

entonces

Qm(L) ∼= Qm(TKK(V )) ∼= TKK(Qm(V )),

donde V = (L1, L−1) es el par de Jordan asociado a L.

Teorema 4.2.22. Sea T un sistema triple de Jordan fuertemente no dege-

nerado sobre un anillo de escalares Φ que contiene a 1
6
. Entonces el sistema

triple de Jordan de M-cocientes maximal de T es la primera componente del

álgebra de cocientes maximal de la TKK-álgebra del par de Jordan doble

V (T ) = (T, T ) asociado a T , es decir,

Qm(T ) = (Qm(TKK(V (T ))))1.

Teorema 4.2.27. Sea J un álgebra de Jordan fuertemente no degenerada

sobre un anillo de escalares Φ que contiene a 1
6
. Entonces

Qm(J) = Qm(JT ) = (Qm(TKK(V (JT ))))1,

es el álgebra de Jordan de cocientes maximal de J , donde JT denota el sistema

triple de Jordan asociado a J y V (JT ) = (JT , JT ) es el par doble par de Jordan

asociado a JT .

El lector puede encontrar los resultados originales de los Caṕıtulos 2, 3 y

4 en [19, 78].
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Durante la estancia de la autora en la Universidad de Maribor (Eslovenia)

trabajó, junto a M. Brešar y M. Grašič, en el problema de estudiar cuándo

los anillos de matrices Mn(B), donde B es cualquier álgebra unitaria (sobre

un anillo conmutativo fijado C) quedan determinadas por un producto nulo.

Concluiremos esta tesis con los resultados obtenidos en [17].

Como motivación para estudiar este problema, destacaremos la conexión

con los ampliamente estudiados problemas de describir las aplicaciones li-

neales que conservan los productos nulos (ver, por ejemplo [3, 8, 30, 31, 32,

33, 45, 46, 83]).

Podemos considerar a S. Banach el propulsor de esta área de investi-

gación matemática; fue el primero en describir las isometŕıas de Lp([0, 1])

para p 6= 2 (ver [9]). Banach no dio la prueba completa para este caso (que

fue dada más tarde por J. Lamperti [58]) pero hizo hincapié en el hecho de

que las isometŕıas deben aplicar funciones con soporte disjunto en funciones

con soporte disjunto. Esta propiedad surge de manera natural en una gran

cantidad de situaciones y ha sido considerada por diversos autores. Por ejem-

plo, en la teoŕıa de los ret́ıculos de Banach hay una extensa literatura acerca

de aplicaciones lineales T : X → Y , donde X e Y son ret́ıculos de Banach,

satisfaciendo la propiedad de que

| T (x) | ∧ | T (y) |= 0

siempre que x, y ∈ X sean tales que | x | ∧ | y |= 0. A estas aplicaciones se las

llama operadores que preservan la“disjunción” o d-homomorfismos.

Para más información, referimos al lector a [1].

La noción de operadores que preservan la“disjunción” fue trasladada por

E. Beckenstein y L. Narici [12] a las álgebras de funciones. Si A, B son álgebras

de funciones, a los operadores lineales T : A→ B que satisfacen T (a)T (b) = 0

se les llama operadores de Lamperti o aplicaciones separadoras. Este
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concepto de aplicaciones separadoras puede trasladarse al álgebra pura, siendo

la manera más natural el considerar literalmente la misma condición, o sea,

se dice que una aplicación lineal T de un álgebra A en otra B conserva el

producto nulo si

x, y ∈ A, xy = 0⇒ T (x)T (y) = 0.

En el reciente art́ıculo [18], M. Brešar y P. Šemrl se ocupan de uno de los

problemas más estudiados, a saber, del problema de describir las aplicaciones

lineales que conservan la conmutatividad. Se dice que una aplicación lineal

S : A→ B conserva la conmutatividad si

S(x)S(y) = S(y)S(x) siempre que x, y ∈ A, xy = yx.

El suponer que la conmutatividad se conserva se puede reformular en términos

de la condición de conservar el producto de Lie nulo, del siguiente modo:

Si S : A → B es una aplicación lineal que conserva la conmutatividad,

entonces la aplicación bilineal T : A×A→ B dada por T (x, y) = [S(x), S(y)]

satisface claramente que

T (x, y) = 0 siempre que [x, y] = 0,

lo que se expresa diciendo que T conserva el producto nulo de Lie.

Brešar y Šemrl probaron (ver [18, Theorem 2.1]) que en el caso más sim-

ple, o sea, cuando B = C las matrices Mn(C) quedan determinadas por el

producto de Lie nulo. Dicho resultado se podrá obtener como consecuencia

de los aqúı expuestos. En la Sección 5.2 probaremos que para el producto or-

dinario, las matrices Mn(B) quedan determinadas por el producto nulo para

cualquier álgebra unitaria B y todo n ≥ 2, y en la Sección 5.3 mostraremos

lo mismo para el producto Jordan; pero añadiendo las hipótesis de que n ≥ 3

y de que 2 es inversible en B. Veremos que el comportamiento del producto

de Lie, del que nos ocuparemos en la Sección 5.4, es muy distinto.
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Papá ¡menudo sustillo nos diste!, decirte que te quiero mucho y que ni te

imaginas lo que te echo de menos durante mis estancias. Mamá, gracias por
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Chapter 1

Algebras and graded algebras of
quotients of Lie algebras

The theory of associative algebras of quotients has a rich history and is still

an active research area. In recent years, there has been a trend to extend

notions and results of associative settings to the non-associative ones. In the

paper [79] M. Siles Molina initiated the study of algebras of quotients of Lie

algebras.

In this chapter we will study algebras of quotients of skew Lie algebras

and we will also introduce the notion of graded algebras of quotients of graded

Lie algebras.

1.1 Introduction

Throughout the chapter and in the rest of the work we will consider Lie and

associative algebras, and we will tacitly assume that all of them are algebras

over a fixed commutative unital ring of scalars Φ. Lie algebras will be usually

denoted by L, and associative ones by A. For convenience we will assume

that all our algebras are 2-torsion-free (i. e. 2x 6= 0 for every nonzero x in

an algebra), although this assumption is not always necessary; we will use

it without further mention. For associative algebras we will not assume that

1
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they must be unital.

Let us start by introducing the basic notation and recalling some defi-

nitions and results. We will omit the proofs of some of these preliminary

well-known facts.

Definitions 1.1.1. Let L be a Φ-module together with a bilinear map [ , ] :

L× L→ L, denoted by (x, y) 7→ [x, y] (called the bracket of x and y). We

say that L is a Lie algebra over Φ if the following axioms are satisfied:

(i) [x, x] = 0, and

(ii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (the so-called Jacobi identity).

Let X be a subset of an (associative or not) algebra A. The set

Ann(X) = AnnA(X) = {a ∈ A | ax = 0 = xa for every x ∈ X}

is called the annihilator of X in A. It is easy to check that Ann(X) is an

ideal of A when X is also an ideal of A. In the special situation that X = A,

Ann(A) is called the center of A and will be denoted by Z = ZA.

In case L is a Lie algebra and X is a subset of L, the annihilator of X

in L is defined as

Ann(X) = AnnL(X) = {a ∈ L | [a, x] = 0 for every x ∈ X}.

Every element of Ann(L) will be called a total zero divisor. It will be clear

from the context whether Ann(X) denotes the annihilator in the associative

or in the Lie algebra setting.

Lie algebras abound in the mathematical literature. The following exam-

ples are well-known.
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Example 1.1.2. Lie algebras that arise from associative ones. Let A

be an associative algebra A; we can obtain a Lie algebra A− by considering

the same module structure of A and bracket given by

[x, y] = xy − yx for every x, y ∈ A.

Ideals of A− will be called Lie ideals of A, so, a Φ-submodule U of A is a

Lie ideal of A if it satisfies [U,A] ⊆ U .

Remarks 1.1.3. Clearly, if I is an ideal of A, then it is also a Lie ideal of

A; however, the converse is not true. For example, consider [I, A], the linear

span of all [y, x] with y ∈ I and x ∈ A, which is a Lie ideal but not necessarily

an ideal of A.

Note that ZA− , the center of the Lie algebraA−, agrees with the associative

center Z of A, and is clearly a Lie ideal of A. So we can form the Lie algebra

A−/Z. In the sequel, we will write I to the denote the ideal (I + Z)/Z of

A−/Z, for a Lie ideal I of A.

Example 1.1.4. Skew Lie algebras. Let A be an associative algebra with

involution ∗; then the set of its skew elements

K = KA = {x ∈ A | x∗ = −x}

is a subalgebra of A−. The ideal [K, K] of K is particularly important, since

sometimes its use allows to avoid exceptional situations (see [64, 24]). The

Lie algebras K/ZK and [K, K]/Z[K,K] are called algebras of skew type or

skew Lie algebras.

These kinds of algebras involving commutators are of great interest since

they appear in Zelmanov’s classification of simple M -graded Lie algebras over

fields of characteristic at least 2d+ 1, where d is the width of M (see [84]).
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Example 1.1.5. The Lie algebra of derivations. Let A be an associative

algebra. A linear map δ : A→ A is called a derivation of A if

δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ A. For example, if x is an element of A, the map adx:A → A

defined by ad x(y) = [x, y] is a derivation of A.

We denote by Der(A) the set of all derivations of A. Clearly, Der(A) is

a Φ-module if we define the operations in the natural way and, moreover, it

becomes a Lie algebra if we define the bracket by

[δ, µ] = δµ− µδ,

for every δ, µ ∈ Der(A).

Here, we shall give the notions of semiprimeness, primeness, and essen-

tiality for Lie algebras; in case of associative algebras these concepts can be

defined in exactly the same way as those for Lie algebras, just by replacing

the bracket by the associative product.

Definitions 1.1.6. Let L be a Lie algebra.

(i) We say that L is semiprime if for very nonzero ideal I of L, [I, I] 6= 0.

In the sequel we shall usually denote [I, I] by I2.

(ii) L is said to be prime if for every nonzero ideals I, J of L, [I, J ] 6= 0.

There are a several examples of semiprime and prime Lie algebras. The

most interesting for us are the following ones:

Example 1.1.7. The Lie algebra of derivations, Der(A) of a semiprime

(prime) associative algebra A, is semiprime (prime). It was proved by C.

R. Jordan and D. A. Jordan in [49, Theorem 4 (Theorem 2)].
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Example 1.1.8. ([64, Theorem 6.1]). If A is a semiprime associative algebra

with involution ∗ then the skew Lie algebra K/ZK is semiprime.

The following remark asserts that every Lie algebra of the form A−/Z,

where A is an associative algebra with center Z, can be seen as a skew Lie

algebra. This fact constitutes a very useful tool.

Remark 1.1.9. Note that if A is an associative algebra, then the Lie algebra

A− is isomorphic to KA⊕A0 and hence A−/Z is isomorphic to KA⊕A0/ZKA⊕A0 ,

where A0 denotes the opposite algebra of A, and A⊕A0 is endowed with the

exchange involution.

A first application of this remark is written below.

Example 1.1.10. If A is a semiprime associative algebra then the Lie algebra

A−/Z is also semiprime. It is obtained from Example 1.1.8 taking into account

the remark above. Another proof of this fact can be found in [75, Theorem

2.12]; concretely:

Proof. Let U be a Lie ideal of A−/Z such that [U, U ] = 0. Then U is the

image of the Lie ideal U of A via the natural map A− → A−/Z. The condition

on U implies that [U, U ] ⊆ Z. Applying [43, Lemma 1] we obtain U ⊆ Z,

that is, U = 0.

Definition 1.1.11. We say that an ideal I of a Lie algebra L is essential,

and write I�eL to denote it, if I cuts in a nontrivial way every nonzero ideal

of L, i.e., I ∩ J 6= 0 for every nonzero ideal J of L. We denote by Ie(L) the

set of all essential ideals of L.

Some examples and properties of essential ideals are collected in the follo-

wing result.

Lemma 1.1.12. Let L be a Lie algebra.
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(i) If I, J ∈ Ie(L) then I ∩ J ∈ Ie(L), that is, the intersection of essential

ideals is again an essential ideal.

(ii) If L is semiprime and I ∈ Ie(L) then I2 ∈ Ie(L).

(iii) If L is prime, then every nonzero ideal of L is essential.

In case of semiprime algebras, essential ideals can be characterized in

terms of their annihilators as follows:

Lemma 1.1.13. ([79, Lemma 1.2]). Let I be an essential ideal of a semiprime

Lie algebra L. Then:

(i) I ∩ Ann(I) = 0.

(ii) I is an essential ideal of L if and only if Ann(I) = 0.

The proof of the following lemma is included in the proof of [75, Theorem

2.12].

Lemma 1.1.14. Let A be a semiprime algebra. Then for every essential ideal

I of A, the ideal I is essential ideal in A−/Z.

Proof. Let I be an essential ideal of A; we claim that I = (I +Z)/Z has zero

annihilator in A−/Z (which implies that it is an essential ideal of A−/Z). If

x ∈ A is such that [x, I] = 0, then [x, I] ⊆ Z. Therefore [[x, I], I] = 0 and

making use of the Jacobi identity we have [x, [I, I]] = 0. From [43, Lemma

2] it follows that [x, I] = 0. Note that A is an algebra of quotients of I since

it is an essential ideal of A. Hence, using [79, Lemma 1.3 (iv)] we obtain

[x, A] = 0. Thus x = 0 in A−/Z.

Remark 1.1.15. By the previous lemma, an essential ideal I of a noncom-

mutative semiprime algebra A cannot be central.
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1.2 Associative algebras of quotients

The well-known construction of the field of fractions of an integral domain is

a particular case of the notion of right (left) order.

Definition 1.2.1. Let R ⊆ Q be rings with Q unital. The ring R is said to be

a right (left) order in Q, or Q is called a classical right (left) quotient

ring of R if

(i) Every regular element of R is invertible in Q.

(ii) Every element q ∈ Q has the form q = ba−1 (q = a−1b) for some regular

element a of R and b ∈ R.

As mentioned, the field of fractions of an integral domain is always a

classical right and left quotient ring of that integral domain but however, not

every example of a classical right (or left) quotient ring comes from the field

of fractions of an integral domain.

Example 1.2.2. Consider the rings

Mn(D) ⊆Mn(F ),

where D is an integral domain and F its field of fractions. Then Mn(D) is a

right order in Mn(F ), but neither Mn(D) is an integral domain nor Mn(F )

is a field.

The notion of “being a classical right (or left quotient ring)” has a restric-

tion: we need to consider unital rings; what can we do if our ring Q does not

have a unit element? In such a case, we couldn’t consider regular elements.

Y. Utumi [82] solved satisfactorily this question introducing a suitable notion

of ring of quotients for this setting.
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Definition 1.2.3. ([82]). An overring Q of a ring R is said to be a (general)

right quotient ring of R if given p, q ∈ Q, with p 6= 0, there exists r ∈ R

such pr 6= 0 and qr ∈ R. Left quotients rings are similarly defined.

Again, any classical right quotient ringQ of a ring R is also a right quotient

ring of it:

Given p, q ∈ Q, with p 6= 0, there exists a regular element a ∈ R and

an element b ∈ R such that q = ba−1 which implies qa = b ∈ R; note, that

pa 6= 0, since p 6= 0 and a is a regular element of R and hence, it is invertible

in Q.

At this point, we may ask if there exists a right quotient ring of R such

that any other right quotient ring of R can be embedded into it. Y. Utumi

answered affirmatively this question provided R is left faithful. First, let us

recall some definitions.

Definitions 1.2.4. An element x ∈ R is a total right zero divisor if

xR = 0. A ring R is left faithful if it has no nonzero total right zero divisors,

that is, xR = 0 implies x = 0.

A right ideal I of R is said to be dense if given any x, y ∈ R, with x 6= 0,

there exists a ∈ R such that xa 6= 0 and ya ∈ I, i.e., R is a right quotient ring

of I. The collection of all dense right ideals of R will be denoted by Idr(R).

One defines total right zero divisors, right faithfulness and dense left ideals

in an analogous fashion.

We pause to mention the notion of essential right ideal.

Definition 1.2.5. A right ideal I of R is essential if it cuts in a nontrivial

way every nonzero right ideal of R.

A discussion of the relationship between essential and dense right ideals

can be found in [15, Section 2.1]. By now we have selected two remarks.
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Remarks 1.2.6. (See [15, Remarks 2.1.3 and 2.1.4].) Every dense right ideal

of a semiprime ring is also an essential right ideal. There are special cases

where these two notions coincide, for example, when the ring is left nonsin-

gular.

Let I be an ideal of a semiprime ring R. Then the following conditions

are equivalent:

(i) I is a dense right ideal.

(ii) I is an essential right ideal.

(iii) I is essential as an ideal.

We are now in a position to explain Utumi’s construction.

Construction 1.2.7. ([82]). Let R be a left faithful ring. We say that two

pairs (f, I), (g, J), where I, J ∈ Idr(R) and f : IR → RR, g : JR → RR

are right R-module homomorphisms, are equivalent if and only if there

exists K ∈ Idr(R) contained in I ∩ J and such that f = g on K. This is

an equivalence relation. Denote by fI the equivalence class determined by

(f, I). The set of all such classes becomes a ring if we define addition and

multiplication as follows:

fI + gJ = (f + g)I∩J , fIgJ = fgg−1(I).

Definition 1.2.8. For a left faithful ring R, the ring constructed above will

be called the maximal right ring of quotients of R and will be denoted

by Qr
max(R).

An example of maximal right quotient ring is the following:

Examples 1.2.9. If D is an integral domain and F is its field of fractions,

then Qr
max(D) = F . In particular,

Qr
max(Z) = Q and Qr

max(F [x]) = F (x).
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Y. Utumi was the first that constructed this maximal ring of quotients;

there are others “homological” constructions of it available (see, e.g., [56]).

Let us point out that Utumi’s construction is more natural in the sense that

speaking very loosely, given a right R-module homomorphism f : IR → RR

and fa = r, for a ∈ I and r ∈ R, we may “solve” for f and get “f = ra−1”,

which says that f is like a fraction.

In a similar fashion, using the set of dense left ideals of a right faithful ring

R, one can construct the maximal left ring of quotients of R, denoted by

Ql
max(R). Of course the maximal left and maximal right quotient rings need

not coincide.

Example 1.2.10. Consider the ring

R =

 F F F
0 F 0
0 0 F

 ,

where F is a field. As it is shown in [55, p. 372], Ql
max(R) ∼= M3(F ) while

Qr
max(R) ∼= M2(F )×M2(F ), and they are obviously not isomorphic.

Proposition 1.2.11. (See [15, Proposition 2.1.7].) Let R be a semiprime

ring. Then Qr
max(R) satisfies:

(i) R is a subring of Qr
max(R).

(ii) For all q ∈ Qr
max(R), there exists J ∈ Idr(R) such that qJ ⊆ R.

(iii) For all q ∈ Qr
max(R) and J ∈ Idr(R), qJ = 0 if and only if q = 0.

(iv) For any ideal J ∈ Idr(R) and any right R-module homomorphism f :

JR → RR there exists q ∈ Qr
max(R) such that f(x) = qx for every x ∈ J .

Furthermore, properties (i)-(iv) characterize Qr
max(R) up to isomorphism.
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Remark 1.2.12. It can be proved, by using [57, Lemma 4.3.2], that condi-

tions (i) and (ii) in Proposition 1.2.11 are equivalent to saying that S is a

right quotient ring of R.

The notion of two-sided ring of quotients was introduced by W. S. Mar-

tindale III in [63] for prime rings (and extended to semiprime ones by S. A.

Amitsur [4]). We are going to describe the construction of the two-sided ring

of quotients for semiprime rings; let us point out here that in case of prime

rings this construction has an especially simple form since every nonzero ideal

of a prime ring is dense (it has zero annihilator).

Construction 1.2.13. ([82]). Let R be a semiprime ring. Denote by I(R)

the collection of all ideals of R having zero annihilator. Note that I(R) is

closed under sums and finite intersection; we also mention that any I ∈ I(R)

is dense and essential as a right (or left) ideal accordingly we shall call such

ideals dense.

We define that two pairs (f, I), (g, J), where I, J ∈ I(R) and f : IR →

RR, g : JR → RR are right R-module homomorphisms, are equivalent if and

only if there exists K ∈ I(R) contained in I ∩ J and such that f = g on K.

This is an equivalence relation. Denote by fI the equivalence class determined

by (f, I). The set of all such classes becomes a ring if we define addition and

multiplication as follows:

fI + gJ = (f + g)I∩J , fIgJ = fgJI .

Definition 1.2.14. For a semiprime ring R, the ring constructed above will

be called the two-sided right ring of quotients of R and will be denoted

by Qr(R).

The following result collects the principal properties of Qr(R).
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Proposition 1.2.15. (See [15, Proposition 2.2.1].) Let R be a semiprime

ring. Then Qr(R) satisfies:

(i) R is a subring of Qr(R).

(ii) For all q ∈ Qr(R), there exists J ∈ I(R) such that qJ ⊆ R.

(iii) For all q ∈ Qr(R) and J ∈ I(R), qJ = 0 if and only if q = 0.

(iv) For any ideal J ∈ I(R) and any right R-module homomorphism f :

JR → RR there exists q ∈ Qr(R) such that f(x) = qx for every x ∈ J .

Furthermore, properties (i)-(iv) characterize Qr(R) up to isomorphism.

The next proposition describes the relationship between Qr
max(R) and

Qr(R).

Proposition 1.2.16. (See [15, Proposition 2.2.2].) Given a semiprime ring

R, there exists a unique ring monomorphism σ : Qr(R)→ Qr
max(R) such that

σ(r) = r for all r ∈ R. Further,

Im(σ) = {q ∈ Qr
max(R) | qJ ⊆ R for some J ∈ I(R)}.

Definition 1.2.17. Let R be a semiprime ring. The set

Qs(R) = {q ∈ Qr(R) | qJ ∪ Jq ⊆ R for some J ∈ I(R)}

is called the symmetric Martindale ring of quotients of R.

As noted by D. S. Passman (see [73, Proposition 1.4]), Qs(R) may be cha-

racterized by four properties analogous to those which characterize Qr
max(R)

(see Proposition 1.2.11).

Proposition 1.2.18. (See [15, Proposition 2.2.3].) Let R be a semiprime

ring. Then Qs(R) satisfies:
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(i) R is a subring of Qs(R).

(ii) For all q ∈ Qs(R), there exists J ∈ I(R) such that qJ ∪ Jq ⊆ R.

(iii) For all q ∈ Qs(R) and J ∈ I(R), qJ = 0 (or Jq = 0) if and only if

q = 0.

(iv) Given J ∈ I(R), f : JR → RR and g : RJ → RR right and left,

respectively R-module homomorphisms such that xf(y) = g(x)y for all

x, y ∈ J there exists q ∈ Qs(R) such that f(x) = qx, g(x) = xq for

every x ∈ J .

Furthermore, properties (i)-(iv) characterize Qs(R) up to isomorphism.

Remark 1.2.19. (See [15, Remark 2.2.4].) We have defined Qs(R) as a sub-

ring of Qr(R) ⊆ Qr
max(R) and so, more accurately, we should have called

Qs(R) the right symmetric Martindale ring of quotients of R. Ana-

logously, Q̃s(R) the left symmetric Martindale ring of quotients of R

may be defined as a subring of Ql(R) ⊆ Ql
max(R). For q ∈ Qs(R) we define

q̃ = J and g ∈ Q̃s(R), where g(x) = xq for all x ∈ J . Then the map q 7→ q̃ is

an isomorphism of Qs(R) onto Q̃s(R).

Definition 1.2.20. We call the center C = Z(Qr(R)) of the two-sided ring

of quotients of a semiprime ring R the extended centroid of R.

Some important properties of the extended centroid are the following.

Lemma 1.2.21. ([15, 2.3]) Let R be a semiprime ring. Then

Z(Qs(R)) = C = Z(Qr
max(R)) = {q ∈ Qr

max(R) | qr = rq for all r ∈ R}.

Moreover, if R is prime then C is a field.

The following result will play an important role in our computations.
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Proposition 1.2.22. See ([15, Proposition 2.5.1].) Let R be a semiprime ring.

Any derivation δ of R can be extended uniquely to a derivation of Qr
max(R)

also denoted by δ. Furthermore δ(Qr(R)) ⊆ Qr(R) and δ(Qs(R)) ⊆ Qs(R).

We conclude this section by recalling the notion of generalized polynomial

identity with involution. Let A be a semiprime associative algebra with an

involution ∗. It is easy to see that ∗ can be lifted to an involution, also denoted

by ∗, of Qs(A). Moreover, the extended centroid C of A, remains ∗-invariant.

Definition 1.2.23. Let X be a countably infinite set (of “formal variables”)

and let X∗ be a disjoint copy of X. Denote, as usual, by C〈X ∪X∗〉 the free

associative algebra over C generated by X ∪ X∗, and by Qs(A)C〈X ∪ X∗〉

the coproduct of the C-algebras Qs(A) and C〈X ∪ X∗〉. An element φ =

φ(x1, · · · ,xn,x1
∗, · · · ,xn

∗) of Qs(A)C〈X ∪ X∗〉 is said to be a generalized

polynomial identity with involution (in short ∗-GPI) on a nonzero ∗-ideal

(i.e. ideal invariant under ∗) U of A if s(φ) = 0 for all (∗-substitution) C-

algebra homomorphisms s : Qs(A)C〈X ∪X∗〉 → Qs(A) such that s(X) ⊆ U ,

s(x∗) = s(x)∗ for all x ∈ X and s(q) = q for all q in Qs(A).

1.3 Lie algebras of quotients

Let L ⊆ Q be Lie algebras. For any q ∈ Q, we denote by L(q) the linear span

in Q of q and the elements of the form ad x1adx2 . . . adxnq, where n ∈ N and

x1, . . . , xn ∈ L. In particular, if q ∈ L, note that then L(q) is just the ideal of

L generated by q.

Definition 1.3.1. ([79, Definition 2.1].) Let L ⊆ Q be Lie algebras. We say

that Q is an algebra of quotients of L (or also that L is a subalgebra of

quotients of Q) if given p and q in Q with p 6= 0, there exists x in L such

that [x, p] 6= 0 and [x, L(q)] ⊆ L.
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A Lie algebra L has an algebra of quotients if and only if it has no nonzero

total zero divisors, or, equivalently, Ann(L) = 0 (see [79, Remark 2.3]).

Certain properties of a Lie algebra are inherited by each of its algebras

of quotients (see Proposition 1.3.4 below). In fact, these results remain valid

under a weaker hypothesis, that of “being a weak algebra of quotients”, notion

that we proceed to introduce.

Definition 1.3.2. ([79, Definition 2.5].) Let L ⊆ Q be Lie algebras. We say

that Q is a weak algebra of quotients of L if for every nonzero element

q ∈ Q there exists x ∈ L such that 0 6= [x, q] ∈ L.

Remark 1.3.3. Let us point out that every algebra of quotients of a Lie

algebra L is a weak algebra of quotients, but as it was shown in [79, Remark

2.6] the converse is not true.

Proposition 1.3.4. Let Q be a weak algebra of quotients of a subalgebra L.

(i) For every nonzero ideal I of Q, I ∩ L is a nonzero ideal of L.

(ii) L semiprime (prime) implies Q semiprime (prime).

(iii) If Φ is two and three-torsion free and L is strongly non-degenerate, then

Q is strongly non-degenerate.

One can prove that the definition of algebra of quotients of a Lie algebra

L can be expressed in terms of ideals of L with zero annihilator. (See [79,

Proposition 2.15].)

Definition 1.3.5. ([79, Definition 2.9].) Let L ⊆ Q be Lie algebras. We say

that Q is ideally absorbed into L, that is, for every nonzero element q ∈ Q

there exists an ideal I of L with AnnL(I) = 0 such that 0 6= [I, q] ⊆ L.
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1.4 Graded Lie algebras of quotients

Following the idea of M. Siles Molina [79] of introducing a notion of algebra

of quotients for Lie algebras and taking into account the success obtained by

G. Aranda Pino and M. Siles Molina [7] in the context of graded associative

setting, our aim in this section is to extend such a notion to the more general

case of graded Lie algebras.

We begin by introducing the main definitions and some basic results de-

rived from them.

Definitions 1.4.1. Let G be an abelian group (whose neutral element will

be denoted by e); a Lie algebra L is called G-graded if L = ⊕σ∈GLσ, where

Lσ is a Φ-subspace of L and [Lσ, Lτ ] ⊆ Lστ for every σ, τ ∈ G. In the sequel,

we sometimes use the term “graded” instead of “G-graded” when the group

is understood.

The set of homogeneous elements is
⋃
σ∈G Lσ. Elements of Lσ are called

homogeneous of degree σ.

For any subset X of L, its support is defined as

Supp(X) = {σ ∈ G | xσ 6= 0 for some x ∈ X}.

The grading on L is called finite if Supp(L) is a finite set and it is said

trivial if L = Le and Lσ = 0 for every σ ∈ G with σ 6= e. In the particular

case of having L a finite Z-grading, we may write the Lie algebra L as a finite

direct sum L = L−n ⊕ . . .⊕ Ln, and we say that L has a (2n+ 1)-grading.

Example 1.4.2. Every Lie algebra L becomes a graded Lie algebra over any

abelian group G, by considering the trivial grading, that is, by doing Le = L

and Lσ = 0 for σ 6= e.

There are several examples of graded associative algebras. Let us point out

that if A is a G-graded associative algebra then the Lie algebra A− associated
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to A is automatically a G-graded Lie algebra. Keeping this fact in mind, other

examples of graded Lie algebras are the following:

Example 1.4.3. The algebra of polynomials, R = A[x], where A is a

noncommutative algebra, is a Z-graded algebra with grading given by

Rn =

{
Axn if n ≥ 0
0 otherwise

Thus R− becomes a Z-graded Lie algebra.

Example 1.4.4. Matrix algebras, R = Mn(A) are (2n− 1)-graded with

Rk =
∑

{i,j∈{1,...,n}| i−j=k}

Aei,j

for k < n and Rk = 0 otherwise. It turns out that the Lie algebra R− has a

(2n− 1)-grading.

Definitions 1.4.5. Given G-graded Lie algebras L and Q, with L a subalge-

bra of Q, we say that L is a graded subalgebra of Q if Lσ ⊆ Qσ for every

σ ∈ G.

A Lie algebra homomorphism ϕ : L → Q is a graded homomorphism

of degree τ ∈ G if ϕ(Lσ) ⊆ Qστ for all σ ∈ G. Graded monomorphisms,

graded epimorphisms and graded isomorphisms are defined in the natural

way.

Definitions 1.4.6. Let L = ⊕σ∈GLσ be a graded Lie algebra. An ideal I of

L is called a graded ideal if whenever y =
∑
yσ ∈ I we have yσ ∈ I, for

every σ ∈ G.

A graded ideal I of L is said to be graded essential if every nonzero

graded ideal of L hits I, i.e., I ∩ J 6= 0 for every nonzero graded ideal J of L.

We will use the following lemma without further mention.
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Lemma 1.4.7. Let L = ⊕σ∈GLσ be a graded Lie algebra and I, J two graded

ideals of L. Then

(i) I + J and I ∩ J are graded ideals of L. Further, if I and J are graded

essential then I ∩ J is again a graded essential ideal.

(ii) [I, J ] is a graded ideal of L.

Proof. It is well-known that all of the sets considered in the statements are

ideals of L. It only remains to prove that they are indeed graded.

(i). The case of the sum and the intersection are similar. For example, to

show that I + J is graded, consider x ∈ I and y ∈ J . Decomposing x and

y into their homogeneous components and taking into account that I and J

are graded ideals we have x =
∑

σ xσ ∈ I, with xσ ∈ I, and y =
∑

σ yσ, with

yσ ∈ J . Hence the σ-homogeneous component of x+ y is xσ + yσ, which lives

inside I + J .

(ii). Take x ∈ I and y ∈ J and consider the element z := [x, y] ∈ [I, J ].

In order to check that [I, J ] is graded, it is enough to show that the homo-

geneous components of z belong to [I, J ]. Decomposing x and y into their

homogeneous components and applying that I and J are graded ideals we

may write x =
∑

σ xσ, with xσ ∈ I, and y =
∑

σ yσ, with yσ ∈ J . Note that

the homogeneous components of z are

zσ = [x, y]σ =
∑
τ

[xτ , yτ−1 σ],

all of them living inside [I, J ].

Following the definitions of primeness and semiprimeness for Lie alge-

bras (see Definitions 1.1.6), one can now introduce the notions of graded

semiprimeness and graded primeness for graded Lie algebras; concretely:
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Definitions 1.4.8. Let L be a graded Lie algebra. We say that L is graded

semiprime if for every nonzero graded ideal I of L, [I, I] 6= 0. In the sequel

we shall usually denote [I, I] by I2.

The Lie algebra L is said to be graded prime if for nonzero graded ideals

I and J of L, [I, J ] 6= 0.

An (homogeneous) element x of L is called an (homogeneous) absolute

zero divisor if (ad x)2 = 0. The algebra L is said to be (graded) strongly

non-degenerate if it does not contain nonzero (homogeneous) absolute zero

divisors.

Remark 1.4.9. It is obvious from the definitions that (graded) strongly non-

degenerate Lie algebras are (graded) semiprime, but the converse does not

hold. (See [79, Remark 1.1].)

As we have in the non-graded case, we can characterize the graded essential

ideals in terms of their annihilators.

Lemma 1.4.10. Let I be a graded ideal of a graded Lie algebra L = ⊕σ∈GLσ.

Then Ann(I) is a graded Lie ideal of L. In particular, ZL, the center of L, is

a graded ideal of L. If moreover L is graded semiprime, then:

(i) I2 is a graded essential ideal of L if I is so.

(ii) I ∩ Ann(I) = 0.

(iii) I is a graded essential ideal of L if and only if Ann(I) = 0.

Proof. It is straightforward to check, by using the Jacobi identity that, Ann(I)

is an ideal of L; so the only thing we are going to show is that every ho-

mogeneous component of any element x ∈ Ann(I) is again in Ann(I). Fix

τ ∈ G. Note that [xσ, Iτ ] = 0 for every σ ∈ G because otherwise there
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would exist yτ ∈ Iτ such that [xσ, yτ ] 6= 0 for some σ ∈ G; this would imply

0 6= [x, Iτ ] ⊆ [x, I] = 0, a contradiction. Hence [xσ, I] = ⊕τ∈G[xσ, Iτ ] = 0.

Assume now that L is graded semiprime.

(i). Let I be a graded essential ideal of L. Apply Lemma 1.4.7 (ii) to

obtain that I2 is also a graded ideal of L; the graded essentiality of L follows

now from the essentiality of I.

To obtain (ii) and (iii), see the proofs of conditions (i) and (ii) in [79,

Lemma 1.2].

Recall that the elements of the center were called total zero divisors. An

use of the lemma above gives:

Lemma 1.4.11. A graded Lie algebra L has no nonzero homogeneous total

zero divisors if and only if it has no nonzero total zero divisors.

Proof. Suppose first that L has no homogeneous total zero divisors, and con-

sider x ∈ Ann(L). Then, by Lemma 1.4.10 (i), we have [xσ, L] = 0 for every

σ ∈ G. This implies xσ = 0 and so x = 0. The reverse implication is ob-

vious.

We are now ready to introduce which may be considered the main objects

of this section.

Definitions 1.4.12. Let L = ⊕σ∈GLσ be a graded subalgebra of a graded

Lie algebra Q = ⊕σ∈GQσ.

– We say that Q is a graded algebra of quotients of L if given 0 6= pσ ∈

Qσ and qτ ∈ Qτ , there exists xα ∈ Lα such that [xα, pσ] 6= 0 and [xα, L(qτ )] ⊆

L. The algebra L will be called a graded subalgebra of quotients of Q.

– If for any nonzero pσ ∈ Qσ there exists xα ∈ Lα such that 0 6= [xα, pσ] ∈

L, then we say that Q is a graded weak algebra of quotients of L, and

L is called a graded weak subalgebra of quotients of Q.
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Remark 1.4.13. These definitions are consistent with the non-graded ones

(see Definitions 1.3.1 and 1.3.2) in the sense that if Q is a (weak) algebra of

quotients of a Lie algebra L, then it is also a graded (weak) algebra of L when

considering the trivial gradings on L and Q.

The necessary and sufficient condition for a graded Lie algebra to have a

graded (weak) algebra of quotients is the absence of homogeneous total zero

divisors different from zero, condition that turns out to be equivalent to have

zero center. More concretely, the result is the following:

Lemma 1.4.14. Let L be a graded Lie algebra. The following conditions are

equivalent:

(i) L is a graded algebra of quotients of itself.

(ii) L has a graded algebra of quotients.

(iii) L has no nonzero homogeneous total zero divisors.

(iv) L has no nonzero total zero divisors.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (i). Let Q be a graded overalgebra of L with Q being a graded

algebra of quotients of L; take 0 6= pσ ∈ Lσ ⊆ Qσ and qτ ∈ Lτ ⊆ Qτ .

Applying the hypothesis on Q we find xα ∈ Lα such that [xα, pσ] 6= 0 and

[xα, L(qτ )] ⊆ L. This means that L is a graded algebra of quotients of itself,

as desired.

(i) ⇒ (iii). Take xσ ∈ Lσ, with [L, xσ] = 0. If xσ 6= 0 we would find

xµ ∈ Lµ such that [xµ, xσ] 6= 0, a contradiction; so necessarily xσ = 0.

(iii) ⇒ (i). Given 0 6= pσ ∈ Lσ and qτ ∈ Lτ , by (iii) there exists xα ∈ Lα

such that [xα, pσ] 6= 0. It is obvious that xα satisfies that [xα, L(qτ )] ⊆ L.

Finally (iii) ⇔ (iv) is Lemma 1.4.11.
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Although every graded algebra of quotients is a graded weak algebra of

quotients, the converse is not true, as shown in the following example (see

[79, Remark 2.6]).

Example 1.4.15. Consider the C-module P of all polynomials
∑m

r=0 αrx
r,

with αi ∈ C and m ∈ N, with the natural Z-grading. Denote by σ : C → C

the complex conjugation. Then the following product makes P into a Z-graded

Lie algebra:

[
m∑
r=0

αrx
r,

n∑
s=0

βsx
s

]
=
∑
r,s

(αrβ
σ
s − βsασr )xr+s.

Let Q be the Z-graded Lie algebra P/I, where I denotes the Z-graded

ideal of P consisting of all polynomials whose first nonzero term has degree

at least 4, and let L be the following graded subalgebra of Q:

L = {α0 + α2x
2 + α3x

3 | α0, α2, α3 ∈ C},

where y denotes the class of an element y ∈ P in P/I. Then Q is a graded

weak algebra of quotients of L, but Q is not a graded quotient algebra of L

since no l ∈ L satisfies [l, x] ∈ L and [l, x3] 6= 0.

Parallel to what happened in the non-graded case (see Proposition 1.3.4),

we are going to show how certain properties of a graded Lie algebra L are

inherited by each of its algebras of quotients. First, we need some definitions

and results.

Definition 1.4.16. Let X and Y be two subsets of a Lie algebra L. The set

QAnnX(Y ) := {x ∈ X | [x, [x, y]] = 0 for every y ∈ Y }

is called the quadratic annihilator of Y in X.



1. Algebras and graded algebras of quotients of Lie algebras 23

Note that the quadratic annihilator of an ideal needs not be an ideal.

Examples 1.4.17. ([76, Examples 1.1]) 1. Consider a field F and the Lie

algebra t(3, F ). Then

QAnn(L) = {a(e11 + e22 + e33) + be13 + ce23 | a, b, c ∈ F} ∪

{a(e11 + e22 + e33) + be12 + ce13 | a, b, c ∈ F},

where, as usual, eij denotes the matrix in M3(F ) whose entries are all zero

except the one in row i and column j which is 1. Then QAnn(L) is not closed

under sums.

2. Now, consider the Lie algebra L̄ := L/Z, for L as before. Then

QAnn(L̄) = {ae13 + be23 | a, b ∈ F} ∪ {ae12 + be13 | a, b ∈ F},

where x̄ denotes the class of an element x in L. Again we have the quadratic

annihilator of this algebra L̄ is not closed under sums.

Proposition 1.4.18. Let Q = ⊕σ∈GQσ be a graded weak algebra of quotients

of a graded subalgebra L. Then:

(i) For every nonzero graded ideal I of Q, I ∩ L is a nonzero graded ideal

of L.

(ii) L graded semiprime (graded prime) implies Q graded semiprime (graded

prime).

(iii) Suppose that Φ is 2 and 3-torsion free. Then L graded strongly non-

degenerate implies Q graded strongly non-degenerate.

Proof. (i). Let I be a nonzero graded ideal of Q and take a nonzero yτ ∈ Iτ ,

for some τ ∈ G. By the hypothesis, there exists xα ∈ Lα satisfying that

0 6= [xα, yτ ] ∈ I ∩ L.
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(ii). Suppose that L is graded prime and take nonzero graded ideals I and

J of Q. Applying (i) we obtain that Ĩ := I ∩ L and J̃ := J ∩ L are nonzero

graded ideals of L, while the graded primeness of L implies 0 6= [Ĩ , J̃ ] ⊆ [I, J ],

which proves that Q is graded prime. The graded semiprimeness of Q can be

shown in a similar way.

(iii). Suppose that there exists an element 0 6= qτ in Qτ such that

(ad qτ )
2 = 0. Since Q is a graded weak algebra of quotients of L, 0 6= y :=

[qτ , xσ] ∈ L for some xσ ∈ Lσ. As qτ is in QAnnQ(Q) ⊆ QAnnQ(L) we have,

by [76, Theorem 2.1], that [y, [y, u]] ∈ QAnnL(L) for every u ∈ L (observe

that the map u 7→ adu gives an isomorphism between L and its image inside

A(Q), the Lie subalgebra of End(Q) generated by the elements ad x for x in

Q; this allows to apply the result in [76]). But QAnnL(L) is zero, because L

is graded strongly non-degenerate, therefore [y, [y, u]] = 0 for every u ∈ L.

Again the same reasoning leads to y = 0, a contradiction. This shows the

statement.

Definition 1.4.19. Let L be a graded subalgebra of a graded Lie algebra

Q = ⊕σ∈GQσ. We say that Q is graded ideally absorbed into L if for

every nonzero element qτ ∈ Qτ there exists a nonzero graded ideal I of L

with AnnL(I) = 0 and such that 0 6= [I, qτ ] ⊆ L.

It is immediate to see that “being graded ideally absorbed” implies “being

a graded weak algebra of quotients”. Our following aim will be to show that

the notions of graded algebra of quotients and of absorption by graded ideals

are equivalent. First we gather together several lemmas.

Recall that given a subalgebra L of a Lie algebra Q and an element q ∈ Q,

the set

(L : q) := {x ∈ L | [x, L(q)] ⊆ L}
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is an ideal of L. (See [79, Lemma 2.10 (i)].)

Lemma 1.4.20. Let L be a graded subalgebra of a graded Lie algebra Q =

⊕σ∈GQσ and consider qτ ∈ Qτ . Then:

(i) (L : qτ ) is a graded ideal of L.

(ii) If Q is a graded algebra of quotients of L then AnnL((L : qτ )) = 0. In

particular, (L : qτ ) is a graded essential ideal of L.

(iii) If Q is graded ideally absorbed into L then AnnL((L : qτ )) = 0. In

particular, (L : qτ ) is a graded essential ideal of L.

Proof. (i). To prove that (L : qτ ) is graded, take x =
∑

σ∈G xσ ∈ (L : qτ ).

Given n ∈ N, νi ∈ G and yi ∈ Lνi (i = 1, . . . , n),

[x, ad y1 . . . ad ynqτ ] =
∑
σ

[xσ, ad y1 . . . ad ynqτ ] ∈ ⊕σ∈GQσν1...νnτ .

Note that each [xσ, ad y1 . . . ad ynqτ ] is one of the homogeneous compo-

nents of the element [x, ad y1 . . . ad ynqτ ] ∈ L, which yields

[xσ, ad y1 . . . ad ynqτ ] ∈ Lσν1...νnτ ⊆ L. (1.1)

Now, consider arbitrary (and not necessarily homogeneous) elements

z1, . . . , zn ∈ L. Since [xσ, ad z1 . . . ad znqτ ] is a sum of elements as in (1.1),

this same result implies [xσ, ad z1 . . . ad znqτ ] ∈ L, that is, xσ ∈ (L : qτ ) for

every σ ∈ G.

(ii). Suppose that Q is a graded algebra of quotients of L. We prove first

that (L : qτ ) is a graded essential ideal of L. Let I be a nonzero graded ideal

of L, and pick 0 6= yµ ∈ Iµ, for some µ ∈ G. Apply that Q is a graded algebra

of quotients of L to find xα ∈ Lα satisfying [xα, yµ] 6= 0 and [xα, L(qτ )] ⊆ L,

i.e., xα ∈ (L : qτ ). As (L : qτ ) is an ideal, 0 6= [xα, yµ] ∈ I ∩ (L : qτ ); in other

words, (L : qτ ) is a graded essential ideal.
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If AnnL((L : qτ )) 6= 0, the essentiality of (L : qτ ) would imply the exis-

tence of a nonzero homogeneous element uα ∈ AnnL((L : qτ )) ∩ (L : qτ ).

Applying that Q is a graded algebra of quotients of L we would find

xµ ∈ Lµ (for some µ ∈ G) satisfying [xµ, uα] 6= 0 and [xµ, L(qτ )] ⊆ L.

This would mean that xµ is an element in (L : qτ ) which does not annihilate

uα ∈ AnnL((L : qτ )), a contradiction. Consequently, AnnL((L : qτ )) = 0.

(iii). Suppose now that Q is graded ideally absorbed into L. Take a graded

ideal I of L such that AnnL(I) = 0 (in particular I is a graded essential ideal)

and 0 6= [I, qτ ] ⊆ L. We are going to show that I ⊆ (L : qτ ), in which case

AnnL((L : qτ )) ⊆ AnnL(I) = 0 and the proof will be complete.

We will prove, by induction on n, that [I, ad y1 . . . ad ynqτ ] ⊆ L for every

n ∈ N and yi ∈ L (i = 1, . . . , n). For n = 1,

[I, [y1, qτ ]] ⊆ [[I, y1], qτ ] + [y1, [I, qτ ]] ⊆ [I, qτ ] + [L, [I, qτ ]] ⊆ L.

Suppose the result true for n−1 and consider yi ∈ L, with i = 1, . . . , n. Then

we have

[I, ad y1 . . . ad ynqτ ] ⊆ [[I, y1], ad y2 . . . ad ynqτ ] + [y1, [I, ad y2 . . . ad ynqτ ]]

⊆ [I, ad y2 . . . ad ynqτ ] + [L, [I, ad y2 . . . ad ynqτ ]] ⊆ L

by the induction hypothesis. This shows our claim.

Lemma 1.4.21. Let Q = ⊕σ∈GQσ be a graded weak algebra of quotients of

L. Then, for every graded ideal I of L, AnnL(I) = 0 implies AnnQ(I) = 0.

Proof. Let I be a graded ideal of L with AnnL(I) = 0. Suppose on the

contrary that AnnQ(I) 6= 0. Reasoning as in the proof of condition (i) in

Lemma 1.4.10, it can be shown that AnnQ(I) contains every homogeneous

component of each of its elements, hence we may choose 0 6= qτ ∈ AnnQ(I),
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for some τ ∈ G. By the hypothesis, there exist α ∈ G and xα ∈ Lα such that

0 6= [xα, qτ ] ∈ L. Since AnnL(I) = 0 we find y ∈ I satisfying

0 6= [y, [xα, qτ ]] = [[y, xα], qτ ] + [xα, [y, qτ ]] ∈ [I, qτ ] + [L, [I, qτ ]] = 0,

which is a contradiction.

With these lemmas in mind we are now ready to prove the announced

equivalency of the notions of “being a graded algebra of quotients” and “being

graded ideally absorbed”. The result is the following:

Proposition 1.4.22. Let L be a graded subalgebra of a graded Lie algebra

Q = ⊕σ∈GQσ. Then Q is a graded algebra of quotients of L if and only if Q

is graded ideally absorbed into L.

Proof. Suppose that Q is a graded algebra of quotients of L and consider

0 6= qτ ∈ Qτ . Applying Lemma 1.4.20 (ii) we have that (L : qτ ) is a graded

ideal of L with zero annihilator in L, and by Lemma 1.4.21 it has also zero

annihilator in Q, so 0 6= [(L : qτ ), qτ ] ⊆ L.

Conversely, assume that Q is graded ideally absorbed into L, and take

0 6= pσ ∈ Qσ and qτ ∈ Qτ . By Lemma 1.4.20 (iii) and Lemma 1.4.21, [(L :

qτ ), pσ] 6= 0, so there exist x ∈ (L : qτ ) and α ∈ G such that [xα, pσ] 6=

0. Since (L : qτ ) is a graded ideal of L, we have xα ∈ (L : qτ ), that is,

[xα, L(qτ )] ⊆ L, which completes the proof.

The following result is a first application of the characterization below.

Corollary 1.4.23. Let Q = ⊕σ∈GQσ be a graded algebra of quotients of a

graded semiprime Lie algebra L. Then for every graded essential ideal I of L

we have that Q is a graded algebra of quotients of I.
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Proof. Let I be a graded essential ideal of L. We will show that Q is graded

ideally absorbed into I and the conclusion will follow from Proposition 1.4.22.

Take 0 6= qτ ∈ Qτ ; by Proposition 1.4.22 there exists a graded ideal J

of L with AnnL(J) = 0 satisfying 0 6= [J, qτ ] ⊆ L. As J and I are graded

essential ideals of L, the graded semiprimeness of L implies that (I ∩ J)2

is also a graded essential ideal of L, equivalently (condition (iii) in Lemma

1.4.10) AnnL((I ∩ J)2) = 0; in particular AnnI((I ∩ J)2) = 0.

On the other hand, it follows from Lemma 1.4.21 that AnnQ((I∩J)2) = 0,

so that [(I ∩ J)2, qτ ] 6= 0. Finally, [J, qτ ] ⊆ L and the Jacobi identity yield

0 6= [(I ∩ J)2, qτ ] ⊆ I, which completes the proof.

We continue by studying the relationship between graded (weak) algebras

of quotients and (weak) algebras of quotients, a useful tool that (combined

with other results) will provide with examples of graded algebras of quotients.

Lemma 1.4.24. Let L be a graded subalgebra of a graded Lie algebra Q =

⊕σ∈GQσ. If Q is a weak algebra of quotients of L then Q is also a graded

weak algebra of quotients of L.

Proof. For 0 6= qτ ∈ Qτ , apply the hypothesis to find x ∈ L such that

0 6= [x, qτ ] ∈ L; in particular, 0 6= [xα, qτ ] ∈ Lατ for some α ∈ G.

The following lemma is a graded Lie version of the generalized common

denominator property for associative setting.

Lemma 1.4.25. Let Q = ⊕σ∈GQσ be a graded algebra of quotients of a

graded semiprime Lie algebra L. Then, given 0 6= pσ ∈ Qσ and qτi ∈ Qτi, with

τi ∈ G and i = 1, . . . , n (for any n ∈ N), there exist α ∈ G and xα ∈ Lα such

that [xα, pσ] 6= 0 and [xα, L(qτi)] ⊆ L for every i = 1, . . . , n.

Proof. Consider 0 6= pσ ∈ Qσ and qτi ∈ Qτi , with i = 1, . . . , n. By Lemma

1.4.20 (i), (L : qτi) is a graded essential ideal of L for every i, hence I =
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∩ni=1(L : qτi) is again a graded essential ideal of L. Condition (iii) in Lemma

1.4.10 implies AnnL(I) = 0 and by Lemma 1.4.21 we obtain AnnQ(I) = 0.

So, there exists x ∈ I such that [x, pσ] 6= 0, and if we decompose x into its

homogeneous components we find some α ∈ G satisfying [xα, pσ] 6= 0. Now

the proof is complete because xα ∈ I as I is a graded ideal and x ∈ I.

Proposition 1.4.26. Let L be a graded subalgebra of a graded Lie algebra

Q = ⊕σ∈GQσ. Consider the following conditions:

(i) Q is an algebra of quotients of L.

(ii) Q is a graded algebra of quotients of L.

Then (i) implies (ii). Moreover, if L is graded semiprime then (ii) implies

(i).

Proof. (i) ⇒ (ii). Given 0 6= pσ ∈ Qσ and qτ ∈ Qτ , by the hypothesis there

exists x ∈ L satisfying [x, pσ] 6= 0 and [x, L(qτ )] ⊆ L, that is, x ∈ (L : qτ ).

This means, by Lemma 1.4.20 (i), that xα ∈ (L : qτ ).

(ii)⇒ (i). Suppose now that Q is a graded algebra of quotients of L, with

L graded semiprime. Take p, q in Q, with p 6= 0; let σ ∈ G be such that

pσ 6= 0 and write τ1, τ2, . . . , τn to denote the elements of Supp(q).

By Lemma 1.4.25 it is possible to find an element xα ∈ Lα satisfying

[xα, pσ] 6= 0 and [xα, L(qτi)] ⊆ L for every i = 1, . . . , n, hence [xα, p] 6= 0 and

[xα, L(q)] ⊆ L; this shows that Q is an algebra of quotients of L.

We conclude the section with an important example of graded algebras of

quotients of graded Lie algebras. We refer the reader to [35, 5.4] to see the

definitions involved in it. However, in Section 4.2 (more concretely in 4.2.5)

we will explain that the TKK-algebra of a Jordan pair is. Recall that any
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strongly prime hermitian Jordan pair V is sandwiched as follows (see [35,

5.4]):

H(R, ∗) � V ≤ H(Q(R), ∗),

where R is a ∗-prime associative pair with involution and Q(R) is its associa-

tive Martindale pair of symmetric quotients.

Example 1.4.27. Let R be a ∗-prime associative pair with involution, and

Q(R) its Martindale pair of symmetric quotients. Then TKK(H(Q(R), ∗)) is

a 3-graded algebra of quotients of TKK(H(R, ∗)).

Proof. From [38, Proposition 4.2 and Corollary 4.3], Q := TKK(H(Q(R), ∗))

is ideally absorbed into the strongly prime Lie algebra L := TKK(H(R, ∗));

use [79, Proposition 2.15] to obtain that Q is an algebra of quotients of L and

Proposition 1.4.26 to reach the conclusion.

1.5 Lie algebras of quotients for skew Lie

algebras

In order to foresee the importance of the concept of algebra of quotients in

the non-associative setting, F. Perera and M. Siles Molina undertook in [75]

a study of the relationship between the Lie and associative quotients. It is

mentioned (see the previous comments to Lemma 3.6 in [75]) that similar

results to [75, Theorem 2.12 and Proposition 3.5] should be available for skew

Lie algebras. In what follows, our goal will be to prove that this is in fact the

case.

Our tools to reach it will be the theory of generalized polynomial identities,

for which our basic reference will be [15], Herstein’s Lie theory, as treated in

[64] and [11], dense extensions and also multiplicative semiprime algebras.

Throughout this section we will consider algebras over a field with cha-

racteristic different from 2.
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Definition 1.5.1. Let A be an (associative or not) algebra; denote by L(A)

the algebra of all linear mappings from A into A. For a ∈ A, La and Ra will

stand for the left and right, respectively, multiplication operators by a on A.

The multiplication algebra M(A) of A is the subalgebra of L(A) generated

by the identity operator IdA and the set {La, Ra | a ∈ A}.

Remark 1.5.2. Let A be an associative algebra. From the fact that ad a =

La − Ra, where ad a denotes the multiplication operator by a on the Lie

algebra A−, it follows that M(A−) is a subalgebra of M(A). By the way, note

that if A1 denotes the unital envelope of A, and, for a, b ∈ A1, we denote by

Ma, b the two-sided multiplication operator on A defined by Ma, b(x) = axb

for all x ∈ A, then

M(A) =

{
n∑
i=1

Mai, bi : n ∈ N, ai, bi ∈ A1 (1 ≤ i ≤ n)

}
.

A motivation to introduce multiplicative semiprime algebras is that the

multiplication algebra M(A) of a not necessarily associative semiprime alge-

bra A needs not be semiprime. An example of this is the following:

Example 1.5.3. (Albert, 1942). Consider the three-dimensional unital al-

gebra A over a field F with generators {1, u, v} given by the relations

u2 = 1, uv = v2 = v, vu = 0

It is easy to verify that the only nonzero proper ideals of A are

Fv, Fv + F (1 + u) and Fv + F (1− u).

Hence, it follows that A is in fact prime. However M(A) is not semiprime:

LvRu 6= 0 but LvRuM(A)LvRu = 0.

Definition 1.5.4. An algebra A is multiplicative semiprime (prime)

whenever A and its multiplication algebra M(A) are semiprime (prime).
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Several examples of multiplicative semiprime (prime) algebras are the

following:

Example 1.5.5. Semiprime (prime) associative algebras are multiplicative

semiprime (prime). It was shown by M. Cabrera and A. A. Mohammed in

[27].

This fact suggests that the same must be true for algebras that are nearly

associative. It was corroborated by M. Cabrera and A. R. Villena [28]. They

proved that

Example 1.5.6. Strongly non-degenerate (non-degenerate in their termino-

logy) alternative and strongly non-degenerate Jordan algebras are multiplica-

tive semiprime.

J. C. Cabello, M. Cabrera, G. López, W. S. Martindale III studied in [24]

the multiplicative semiprimeness of skew Lie algebras. Let A be a semiprime

(prime) algebra over a field of characteristic not 2, then

Example 1.5.7. The Lie algebra A−/Z is multiplicative semiprime (prime)

in some important cases that are covered in [24, Corollary 2.4], but not in

general (see [24, Theorem 2.1]). This contrasts with the case of [A, A]/Z[A,A],

which is always multiplicative semiprime (prime) provided A is semiprime

(prime) (see [24, Corollary 2.4]).

Furthermore, the same results hold for skew Lie algebras; if our algebra

A is endowed with an involution ∗, it turns out that

Example 1.5.8. The skew Lie algebras K/ZK and [K, K]/Z[K,K] are multi-

plicative semiprime. (See [24, Theorems 2.3 and 3.4].)

The notion of dense subalgebra was introduced by M. Cabrera in [25]

and, as we will explain below, corresponds to the concept of ε-density for the

ε-closure in the terminology of [23].
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Definitions 1.5.9. ([25]). Let B ⊆ A be an extension of algebras, which

means that B is a subalgebra of A; the annihilator of B in M(A) is defined

by Bann := {T ∈M(A) | T (b) = 0 for every b ∈ B}.

We say that it is a dense extension (or also that B is a dense subalge-

bra of A) if every nonzero element in M(A) remains nonzero when restricted

to B, i.e., Bann = 0.

The first examples of dense extensions were given in the context of mul-

tiplicative semiprime algebras.

Example 1.5.10. M. Cabrera has proved in [25] that every essential ideal of

a multiplicative semiprime algebra is dense.

F. Perera and M. Siles Molina found in [75] new and significant instances

where dense extensions naturally appear. More concretely:

Example 1.5.11. (See [75, Lemma 3.4 and Proposition 3.5].) Let A be

a semiprime associative algebra and Q a subalgebra of Qr
max(A) that con-

tains A. Then the extensions A ⊆ Q, A−/ZA ⊆ Q−/ZQ and [A, A]/Z[A,A] ⊆

[Q, Q]/Z[Q,Q] are dense.

The following elemental result asserts that, for an extension of algebras

B ⊆ A, the multiplication operators of B can be extended to multiplication

operators of A.

Proposition 1.5.12. Let B ⊆ A be an extension of algebras. Then for each

F ∈M(B) there exists T ∈M(A) such that T |B = F .

Proof. It is easy to see that the set S = {F ∈ M(B) | there exists T ∈

M(A) such that T |B = F} is a subalgebra of M(B). Moreover, it is clear that

IdA(x) = IdB(x), LAb (x) = Lb(x), and RA
b (x) = Rb(x) for all x, b ∈ B, where,

to avoid any confusion, we have denoted by LAb and RA
b the left and right
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(respectively) multiplication operators by b on A. Therefore, IdB, Lb, Rb ∈ S

for all b ∈ B, and hence S = M(B) and the proof is complete.

As a consequence we deduce that dense subalgebras are just those in which

the multiplication operators have the unique extension property (this is

condition (ii) in the corollary below).

Corollary 1.5.13. Let B ⊆ A be an extension of algebras. Then the following

assertions are equivalent:

(i) B is a dense subalgebra of A.

(ii) For each F ∈M(B) there exists a unique T ∈M(A) such that T |B = F .

Proof. Assume that B is a dense subalgebra of A. Taking into account

Proposition 1.5.12, it only remains to prove uniqueness. Assume that, for

F ∈ M(B), there exist T1, T2 ∈ M(A) satisfying T1(x) = T2(x) = F (x) for

all x ∈ B. Then T1 − T2 ∈ Bann = 0 by the density of B. Hence, T1 = T2.

To prove the converse, it is enough to note that each T ∈ Bann is an

extension of the zero operator in M(B), and consequently T = 0.

Corollary 1.5.14. Let B ⊆ A be a dense extension of algebras. Then M(B)

can be regarded as a subalgebra of M(A).

Proof. The map ϕ : M(B) → M(A) given by ϕ(F ) = F ′, where F ′ is the

unique extension of F which exists by Corollary 1.5.13, is a well-defined

monomorphism that allows us to consider M(B) as a subalgebra of M(A).

Definitions 1.5.15. ([23]). Let A be an (associative or not) algebra A.

1. For each subspace N of M(A), we define

Nann = {a ∈ A : N (a) = 0}.
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2. The ε-closure of a subspace S of A is defined by S ∧ = (Sann)ann.

It is easy to check that U ∧ is an ideal of A whenever U is so.

3. A subspace S of A is said to be ε-closed whenever S ∧ = S and ε-dense

if it satisfies that S ∧ = A.

Trivial examples of ε-closed ideals of A are 0, Ann(A) and A.

Remark 1.5.16. Note that this notion of ε-density coincides with the density

give in Definition 1.5.9. In fact, an extension of algebras B ⊆ A is dense if

and only if the annihilator of B in M(A) is equal to zero, that is, Bann = 0,

which is equivalent to say that B ∧ = A, i.e., B is a ε-dense subalgebra of A.

The behavior of the ε-closure with respect to the action of evaluation was

determined in [23, Proposition 1.8] obtaining the continuity property:

If T ∈M(A) and if S is a subspace of A, then T (S ∧) ⊆ T (S)∧.

As a consequence, we have S ∧1 S
∧
2 ⊆ (S1S2)∧ for all subspaces S1, S2 of A.

Now, we will show that, for a general algebra A, the density condition

behaves properly with respect to the actions of passing to A/Ann(A) and A2.

First, we study the annihilator of a dense subalgebra.

Proposition 1.5.17. Let B ⊆ A be a dense extension of algebras. Then

(i) Ann(B) = Ann(A) ∩B and the correspondence

x+ Ann(B) 7→ x+ Ann(A)

is a well-defined monomorphism from B/Ann(B) into A/Ann(A) that

allows us to regard B/Ann(B) as a subalgebra of A/Ann(A).

(ii) B/Ann(B) is a dense subalgebra of A/Ann(A).
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Proof. (i). It is clear that Ann(A) ∩ B ⊆ Ann(B). To prove the converse

inclusion take x ∈ Ann(B) and note that LAx (B) = RA
x (B) = 0, from which it

follows, taking into account that B is dense in A, that LAx = RA
x = 0 and, as a

result, x ∈ Ann(A). Thus, we have proved the equality Ann(B) = Ann(A)∩B,

from which it immediately follows that the correspondence x + Ann(B) 7→

x+Ann(A) is a well-defined monomorphism from B/Ann(B) into A/Ann(A).

(ii). Regarding B/Ann(B) as a subalgebra of A/Ann(A), we will show that

B/Ann(B) is dense in A/Ann(A). To this end, we will consider the quotient

map % : A→ A/Ann(A), as well as the map

%′ : M(A)→M(A/Ann(A)),

which is uniquely determined by the condition %′(T ) ◦ % = % ◦ T for all T ∈

M(A). It is straightforward to verify that %′ is an epimorphism from M(A)

onto M(A/Ann(A)) with kernel

[Ann(A) : A] := {T ∈M(A) : T (A) ⊆ Ann(A)}.

Suppose that F ∈ M(A/Ann(A)) satisfies F (B/Ann(B)) = 0 and take T ∈

M(A) such that %′(T ) = F . Then, for each b ∈ B we have

%(T (b)) = %′(T )(%(b)) = F (%(b)) = 0,

and hence T (B) ⊆ Ann(A). Using this fact, the continuity property and that

B ∧ = A (because the density of B), we obtain that

T (A) = T (B ∧) ⊆ T (B)∧ ⊆ Ann(A)∧ = Ann(A).

Therefore, T ∈ [Ann(A) : A] and so F = %′(T ) = 0, which concludes the

proof.

The following result was proved for Lie algebras in [75, Lemma 3.3].
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Proposition 1.5.18. Let A be an algebra. If B is a dense subalgebra of A,

then B2 is a dense subalgebra of A2.

Proof. Let B be a dense subalgebra of A. Assume that F ∈ M(A2) satisfies

F (B2) = 0, and choose T ∈ M(A) such that T (x) = F (x) for all x ∈ A2,

which is possible by Proposition 1.5.12. From the continuity property and

taking into account the density of B in A we deduce that

T (A2) = T ((B ∧)2) ⊆ T ((B2)∧) ⊆ T (B2)∧ = F (B2)∧ = 0.

Therefore T (A2) = 0 and hence F = 0, as desired.

As we have said, our aim here is to extend [75, Theorem 2.12 and Propo-

sition 3.5] to skew Lie algebras. We are now in a position to show it.

Theorem 1.5.19. Let A be a semiprime associative algebra with an involu-

tion ∗ and let Q be a ∗-subalgebra of Qs(A) containing A. Then the following

conditions are satisfied:

(i) KA is a dense subalgebra of KQ, and [KA, KA] is a dense subalgebra of

[KQ, KQ].

(ii) KA/ZKA is a dense subalgebra of KQ/ZKQ, and [KA, KA]/Z[KA,KA] is a

dense subalgebra of [KQ, KQ]/Z[KQ,KQ].

(iii) KQ/ZKQ is an algebra of quotients of KA/ZKA, and [KQ, KQ]/Z[KQ,KQ]

is an algebra of quotients of [KA, KA]/Z[KA,KA].

Proof. Let A be a semiprime associative algebra with an involution ∗ and let

Q be a ∗-subalgebra of Qs(A) containing A.

(i). Assume that F ∈ M(KQ) satisfies F (KA) = 0. Regarding KA as a

subalgebra of Qs(A)−, and keeping in mind Proposition 1.5.12, we can choose

T ∈ M(Qs(A)−) such that T (q) = F (q) for all q ∈ KQ. Let n ∈ N and
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pi, qi ∈ Qs(A) (i = 1, . . . , n) be such that T (q) =
∑n

i=1 piqqi for all q ∈ Qs(A).

Since T (a− a∗) = F (a− a∗) = 0 for each a ∈ A, it follows that

ψ(x,x∗) =
n∑
i=1

pixqi −
n∑
i=1

pix
∗qi

is a ∗-GPI on A. By [15, Theorem 6.4.7] ψ also is a ∗-GPI on Qs(A), hence

T |KQs(A)
= 0, and so F = 0. Thus, we have proved that KA is a dense

subalgebra of KQ. Now, by Proposition 1.5.18 (or, alternatively, [75, Lemma

3.3]), [KA, KA] is a dense subalgebra of [KQ, KQ].

(ii). Since KA is a dense subalgebra of KQ, applying Proposition 1.5.17

we obtain that

ZKA = ZKQ ∩KA,

and KA/ZKA can be regarded as a dense subalgebra of KQ/ZKQ . Analogously,

since [KA, KA] is a dense subalgebra of [KQ, KQ], again by Proposition 1.5.17

we have that

Z[KA,KA] = Z[KQ,KQ] ∩ [KA, KA],

and [KA, KA]/Z[KA,KA] can be also regarded as a dense subalgebra of the

algebra [KQ, KQ]/Z[KQ,KQ].

(iii). First we note that, for an essential ∗-ideal U of A, the inclusion

map from U into A can be extended to an ∗-isomorphism from Qs(U) onto

Qs(A) (see [66, Theorem 4.1]). Hence, keeping in mind conclusion (ii) in the

statement, KU/ZKU can be seen as a dense subalgebra of KQ/ZKQ , and also

as a dense ideal of KA/ZKA . From this it follows that

AnnKA/ZKA (KU/ZKU ) ⊆ Ann(KA/ZKA) (1.2)

and

AnnKQ/ZKQ (KU/ZKU ) ⊆ Ann(KQ/ZKQ). (1.3)
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Since A is semiprime, and so is Q (by [15, Lemma 2.1.9 (i)]), it follows from

[64, Theorem 6.1] that KA/ZKA and KQ/ZKQ are semiprime Lie algebras. In

particular,

Ann(KA/ZKA) = 0 and Ann(KQ/ZKQ) = 0.

Thus, (1.2) and (1.3) allow us to conclude that

AnnKA/ZKA (KU/ZKU ) = 0 and AnnKQ/ZKQ (KU/ZKU ) = 0 (1.4)

for any essential ∗-ideal U of A.

Now, let q ∈ KQ\ZKQ and choose an essential ∗-ideal U of A such that

qU + Uq ⊆ A. Then 0 6= [q + ZKQ , KU/ZKU ] ⊆ KA/ZKA by (1.4). Thus

KQ/ZKQ is an algebra of quotients of KA/ZKA .

To verify that [KQ, KQ]/Z[KQ,KQ] is an algebra of quotients of the Lie

algebra [KA, KA]/Z[KA,KA], we will consider the map ϕ = % ◦ ι, where ι is

the inclusion map from [KA, KA] into KA and % is the quotient map from

KA onto KA/ZKA . It is clear that ϕ is a homomorphism from [KA, KA] into

KA/ZKA such that ϕ([KA, KA]) = [KA/ZKA , KA/ZKA ]. Since, by [11, Lemma

2.14], Z[KA,KA] = [KA, KA] ∩ ZKA , it follows that ker (ϕ) = Z[KA,KA]. Thus,

we have an isomorphism

[KA/ZKA , KA/ZKA ] ∼= [KA, KA]/Z[KA,KA]. (1.5)

Analogously, we also have that

[KQ/ZKQ , KQ/ZKQ ] ∼= [KQ, KQ]/Z[KQ,KQ]. (1.6)

Taking into account that KA/ZKA is a semiprime Lie algebra and KQ/ZKQ

is an algebra of quotients of KA/ZKA , it follows from [75, Lemma 2.13] that

[KQ/ZKQ , KQ/ZKQ ] is an algebra of quotients of [KA/ZKA , KA/ZKA ]. The iso-

morphisms (1.5) and (1.6) allow us to conclude now that [KQ, KQ]/Z[KQ,KQ]

is an algebra of quotients of [KA, KA]/Z[KA,KA].
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We close this section by showing that [75, Theorem 2.12 and Proposition

3.5] can be obtained as a corollary of the theorem above.

Corollary 1.5.20. Let A be a semiprime associative algebra and Q be a

subalgebra of Qs(A) containing A. Then

(i) A− is a dense subalgebra of Q−, and [A,A] is a dense subalgebra of

[Q, Q].

(ii) A−/ZA is a dense subalgebra of Q−/ZQ, and [A, A]/Z[A,A] is a dense

subalgebra of [Q, Q]/Z[Q,Q].

(iii) Q−/ZQ is an algebra of quotients of A−/ZA, and [Q, Q]/Z[Q,Q] is an

algebra of quotients of [A, A]/Z[A,A].

Proof. Consider the semiprime associative algebra A⊕A0 endowed with the

exchange involution. It is easy to see that the inclusion map from A⊕A0 into

Qs(A⊕ A0) can be extended to a ∗-isomorphism from Qs(A)⊕Qs(A)0 onto

Qs(A⊕A0). In this way Q⊕Q0 can be seen as a ∗-subalgebra of Qs(A⊕A0)

containing A ⊕ A0. Keeping in mind that A− is isomorphic to KA⊕A0 and

Q− is isomorphic to KQ⊕Q0 , the conclusions follow directly from Theorem

1.5.19.

1.6 Graded Lie algebras of quotients for skew

graded Lie algebras

Let A be a G-graded associative algebra with an involution ∗ satisfying that

A∗σ = Aσ, for all σ ∈ G. Then the Lie algebras KA and KA/ZKA are G-graded

Lie algebras too.

Theorem 1.6.1. Let A be a semiprime G-graded associative algebra with an

involution ∗ such that A∗σ = Aσ, for every σ ∈ G, and let Q = ⊕σ∈GQσ be
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a G-graded overalgebra of A contained in Qs(A) and satisfying Q∗σ = Qσ for

every σ ∈ G. Then:

(i) KQ/ZKQ is a graded algebra of quotients of KA/ZKA.

(ii) [KQ, KQ]/Z[KQ,KQ] is a graded algebra of quotients of [KA, KA]/Z[KA,KA].

Proof. By Theorem 1.5.19 (iii), KQ/ZKQ and [KQ, KQ]/Z[KQ,KQ] are alge-

bras of quotients of KA/ZKA and [KA, KA]/Z[KA,KA], respectively. Since A is

semiprime, and so is Q (by [15, Lemma 2.1.9 (i)]) which imply that KA/ZKA

and KQ/ZKQ are semiprime Lie algebras. In particular, they are graded

semiprime, hence Proposition 1.4.26 applies to get the result.

As a consequence we have:

Corollary 1.6.2. Let A be a semiprime graded associative algebra and Q be

a graded subalgebra of Qs(A) containing A. Then

(i) Q−/ZQ is a graded algebra of quotients of A−/ZA.

(ii) [Q,Q]/Z[Q,Q] is a graded algebra of quotients of [A,A]/Z[A,A].

Proof. It is enough to note that for an arbitrary graded associative algebra A,

the graded Lie algebra A− is graded isomorphic to KA⊕A0 and hence A−/ZA is

graded isomorphic to KA⊕A0/ZKA⊕A0 , where A0 denotes the opposite algebra

of A, and A ⊕ A0 is endowed with the exchange involution and apply the

theorem above.





Chapter 2

Maximal and maximal graded
algebras of quotients of Lie
algebras

Following the original pattern of Y. Utumi and adapting some ideas coming

from the Jordan setting [65], M. Siles Molina introduced in [79] the notion of

the maximal algebra of quotients Qm(L) of a semiprime Lie algebra L. The

reason for this name is that every algebra of quotients of L can be embedded

into Qm(L).

Inspired by M. Siles Molina’s construction, our first target in this second

chapter will be to build a maximal algebra of quotients for every graded

semiprime Lie algebra. Secondly, while the preceding chapter mostly consi-

dered abstract properties of algebras of quotients, in this one our target will

be to compute Qm(L) for some Lie algebras. Specifically, we are interested in

Lie algebras of the form L = A−/Z, where A− is the Lie algebra associated

to a prime associative algebra A with center Z, and in Lie algebras of the

form L = K/ZK , where K is the Lie algebra of skew elements of a prime

associative algebra with involution and ZK its center.

43
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2.1 The maximal algebra of quotients of a

semiprime Lie algebra

Definitions 2.1.1. Let B be a subalgebra of an algebra A. A linear map

δ : B → A is called a partial derivation if

δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ B. Let us denote by PDer(B, A) the set of all partial derivations

from B to A.

Any element x of A determines a map adx:A→ A defined by ad x(y) =

[x, y] which is a derivation of A. For every Lie ideal U of A, the restriction of

the map ad :A→ Der(A) to U ,

U → Der(A)
y 7→ ad y

defines a Lie algebra homomorphism with kernel Ann(U), which allows us to

identify U/Ann(U) with the subalgebra ad (U) of Der(A). For any y ∈ U and

δ ∈ Der(A), we have

[δ, ad y] = ad δ(y),

hence ad (U) is an ideal of Der(A) whenever δ(U) ⊆ U for every δ ∈ Der(A).

We denote by Inn(A) the ideal ad (A) of Der(A) and we call the elements of

Inn(A) inner derivations of A. Note that A−/Z ∼= Inn(A).

Partial derivations are defined analogously in the Lie algebra context.

Definitions 2.1.2. Let M be a subalgebra of a Lie algebra L; a linear map

δ : M → L is called a partial derivation if

δ([x, y]) = [δ(x), y] + [x, δ(y)]

for all x, y ∈ M . By PDer(M, L) we will denote the set of all partial deriva-

tions from M to L and by Der(L) we will mean the Lie algebra of all deriva-

tions from L into L.
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Remark 2.1.3. Incidentally, if δ is a derivation of an associative algebra

A, then it is also a derivation of the Lie algebra A−. The converse is not

true in general: for example, every linear map from A into the center of A

that vanishes on [A,A] is a derivation of A−. We call derivations of A− Lie

derivations of A.

We also have to define the concept of degree of a prime algebra A. The

reason for this is that algebras of certain low degrees must be excluded in

the results on Lie derivations [13, 14] that we are going to apply. In the

case of having an involution, we shall need to use results that appear in

[16, 36, 59, 60], which also require restrictions on the degree which can not

be eliminated.

Definition 2.1.4. Let A be a prime algebra. For every x ∈ A we define

deg(x), the degree of x, as the degree of algebraicity of x over the extended

centroid C, provided x is algebraic over C. If x is not algebraic over C, then

we write deg(x) =∞. The degree of A is defined as,

deg(A) = sup{deg(x) | x ∈ A}.

Remark 2.1.5. Note that deg(A) < ∞ if and only if A is a PI algebra.

Furthermore, it is known that deg(A) = n <∞ if and only if A satisfies the

standard polynomial identity of degree 2n, but does not satisfy any polyno-

mial identity of degree < 2n, and this is further equivalent to the condition

that A can be embedded into the matrix algebra Mn(F ) for some field F (say,

one can take F as the algebraic closure of C), but cannot be embedded into

Mn−1(F ) for any commutative algebra F .

We have now all the ingredients to explain the construction of the maximal

algebra of quotients of a Lie algebra L. We have to confine ourselves to the
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case where L is semiprime. The definition is based on partial derivations

defined on essential ideals of L.

Construction 2.1.6. (See [79, Lemma 3.2 and Theorem 3.4].) Let L be a

semiprime Lie algebra. We say that two pairs (δ, I), (µ, J), where I, J are

essential ideals of L and δ : I → L, µ : J → L are partial derivations, are

equivalent if δ and µ agree on some essential ideal contained in I ∩ J .

This is an equivalence relation. Denote by δI the equivalence class deter-

mined by (δ, I). The set of all such classes becomes a Lie algebra if we define

addition, scalar multiplication, and bracket as follows:

δI + µJ = (δ + µ)I∩J , α(δI) = (αδ)I , [δI , µJ ] = (δµ− µδ)(I∩J)2 .

This Lie algebra is called the maximal algebra of quotients of L, and

will be denoted by Qm(L). One may identify L with a subalgebra of Qm(L)

via the embedding x 7→ adxL. The maximality of Qm(L) is shown in the next

result.

Proposition 2.1.7. (See [79, Proposition 3.6].) Let L be a semiprime Lie

algebra. Then Qm(L) is semiprime and an algebra of quotients of L. Moreover,

Qm(L) is maximal among the algebras of quotients of L, in the sense that if

Q is an algebra of quotients of L, then there exists a Lie monomorphism

ψ : Q→ Qm(L) which is the identity on L. In particular, the map

ψ : Q → Qm(L)
x 7→ adx(L: x)

is a Lie monomorphism which is the identity when restricted to L.

The axiomatic characterization of the symmetric Martindale rings of quo-

tients (see Proposition 1.2.18) inspired to M. Siles Molina to give the following

description of the maximal algebra of quotients of a semiprime Lie algebra.
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Theorem 2.1.8. (See [79, Theorem 3.8].) Let L be a semiprime Lie algebra

and consider an overalgebra Q of L. Then Q is isomorphic to Qm(L), under an

isomorphism which is the identity on L if and only if Q satisfies the following

properties:

(i) for every q ∈ Q there exists an essential ideal I of L such that [I, q] ⊆ L,

(ii) [q, I] 6= 0 for every nonzero q ∈ Q and every essential ideal I of L, and

(iii) for every essential ideal I of L and any derivation δ : I → L there exists

q ∈ Q such that δ(x) = [q, x] for all x ∈ I.

2.2 The maximal graded algebra of quotients

of a graded semiprime Lie algebra

Taking into account that, for a semiprime Lie algebra L, the elements of

Qm(L), the maximal algebra of quotients of L, arise from partial derivations

defined on essential ideals, it seems natural to consider instead graded partial

derivations and graded essential ideals. With this idea in mind, we proceed

to introduce a new graded algebra. First, we recall and introduce some defi-

nitions.

Definitions 2.2.1. (See Definitions 2.1.2.) Let L be a Lie algebra graded

by an abelian group G, and I a graded ideal of L. We say that a partial

derivation δ : I → L has degree σ ∈ G if it satisfies δ(Iτ ) ⊆ Lτσ for every

τ ∈ G. In this case, δ is called a graded partial derivation of degree σ.

Denote by PDergr(I, L)σ the set of all graded partial derivations of degree

σ. Clearly, it becomes a Φ-module by defining operations in the natural way

and, consequently,

PDergr(I, L) := ⊕σ∈GPDergr(I, L)σ
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is also a Φ-module.

Example 2.2.2. If L is a G-graded Lie algebra and x ∈ L is an homogeneous

element of degree σ, then ad x is a partial derivation of degree σ. In general,

for any x in the graded Lie algebra L,

adx =
∑
σ∈G

adxσ ∈ ⊕σ∈GPDergr(I, L)σ = PDergr(I, L).

In order to ease the notation, denote by Igr−e(L) the set of all graded

essential ideals of a graded Lie algebra L.

Construction 2.2.3. Let L = ⊕σ∈GLσ be a G-graded semiprime Lie algebra

over Φ. Consider the set

Dgr := {(δ, I) | I ∈ Igr−e(L), δ ∈ PDergr(I, L)},

and define on Dgr the following relation: (δ, I) ≡ (µ, J) if and only if there

exists K ∈ Igr−e(L) such that K ⊆ I ∩ J and δ |K= µ |K . It is easy to see

that ≡ is an equivalence relation.

Denote by Qgr−m(L) the quotient set Dgr/ ≡ and by δI the equivalence

class of (δ, I) in Qgr−m(L), for δ ∈ PDergr(I, L) and I ∈ Igr−e(L). Then

Qgr−m(L), with the following operations:

δI + µJ = (δ + µ)I∩J

α(δI) = (αδ)I

[δI , µJ ] = (δµ− µδ)(I∩J)2

(for any δI , µJ ∈ Qgr−m(L) = ⊕σ∈GQσ and α ∈ Φ) becomes a G-graded Lie

algebra over Φ, where

Qσ := {(δσ)I | δσ ∈ PDergr(I, L)σ, I ∈ Igr−e(L)}.
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Following the proof of [79, Theorem 3.4] one can see that Qgr−m(L) is a Lie

algebra. At this point, we remark that given a finite family

{(δσ1)I1 , . . . , (δσn)In}

of elements of Qgr−m(L), it is always possible to find a graded ideal I of L

satisfying that

(δσi)Ii = (δσi)I , for every i = 1, . . . , n.

Take, for example, I = ∩ni=1Ii. In the sequel, we will use this fact without an

explicit mention.

Now it is easy to see that Qgr−m(L) is indeed graded:

Consider δI in Qgr−m(L) and write δ =
∑

σ∈G δσ, with δσ ∈ PDergr(I, L)σ.

As Supp(δ) is finite, it is possible to write δI =
∑

σ(δσ)I with (δσ)I ∈ Qσ; this

shows that δI ∈
∑

σ∈GQσ and consequently that Qgr−m(L) =
∑

σ∈GQσ.

We claim that this sum is direct: suppose on the contrary that

Qτ ∩ (
∑
σ 6=τ

Qσ) 6= 0 for some τ ∈ G,

and take 0 6=
∑

σ 6=τ (δσ)I ∈ Qτ ; in particular,
∑

σ 6=τ δσ 6= 0 on I and therefore

it is nonzero on Iν for some ν ∈ G. On the other hand, δσ(Iν) ⊆ Lσν and so∑
σ 6=τ δσ(Iν) ⊆ (

∑
σ 6=τ Lσν) ∩ Lτν = 0, a contradiction.

The following result shows how good is the graded Lie algebra that we

have just built. Let us point out here that it is a graded algebra of quotients

and cannot be enlarged.

Theorem 2.2.4. Let L = ⊕σ∈GLσ be a G-graded semiprime Lie algebra.

Then:

(i) Qgr−m(L) contains L as a graded subalgebra, via the following graded

Lie monomorphism:

ϕ : L → Qgr−m(L)
x 7→ (adx)L
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(ii) Qgr−m(L) is graded semiprime and a graded algebra of quotients of L.

(iii) Qgr−m(L) is maximal among the graded algebras of quotients of L, in

the sense that if S is a graded algebra of quotients of L, then there exists

a graded Lie monomorphism ψ : S → Qgr−m(L) which is the identity on

L. In particular, the map

ψ : S → Qgr−m(L)
x 7→

∑
σ∈G(adxσ)(L: xσ)

where x =
∑

σ∈G xσ, is a graded Lie monomorphism which is the identity

when restricted to L.

Proof. (i). The map ϕ is well-defined: for x in L we have adx =
∑

σ∈G adxσ ∈

PDergr(I, L), which implies (adx)L =
∑

σ∈G(adxσ)L ∈ Qgr−m(L).

The more “difficult” point in proving that ϕ is a graded Lie homomor-

phism is to see that ϕ([x, y]) = [ϕ(x), ϕ(y)] for every x, y ∈ L. So, consider

x =
∑

σ xσ and y =
∑

σ yσ in L. Note that the homogeneous components of

[x, y] are [x, y]σ =
∑

τ [xτ , yτ−1σ], with σ ∈ G. Then

ϕ([x, y]) =
∑
σ

(ad [x, y]σ)L =
∑
σ

(ad
∑
τ

[xτ , yτ−1σ])L.

and ϕ([x, y])σ = (ad
∑

τ [xτ , yτ−1σ])L. On the other hand,

[ϕ(x), ϕ(y)] =

[∑
σ

(adxσ)L,
∑
σ

(ad yσ)L

]
implies

[ϕ(x), ϕ(y)]σ =
∑
τ

[(adxτ )L, (ad yτ−1σ)L] =
∑
τ

(ad [xτ , yτ−1σ])L = ϕ([x, y])σ,

for every σ ∈ G and hence ϕ([x, y]) = [ϕ(x), ϕ(y)] as desired.

Injectivity of ϕ: suppose ϕ(x) = (adx)L = 0 for some x ∈ L. This means

adx(I) = 0 for some I ∈ Igr−e(L), that is, x ∈ AnnL(I) = 0 (apply Lemma

1.4.10 (iii)).
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Identifying L with its image Lϕ via the graded Lie monomorphism ϕ, we

can regard L as a graded subalgebra of Qgr−m(L).

In what follows, for any X ⊆ L, write Xϕ to denote the image of X

inside Qgr−m(L) via the graded Lie monomorphism ϕ above. Let us stop, for

a moment, the proof of the theorem in order to obtain a useful tool for our

computations.

Remark 2.2.5. For every δI ∈ Qgr−m(L) and (adx)L ∈ Iϕ, with x ∈ I, we

have:

[δI , (adx)L] = (ad δx)L ∈ Lϕ.

In fact, for any y ∈ I, [δ, adx]y = δ([x, y]) − [x, δy] = [δx, y] + [x, δy] −

[x, δy] = [δx, y] = (ad δx)y and so [δI , (adx)L] = (ad δx)L ∈ Lϕ.

Keeping this remark in mind, let us continue with the proof.

(ii). Show first that Qgr−m(L) is a graded algebra of quotients of L. Con-

sider 0 6= (δσ)I ∈ Qσ and (µτ )I ∈ Qτ . Choose yα ∈ Iα satisfying δσ(yα) 6= 0

(it is possible because I is a graded ideal). Then (ad yα)L ∈ Lα satisfies:

[(δσ)I , (ad yα)L] = (by Remark 2.2.5) (ad δσ(yα))L 6= 0 :

Otherwise, 0 = ad δσ(yα)(J) = [δσ(yα), J ] for some J ∈ Igr−e(L), that is,

δσ(yα) ∈ AnnL(J) = 0 (by Lemma 1.4.10 (iii)), a contradiction.

Moreover, given (adx1)L ∈ Lν1 , . . . , (adxn)L ∈ Lνn (for n ∈ N and νi ∈ G)

we have

[(ad yα)L, ad ((adx1)L) . . . ad ((adxn)L)((µτ )I)] ∈ Lαν1...νnτ .

Indeed, as

ad ((adx1)L) . . . (ad (adxn)L)((µτ )I) = ad (adx1)L . . . ad (adxn−1)L

[adxn, µτ ]I = [adx1, [adx2, . . . [adxn, µτ ] . . .]I ∈ Qν1ν2...νnτ ,
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if we define γ := [adx1, [adx2, . . . [adxn, µτ ] . . .], then

[ad (yα)L, ad ((adx1)L) . . . ad ((adxn)L)((µτ )I)] = (by Remark(2.2.5))

[(ad yα)L, γI ] ∈ Lαν1ν2...νnτ .

Note that the result follows now immediately. The graded semiprimeness of

Qgr−m(L) is obtained from Proposition 1.4.18 (ii).

(iii). Suppose that S is a graded Lie algebra of quotients of L and consider

the map ψ given in the statement. It is well-defined by Lemma 1.4.20 (ii). The

more “difficult” point in proving that ψ is a graded Lie homomorphism is to

show that ψ([x, y]) = [ψ(x), ψ(y)] for every x, y ∈ S. Take x =
∑

σ xσ, y =∑
σ yσ ∈ S. Note that the homogeneous components of [x, y] are [x, y]σ =∑
τ [xτ , yτ−1σ], with σ ∈ G. On the other hand, as Supp([x, y]) is a finite set,

denote its elements by σ1, σ2, . . . , σn, then I := ∩ni=1(L : [x, y]σi) is a graded

essential ideal of L. Then:

ψ([x, y]) =
n∑
i=1

(ad [x, y]σi)I =
n∑
i=1

(ad
∑
τ

[xτ , yτ−1σi ])I

=
n∑
i=1

(∑
τ

[adxτ , ad yτ−1σi ]

)
I

=
n∑
i=1

∑
τ

[(adxτ )I , (ad yτ−1σi)I ]

= [ψ(x), ψ(y)]

To prove the injectivity, take x ∈ S such that ψ(x) = 0. Then

(adxσ)(L: xσ) = 0 for every σ ∈ G. This means that for every σ ∈ G there

exists a graded essential ideal Iσ of L, contained in (L : xσ), such that

(adxσ)(Iσ) = 0. Hence xσ ∈ AnnL(Iσ) = 0 (by Lemma 1.4.10 (iii)) for every

σ ∈ G, whence x = 0 as desired.

Definition 2.2.6. For a graded semiprime Lie algebra L, the graded algebra

Qgr−m(L) constructed in (2.2.3) will be called the maximal graded algebra

of quotients of L.
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Once we have shown the existence of a maximal graded algebra of quo-

tients for any graded semiprime Lie algebra, we proceed to its characteriza-

tion. A consequence of the result that follows is the uniqueness of the maximal

graded algebra of quotients (up to graded isomorphism).

Theorem 2.2.7. Let L be a graded semiprime Lie algebra and consider a

graded overalgebra S of L. Then S is graded isomorphic to Qgr−m(L), under

an isomorphism which is the identity on L, if and only if S satisfies the

following properties:

(i) For any sσ ∈ Sσ (σ ∈ G) there exists I ∈ Igr−e(L) such that [I, sσ] ⊆ L.

(ii) For sσ ∈ Sσ (σ ∈ G) and I ∈ Igr−e(L), [I, sσ] = 0 implies sσ = 0.

(iii) For I ∈ Igr−e(L) and δ ∈ PDergr(I, L)σ (σ ∈ G) there exists sσ ∈ Sσ

such that δ(x) = [sσ, x] for every x ∈ I.

Proof. Define

ψ : S → Qgr−m(L)
s 7→

∑
σ∈G(ad sσ)I

where s =
∑

σ∈G sσ and I is a graded essential ideal of L satisfying that

[I, sσ] ⊆ L for all σ ∈ G.

The map ψ is well-defined: take s ∈ S and denote by σ1, σ2, . . . , σn the

elements of Supp(s). By (i) it is possible to find, for each i = 1, . . . , n, Ii ∈

Igr−e(L) such that [Ii, sσi ] ⊆ L. Then I = ∩ni=1Ii ∈ Igr−e(L) satisfies [I, sσi ] ⊆

L for all i = 1, . . . , n.

Moreover, ψ is a graded monomorphism: given s, t ∈ S, apply again (i)

and a reasoning similar to the described in the paragraph above to find

I, J, K ∈ Igr−e(L) such that [I, sσ] ⊆ L, [J, tσ] ⊆ L and [K, [s, t]σ] ⊆ L
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for all σ ∈ G, where s =
∑

σ sσ, t =
∑

σ tσ and [s, t] =
∑

σ[s, t]σ are the de-

compositions of s, t, [s, t], respectively, into their homogeneous components.

Take U = I ∩ J ∩K ∈ Igr−e(L). Then U2 ∈ Igr−e(L) and we have:

ψ([s, t]) =
∑
σ

(ad [s, t]σ)U2 =
∑
σ

(ad
∑
τ

[sτ , tτ−1σ])U2 .

This implies

ψ([s, t])σ = (ad
∑
τ

[sτ , tτ−1σ])U2 .

On the other hand, as

[ψ(s), ψ(t)] = [
∑
σ

(ad sσ)U2 ,
∑
σ

(ad tσ)U2 ]

we have

[ψ(s), ψ(t)]σ =
∑
τ

[(ad sτ )U2 , (ad tτ−1σ)U2 ] =
∑
τ

(ad [sτ , tτ−1σ])U2

= (
∑
τ

ad [sτ , tτ−1σ])U2 ,

which shows ψ([s, t])σ = [ψ(s), ψ(t)]σ for all σ ∈ G, hence ψ([s, t]) =

[ψ(s), ψ(t)].

Injectivity of ψ: if ψ(s) = 0 for some s ∈ S, then
∑

σ(ad sσ)I = 0, where

I ∈ Igr−e(L) satisfies [I, sσ] ⊆ L for all σ ∈ G, hence (ad sσ)I = 0. This means

0 = (ad sσ)(J) = [sσ, J ] for some graded essential ideal J (of L) contained in

I and every σ ∈ G. By (ii), sσ = 0 for all σ ∈ G, that is, s = 0.

Surjectivity of ψ: given
∑

σ(δσ)I ∈ Qgr−m(L), by (iii) there exists sσ ∈ Sσ

such that δσ and ad sσ coincide on the graded essential ideal I of L, hence

∑
σ

(δσ)I =
∑
σ

(ad sσ)I = ψ(
∑
σ

sσ).

Finally, to see that ψ is the identity on L, identify L with Lϕ, where ϕ is

the map defined in Theorem 2.2.4.
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Conversely, we will show that Qgr−m(L) satisfies the three conditions in

the statement.

(i). For qσ ∈ Qσ we have (L : qσ) ∈ Igr−e(L), by Theorem 2.2.4 and

Lemma 1.4.20 (ii), and by definition [(L : qσ), qσ] ⊆ L.

(ii). Consider qσ ∈ Qσ and I ∈ Igr−e(L) such that [I, qσ] = 0. Then

qσ ∈ AnnQgr−m(L)(I) = 0 by Theorem 2.2.4 and Lemma 1.4.21.

(iii). Given Iϕ ∈ Igr−e(Lϕ) and δ̄ ∈ PDergr(I
ϕ, Lϕ)σ, we have to find

qσ ∈ Qσ such that δ̄ = ad qσ on Iϕ. Consider δ : I → L defined by δ(x) =

ϕ−1(δ̄((adx)L)). Then qσ := δI ∈ Qσ satisfies [qσ, x
ϕ] = [δI , (adx)L] (by

Remark 2.2.5) (ad δx)L = (δx)ϕ = δ̄((adx)L) = δ̄(xϕ).

Remark 2.2.8. Conditions (i) and (ii) in the theorem above are equivalent

to the following one:

(ii)′ S is a graded algebra of quotients of L.

Proof. If S is a graded algebra of quotients of L, condition (i) is satisfied by

Proposition 1.4.22. On the other hand, (ii) follows immediately by the graded

semiprimeness of L and Lemma 1.4.21.

Conversely, assume that S satisfies conditions (i) and (ii). We are going to

show that S is graded ideally absorbed into L, in which case (ii)′ will follow

by Proposition 1.4.22. Consider 0 6= sσ ∈ Sσ; by (i) there exists I ∈ Igr−e(L)

such that [I, sσ] ⊆ L and [I, sσ] 6= 0 by (ii). Note that since L is graded

semiprime, Lemma 1.4.10 (iii) implies AnnL(I) = 0.

Let us finish the section by showing that the notion of maximal graded

algebra of quotients is a good generalization of that of maximal algebra of

quotients, as the maximal graded algebra of quotients and the maximal al-

gebra of quotients of a semiprime Lie algebra coincide when considering the

trivial grading over such an algebra.
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Lemma 2.2.9. Let L be a semiprime Lie algebra, then the algebras Qgr−m(L)

and Qm(L) are isomorphic, considering L as a G-graded algebra with the

trivial G-grading.

Proof. Note that in this particular case, every ideal I of L is a graded ideal.

It easily implies (Qgr−m(L))e = Qm(L). On the other hand, given σ ∈ G with

σ 6= e and δ ∈ PDergr(I, L)σ then

δ(I) = δ(Ie) ⊆ Leσ = Lσ = 0,

that is, δ = 0 and hence (Qgr−m(L))σ = 0 for every e 6= σ ∈ G. Taking

into account these considerations it is now clear that the algebras above are

isomorphic.

2.3 The maximal Lie algebra of quotients of

A−/Z

Our aim in this section is to give a description of Qm(A−/Z), where A is a

(semi)prime associative algebra. Since the elements of the maximal algebra of

quotients of a Lie algebra arise from partial derivations defined on essential

Lie ideals and our Lie algebra A−/Z comes from an associative algebra A, it

seems natural to consider instead associative derivations that are defined on

essential associative ideals. With this idea in mind we proceed to introduce a

new Lie algebra.

Construction 2.3.1. Let A be a semiprime associative algebra over Φ. Con-

sider the set

D := {(δ, I) | I ∈ Ie(A), δ ∈ PDer(I, A)},

and define on D the following relation: (δ, I) ≡ (µ, J) if and only if δ and µ

agree on some essential ideal of A contained in I ∩ J . One can easily show

that ≡ is an equivalence relation.
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Denote by Derm(A) the quotient set D/ ≡ and by δI the equivalence class

of (δ, I) in Derm(A), for δ ∈ PDer(I, A) and I ∈ Ie(A). Then Derm(A), with

the following operations:

δI + µJ = (δ + µ)I∩J

α(δI) = (αδ)I

[δI , µJ ] = (δµ− µδ)(I∩J)2

for any δI , µJ ∈ Derm(A) and α ∈ Φ becomes a Lie algebra over Φ.

The only not entirely obvious part in proving that Derm(A) is a Lie

algebra is to show that the Lie bracket is well defined on Derm(A). Let

δI , µJ ∈ Derm(A); for every u, v ∈ I ∩ J we have [δ, µ](uv) = δµ(uv) −

µδ(uv) = δ((µu)v + u(µv)) − µ((δu)v + u(δv)), which makes sense because

(µu)v, u(µv), (δu)v, u(δv) ∈ I ∩ J . Since δ and µ are partial derivations,

[δ, µ] : (I ∩ J)2 → A is a partial derivation too.

It turns out that (under a very mild technical assumption) the algebra we

have just built coincides with Qm(A−/Z). Let us start by showing that this

Lie algebra is sandwiched between Der(A) and Der(Qs(A)). First, we need a

lemma.

Lemma 2.3.2. Let A be a semiprime algebra and let Q be a subalgebra of

Qs(A) that contains A. If δ : Q → Qs(A) is a derivation such that δ|A = 0,

then δ = 0.

Proof. Suppose on the contrary that δ(q) 6= 0 for some q ∈ Q. Since Qs(A)

is a left quotient algebra of A, there exists a ∈ A satisfying aq ∈ A and

aδ(q) 6= 0. By the hypothesis, 0 = δ(aq) = δ(a)q + aδ(q) = aδ(q), which is a

contradiction.
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Lemma 2.3.3. If A is a prime algebra, then

Der(A) ⊆ Derm(A) ⊆ Der(Qs(A)).

Proof. Define

φ : Der(A) → Derm(A)
δ 7→ δA

It is straightforward to verify that φ is a well-defined Lie algebra homo-

morphism. To prove the injectivity, take δ ∈ Der(A) such that δA = 0; this

means that δ(I) = 0 for some nonzero ideal I of A. Since Qs(I) = Qs(A) (see

[15, Proposition 2.1.10]) applying Lemma 2.3.2 to I ⊆ A ⊆ Qs(I) we obtain

that δ = 0, as desired.

Let δI be in Derm(A), with I a nonzero ideal of A and δ : I → A a

derivation. Apply Proposition 1.2.22 to extend δ uniquely to a derivation δ′

of Qs(A). Consider

ϕ : Derm(A) → Der(Qs(A))
δI 7→ δ′

If δI = µJ , then there exists a nonzero ideal U of A contained in I∩J such

that δ|U = µ|U . Extend δ and µ to derivations δ′ and µ′, respectively, of Qs(A).

Since δ′|U = δ|U = µ|U = µ′|U and Qs(A) = Qs(U) (see [15, Proposition

2.1.10]), by Lemma 2.3.2 applied to U ⊆ A ⊆ Qs(U) we obtain that δ′|A =

µ′|A, and again by Lemma 2.3.2 it follows that δ′ = µ′, which proves that ϕ

is well-defined. Finally, note that ϕ is a Lie algebra monomorphism.

We come back to the announced problem, namely, whether one can say

that Derm(A) and Qm(A−/Z) are isomorphic. Let us denote by 〈X〉 the sub-

algebra of an algebra A generated by a set X.

Lemma 2.3.4. Let U be a Lie ideal of a semiprime algebra A such that U is

an essential ideal of A−/Z. Then 〈U〉 contains an essential ideal of A.
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Proof. First we show that 〈U〉 contains a nonzero ideal of A. It is clear that

[〈U〉, U ] ⊆ 〈U〉. Moreover, [〈U〉, U ] 6= 0; otherwise [x, U ] = 0 for every x ∈ U .

This would imply, by [42, Sublemma, p. 5], x ∈ Z and, consequently, U ⊆ Z,

a contradiction. Therefore [43, Theorem 3] yields our claim.

Hence, let I be a nonzero ideal contained in 〈U〉. Since the sum of all

ideals contained in 〈U〉 is again an ideal contained in U , there is no loss of

generality in assuming that I is the largest ideal contained in 〈U〉.

We will show that I is an essential ideal of A. First, we see that Ann(I)∩

U ⊆ Z. Otherwise, by [43, Theorem 3], there exists a nonzero ideal J of A

contained in 〈Ann(I) ∩ U〉 ⊆ Ann(I) ∩ 〈U〉. Since I ∩Ann(I) = 0 because A

is semiprime, I  I ⊕ J ⊆ 〈U〉, which contradicts the maximality of I. Since

U is an essential ideal of A−/Z, AnnA−/Z(U) = 0. Note that [Ann(I), U ] ⊆

Ann(I)∩U ⊆ Z implies (Ann(I)+Z)/Z = 0, that is, Ann(I) ⊆ Z ⊆ U . Now,

I ⊆ I ⊕Ann(I) ⊆ 〈U〉 and the maximality of I imply Ann(I) = 0, hence I is

an essential ideal of A.

Proposition 2.3.5. Let A be a semiprime algebra. Define

ϕ : Derm(A) → Qm(A−/Z)
δI 7→ δ̄I

where

δ̄ : I → A−/Z
ȳ 7→ δ(y)

Then ϕ is a Lie algebra homomorphism with kernel

{δI ∈ Derm(A) | δ(I) ⊆ Z}.

Proof. The map δ̄ is well-defined. Indeed, taking into account Lemma 1.1.14

we see that it is enough to show that for I an essential ideal of A, and

δ ∈ Der(I, A), y ∈ I ∩Z implies δ(y) ∈ Z. Note that for every x ∈ I we have

[δ(y), x]δ([y, x])− [y, δ(x)] = 0. But this yields δ(y) ∈ Z. Namely, only central
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elements can commute with every element from an essential ideal. Indeed,

[a, u] = 0 for every u ∈ I yields [a, x]u = [a, xu] = 0 for all x ∈ A and u ∈ I,

and hence [a, x] = 0 since I is essential.

It is easy to see that ϕ is a well-defined Lie algebra homomorphism. Let

us now compute its kernel. First we show that if δI ∈ Derm(A) is such that

δ(J) ⊆ Z for some essential ideal J of A contained in I, then δ(I) ⊆ Z.

For x ∈ I and u ∈ J we have xu ∈ J , and so δ(u), δ(xu) ∈ Z. Accordingly,

δ(x)u = δ(xu)−xδ(u) commutes with x, that is, δ(x)ux = xδ(x)u. Replacing

u by uy, where u ∈ J and y ∈ A, it follows that δ(x)uyx = xδ(x)uy =

δ(x)uxy. Thus, δ(x)u[x, y] = 0 for all x ∈ I, y ∈ A and u ∈ J . Linearizing

this identity we get δ(x)u[z, y] + δ(z)u[x, y] = 0 for all x, z ∈ I, y ∈ A, u ∈ J .

Consequently, for u, v ∈ J , x, z ∈ I and y ∈ A we have

δ(x)u[z, y]vδ(x)u[z, y] = −δ(x)u[z, y]vδ(z)u[x, y] ∈ δ(x)J [x, y] = 0.

Since J is essential, aJa = 0 with a ∈ A implies a = 0. Therefore,

δ(x)u[z, y] = 0 for all u ∈ J , x, z ∈ I, y ∈ A. In particular, [δ(x), z]J [δ(x), z] =

0 for all x, z ∈ I, which yields [δ(x), z] = 0. Since elements commuting with

all elements from an essential ideal of A must lie in the center of A, it follows

that δ(x) ∈ Z, as desired.

Denote by T the set {δI ∈ Derm(A) | δ(I) ⊆ Z}. Clearly, T is contained

in the kernel of ϕ. For the converse containment, suppose δ̄I = 0 for δI an

element in Derm(A). Then there exists an essential ideal U of A−/Z, contained

in I, such that δ̄(U) = 0. Consider V := π−1(U) ∩ I, for π : A → A−/Z the

canonical projection. The ideal V is essential because U and I are. By Lemma

2.3.4, there is an essential ideal J of A such that J ⊆ 〈V + Z〉 ⊆ I + 〈Z〉.

For an element x in the essential ideal I ∩ J of A, δ̄(x̄) ∈ δ̄(U) = 0, that is,

δ(I ∩ J) ⊆ Z. By what was proved in the preceding paragraph it follows that

δI ∈ T .
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Lemma 2.3.6. Let A be a prime noncommutative algebra, I an ideal of A

and δ : I → A a partial derivation. If δ(I) ⊆ Z then δ = 0.

Proof. Suppose that δ(I) ⊆ Z and let u ∈ I. Then u2 ∈ I, so δ(u2) ∈ Z, that

is, 2uδ(u) ∈ Z. Given x ∈ A we have that 0 = [2uδ(u), x] = 2δ(u)[u, x] and

since A is prime, this implies that u ∈ Z or δ(u) = 0. Thus, for every u ∈ I

we have either u ∈ Z or δ(u) = 0. Taking into account Remark 1.1.15 there

exists y ∈ I \ Z and so δ(y) = 0. Now take v ∈ I. If v /∈ Z, then δ(v) = 0,

and if v ∈ Z, then v + y /∈ Z whence δ(v + y) = 0. Therefore δ(v) = 0 in any

case.

Theorem 2.3.7. Let A be a prime algebra such that either deg(A) 6= 3 or

char(A) 6= 3. Then Derm(A) ∼= Qm(A−/Z).

Proof. Consider the map ϕ in Proposition 2.3.5. Its injectivity is proved by

Lemma 2.3.6. Let us prove the surjectivity. Let δ̄J be in Qm(A−/Z), with J

a nonzero ideal of A−/Z and δ̄ : J → A−/Z a derivation. Let π : A→ A−/Z

be the canonical projection. Note that J can be represented as J/Z where

J = π−1(J) is a noncentral Lie ideal of A. Define δ : J → A−/Z by δ = δ̄π.

It is clear that δ is a derivation in the sense of [14]. We are now in a position

to apply [14, Theorem 1.3]. Picking any set-theoretic map γ : J → A such

that γ(x) = δ(x) for every x ∈ J , it follows that there exists a derivation

d : 〈J〉 → 〈J ∪ γ(J)〉C + C, where C is the extended centroid of A, and a map

µ : J → C such that d(x) = γ(x) + µ(x) for all x ∈ J . As above, here 〈S〉

denotes the subalgebra generated by the set S.

For x, y ∈ J we have d([x, y]) = [d(x), y] + [x, d(y)] = [γ(x), y] + [x, γ(y)]

since µ(J) ⊆ C. This shows that d([J, J ]) ⊆ J , which in turn implies

d(〈[J, J ]〉) ⊆ 〈J〉 ⊆ A. As [J, J ] is a noncentral Lie ideal of A, there ex-

ists a nonzero ideal I of A contained in 〈[J, J ]〉 (cf. the first step of the proof
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of Lemma 2.3.4). Note that dI is an element of Derm(A), and that ϕ(dI) = δJ .

This concludes the proof.

As a consequence, we have:

Corollary 2.3.8. Let A be a prime algebra such that either deg(A) 6= 3 or

char(A) 6= 3. If A = Qs(A), then

Qm(A−/Z) ∼= Der(A).

Proof. By Lemma 2.3.3 we obtain that Der(A) ∼= Derm(A) and applying

Theorem 2.3.7 it follows that Derm(A) ∼= Qm(A−/Z), as desired.

In our final corollary we will extend Corollary 2.3.8 by considering prime

algebras A such that Qs(A) = AZ−1, i. e., every element in Qs(A) is of the

form a
λ
, where a ∈ A and λ ∈ Z. However, we have to add the assumption

that A is affine which means generated by a finite number of elements.

Corollary 2.3.9. Let A be an affine prime algebra such that Qs(A) = AZ−1

and either deg(A) 6= 3 or char(A) 6= 3. Then

Qm(A−/Z) ∼= Der(Qs(A)).

Proof. Consider the monomorphism ϕ : Derm(A)→ Der(Qs(A)) in the proof

of Lemma 2.3.3. In order to check that ϕ is surjective it is enough to show

that given δ in Der(Qs(A)) there exists a nonzero ideal I of A such that

δ(I) ⊆ A. Indeed, if this were true, then we could consider δI ∈ Derm(A)

and then applying Lemma 2.3.2 for the case I ⊆ A ⊆ Qs(A) = Qs(I) would

conclude that δ = ϕ(δI).

So pick δ ∈ Der(Qs(A)). Let x1, . . . , xn be generators of A. According

to our assumption, for each i = 1, . . . , n we have δ(xi) = yi
λi

for some yi ∈

A, λi ∈ Z. Set λ =
∏n

i=1 λi ∈ Z. It is clear that δ(A) ⊆
∑n

i=1Aδ(xi)A, which
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in turn implies that λδ(A) ⊆ A. Accordingly, δ(λ2x) = 2λδ(λ)x+λ2δ(x) ∈ A

for every x ∈ A. That is, δ maps the ideal I = λ2A 6= 0 of A into A.

2.4 The maximal Lie algebra of quotients of

K/ZK

The purpose of the current section is to obtain results on the maximal algebra

of quotients of the skew Lie algebra K/ZK that arises from an associative

algebra with involution. Our line of argument benefits from the approach

developed in the previous sections, although the proofs do not carry over

verbatim.

In particular, we have to take into account whether the involution is of the

first kind or of the second kind (see Definition 2.4.1 below). It is also natural

to restrict our attention to the Lie algebra SDer(A) of those derivations that

commute with the involution ∗ and to construct a Lie algebra SDerm(A)

similar to Derm(A) as in Section 2.3 (see Construction 2.3.1), considering

partial derivations defined on ∗-ideals. The main result is then parallel to

Theorem 2.3.7.

Definition 2.4.1. Let A be a semiprime algebra with involution ∗. Then ∗

induces an involution on C, the extended centroid of A. It is said that the

involution on A is of the first kind if C ∩K = 0; otherwise it is said to be

of the second kind, that is, C ∩K 6= 0.

The set SDer(A) := {δ ∈ Der(A) | δ(x∗) = δ(x)∗ for all x ∈ A} is a Lie

subalgebra of Der(A). As usual, we will denote by ad (K) the Lie algebra of

derivations adx : A→ A with x in K.

Here, we collect some very useful properties of SDer(A).

Lemma 2.4.2. Let A be a semiprime algebra with involution ∗. Then:
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(i) ad (K) ⊆ Inn(A) ∩ SDer(A).

(ii) δ(K) ⊆ K for every δ ∈ SDer(A).

(iii) ad (K) is an ideal of SDer(A).

Proof. (i). For every a ∈ K and x ∈ A, ((ad a)x)∗ = [a, x]∗ = [x∗, a∗] =

[a, x∗] = (ad a)(x∗). This implies ad a ∈ SDer(A).

(ii). Let δ be in SDer(A). For every x ∈ K, δ(x)∗ = δ(x∗) = δ(−x) =

−δ(x). This shows δ(K) ⊆ K.

(iii). For a ∈ K and δ ∈ SDer(A) we have [δ, ad a] = ad δ(a), which,

together with condition (ii), implies (iii).

The following result is a generalization of [16, Lemma 2.9].

Lemma 2.4.3. Let A be a prime algebra with involution ∗ of the first kind

such that deg(A) > 2. If t ∈ K and [t, K] = 0, then t = 0.

Proof. By [60, Lemma 2], the subalgebra generated by [K, K] contains a

nonzero ideal I of A. For t ∈ K satisfying [t, K] = 0, use induction and the

identity [a, bc] = [a, b]c + b[a, c], which holds for all a, b, c ∈ A, to show

that [t, I] = 0. Now, apply [16, Lemma 2.5] to obtain t ∈ K ∩ Z = 0, as

desired.

The next result tell us what is the center ZK of K. We have to distinguish

if the involution ∗ is of the first or second kind.

Lemma 2.4.4. Let A be a prime algebra with involution ∗. Then:

(i) If ∗ is of the second kind, then ZK = Z ∩K and δ(ZK) ⊆ ZK for every

δ ∈ SDer(A).

(ii) If ∗ is of the first kind and deg(A) > 2, then ZK = Z ∩K = 0.
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Proof. (i) follows taking into account Lemma 2.4.2 (ii) and applying [49,

Lemma 2 (ii)] and [16, Theorem 2.13]. To prove (ii) it is enough to apply

Lemma 2.4.3.

Lemma 2.4.5. Let A be a prime algebra with involution ∗ with deg(A) > 2.

Then [I ∩K,K] 6= 0 for every nonzero ∗-ideal I of A.

Proof. Consider a nonzero ∗-ideal I of A and suppose I ∩K ⊆ ZK = Z ∩K

by Lemma 2.4.4. From Remark 1.1.15 we have I * Z. Hence, there exists

x ∈ I such that x /∈ Z. By the hypothesis, [x, I ∩ K] ⊆ Z and taking into

account [59, Theorem 2] if ∗ is of the second kind or [59, Theorem 3] if it is

of the first kind we obtain I ⊆ Z, which is a contradiction.

We now turn to the question of having a good description of the Lie

algebra Qm(K/ZK), in the case of being A prime with an involution. As

already mentioned, to this end we shall introduce a new Lie algebra whose

definition is based on partial ∗-preserving derivations.

Denote by I∗(A) the collection of all nonzero ∗-ideals of A and by

PSDer(I, A) the set of all partial derivations from I to A which commutes

with the involution ∗.

Construction 2.4.6. Let A be a prime associative algebra with involution

∗ over Φ. Consider the set

SD := {(δ, I) | I ∈ I∗(A), δ ∈ PSDer(I, A)},

and define on SD the following relation: (δ, I) ≡ (µ, J) if and only if δ and

µ agree on some nonzero ∗-ideal of A contained in I ∩J . One can easily show

that ≡ is an equivalence relation.

Denote by SDerm(A) the quotient set SD/ ≡ and by δI the equivalence

class of (δ, I) in SDerm(A), for δ ∈ PSDer(I, A) and I ∈ I∗(A). Then
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SDerm(A), with the following operations:

δI + µJ = (δ + µ)I∩J

α(δI) = (αδ)I

[δI , µJ ] = (δµ− µδ)(I∩J)2

for any δI , µJ ∈ SDerm(A) and α ∈ Φ becomes a Lie algebra over Φ.

The following result is analogous to Lemma 2.3.3. To prove it, it is enough

to show that every δ ∈ SDer(A) can be uniquely extended to a derivation δ′

in SDer(Qs(A)). Basically, it follows from the fact that Qs(A) is an algebra

of left quotients of A, coupled with the fact that every derivation on A can

be extended uniquely to a derivation of Qs(A). (See Proposition 1.2.22.)

Lemma 2.4.7. If A is a prime algebra with involution, then

SDer(A) ⊆ SDerm(A) ⊆ SDer(Qs(A)).

Our aim now is to construct an isomorphism between the Lie algebra

SDerm(A) defined in Construction 2.4.6 and the maximal algebra of quotients

of the Lie algebra K/ZK .

Lemma 2.4.8. Let A be a prime algebra with involution ∗ such that deg(A) >

4, and let U be an ideal of K such that U * ZK. Then the algebra 〈U〉 contains

a nonzero ∗-ideal of A.

Proof. Clearly 〈U〉∗ = 〈U〉, and 〈U〉 * Z since U * ZK . On the other hand,

note that [〈U〉, K] ⊆ 〈U〉. This follows by an induction argument using the

identity [uv, x] = u[v, x] + [u, x]v, for every u, v, x ∈ A. Next, apply [60,

Theorem 2] to obtain the desired conclusion.

Lemma 2.4.9. Let A be a prime algebra with involution ∗ such that deg(A) >

2. If δI is an element of SDerm(A) such that δ(I ∩K) ⊆ ZK then δI = 0.
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Proof. It is well known that deg(I) = deg(A) (because A is prime, see,

e.g. [15, Theorem 6.4.1]). Therefore [61, Theorem 3] applies to show that,

since [x, δ(x)] = 0 for any y ∈ KI by our assumption and deg(I) > 2, ne-

cessarily δI = 0.

Theorem 2.4.10. Let A be a prime algebra with involution ∗ such that

deg(A) > 4. Then SDerm(A) ∼= Qm(K/ZK).

Proof. Consider

ϕ : SDerm(A) → Qm(K/ZK)
δI 7→ δ̄I

where I = ((I ∩K) + ZK)/ZK and

δ̄ : I → K/ZK
ȳ 7→ δ(y)

The map δ̄ is well-defined. To see this, it is enough to check, by Lemma

2.4.5, that δ((I ∩ K) ∩ ZK) ⊆ ZK , whenever I is a nonzero ∗-ideal of A

and δ ∈ SDer(I, A). By Lemma 2.4.2, if y ∈ I ∩ ZK we have y ∈ Z and

arguing as in the proof of Proposition 2.3.5 we obtain δ(y) ∈ Z. Consequently

δ(y) ∈ δ(K) ∩ Z ⊆ ZK .

It is easy to see that ϕ is a well-defined Lie algebra homomorphism. We

first prove it is one-to-one. Let δI be an element in SDerm(A) such that δ̄I = 0.

Then there exists a nonzero ideal J := J/ZK of K/ZK contained in I such that

δ̄(J) = 0. Consider J1 := π−1(J) ∩ I, where π : K → K/ZK is the canonical

projection, and note that the ideal (J1 + ZK)/ZK is nonzero because J and

I are nonzero. By Lemma 2.4.8, there is a nonzero ∗-ideal U of A such that

U ⊆ 〈J1 + ZK〉 ⊆ (I ∩K) + 〈ZK〉. Since δ̄(ū) ∈ δ̄(J) = 0 for any element u

in (U ∩ I) ∩K, we see that δ((U ∩ I) ∩K) ⊆ ZK and, by Lemma 2.4.9, we

conclude δI = 0.

Now we show that ϕ is surjective. Let δ̄J be in Qm(K/ZK), with J a

nonzero ideal of K/ZK and δ̄ : J → K/ZK a derivation. Note that J can be
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represented as J/ZK where J = π−1(J) is a noncentral ideal of K. Define

δ : J → A−/Z by δ = iδ̄π, where i : K/ZK → A−/Z is given by i(x̄) = x̄ ∈

A−/Z. Since ZK = Z ∩ K (see Lemma 2.4.2) it is straightforward to verify

that i is a Lie algebra monomorphism. On the other hand, it is clear that δ is

a Lie derivation in the sense of [13] and that K satisfies the conditions in [13,

Theorem 3.2]. Therefore, take any set-theoretic map γ : J → K such that

γ(x) = δ(x) for every x ∈ J (note that we may actually choose γ with image

contained in K because δ(J) ⊆ K/ZK), and then it follows that there exists

a derivation d : 〈J〉 → 〈J ∪ γ(J)〉C + C, where C is the extended centroid of

A, and a map µ : J → C such that d(x) = γ(x) + µ(x) for all x ∈ J .

For x, y ∈ J we have

d([x, y]) = [d(x), y] + [x, d(y)] = [γ(x), y] + [x, γ(y)]

since µ(J) ⊆ C. This shows that d([J, J ]) ⊆ [K, J ] ⊆ J , which in turn implies

d(〈[J, J ]〉) ⊆ 〈J〉 ⊆ A. Apply Lemma 2.4.8 to the ideal [J, J ] of K (which is

not contained in ZK) to find a nonzero ∗-ideal I of A contained in 〈[J, J ]〉.

Note that dI is an element of SDerm(A). Finally, since µ(I) ⊆ K ∩ C =

K ∩ A ∩ C = K ∩ Z = ZK (by using [79, Lemma 1.3 (i)] and Lemma 2.4.2)

it follows that ϕ(dI) = δJ . This concludes the proof.

Corollary 2.4.11. Let A be a prime algebra with involution ∗ such that

deg(A) > 4. If A = Qs(A), then

Qm(K/ZK) ∼= SDer(A).

Proof. By Lemma 2.4.7 we obtain that SDer(A) ∼= SDerm(A) and applying

Theorem 2.4.10 it follows that SDerm(A) ∼= Qm(K/ZK), as desired.



Chapter 3

Natural questions concerning
Lie algebras of quotients

Two of the most important properties of the maximal right algebra of quo-

tients of a semiprime associative algebra A, are the following:

1. The maximal right algebra of quotients of A, coincides with the maxi-

mal right algebra of quotients of any essential ideal of A, i.e., Qr
max(A) =

Qr
max(I) for every essential ideal I of A. (See e.g. [15, Proposition

2.1.10].)

2. If one compute the maximal right algebra of quotients of the maximal

right algebra of quotients of A the obtained result is the maximal right

algebra of quotients of A, that is, taking the maximal right algebra of

quotients is a closure operation, i.e., Qr
max(Q

r
max(A))) = Qr

max(A). (See

e.g. [15, Theorem 2.1.1].)

The main target in this chapter will be to determine the conditions under

which the analogous results are valid in the context of maximal Lie algebras

of quotients introduced in the preceding chapters. As we will see, the answer

is not as easy as in the associative case.

69
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3.1 The maximal Lie algebra of quotients of

an essential ideal

The purpose of this section is to consider the problem of whether Qm(I)

is isomorphic to Qm(L), for an essential ideal I of a semiprime Lie algebra

L. Of course, this question only makes sense if we assume that I itself is a

semiprime algebra, so that Qm(I) exists at all. Under this assumption we will

give a positive answer provided that L satisfies a certain additional condition.

Definition 3.1.1. ([64]). We say that a Lie algebra L is strongly semiprime

(respectively, strongly prime) if:

(i) L is semiprime (respectively, prime).

(ii) For each n, given 0 6= Un � . . .� U2 � U1 � L there exists 0 6= W � L

such that W ⊆ Un.

We shall use SSP (or SP) as a shorthand for strong semiprimeness (re-

spectively, strong primeness). We will also say that Un as in the definition

above is an n-subideal. Of course, 1-subideals are just ideals.

The notion of strongly semiprime (respectively, strongly prime) algebras

was introduced by W. S. Martindale III and C. R. Miers in [64] for non-

associative algebras; we are interested in Lie algebras. In this context they

proved that skew Lie algebras are SSP (SP); specifically:

Example 3.1.2. (See [64, Theorems 6.1 and 6.2]). If A is a semiprime (prime)

associative algebra with involution then the Lie algebra K/ZK is SSP (SP).

Example 3.1.3. If A is a semiprime (prime) associative algebra then A−/Z

is SSP (SP).
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Proof. We have already mentioned (see Examples 1.1.10) that Inn(A) is a

semiprime (prime) Lie algebra. The example above jointly with Remark 1.1.9

yield that A−/Z ∼= Inn(A) is an SSP (SP) Lie algebra.

The proof of the following lemma is included in the proof of [64, Theorem

6.2].

Lemma 3.1.4. A Lie algebra L is SSP (SP) if and only if

(i) L is semiprime (prime), and

(ii) given 0 6= U2 � U1 � L, there exists 0 6= W � L such that W ⊆ U2.

Proof. Assume that L satisfies conditions (i) and (ii) in the statement. We

proceed by induction on n; for n = 2, there is nothing to prove. Suppose the

result true for n ≥ 2 and consider

0 6= Un+1 � Un � . . .� U2 � U1 � L.

Define Vn+1 = Un+1 + [Un+1, Un−1] + [ [Un+1, Un−1], Un−1] + . . . � Un−1 and

note that Un+1 ⊆ Vn+1 ⊆ Un, so, applying the induction hypothesis to the

chain 0 6= Vn+1 � Un−1 � . . . � U2 � U1 � L we find a nonzero ideal V of L

such that V is contained in Vn+1. We claim that [Vn+1, V ] is a nonzero ideal

of V (i.e. a subideal of L) contained in Un+1; otherwise [Vn+1, V ] = 0 would

imply, by using the Jacobi identity, [Vn+1, V ] = 0, and hence [V, V ] = 0,

which contradicts (i). Therefore [Vn+1, V ] 6= 0 and applying condition (ii) to

the chain 0 6= [Vn+1, V ] � V �L we obtain a nonzero ideal W of L satisfying

that W ⊆ [Vn+1, V ] ⊆ Un+1. This shows that L is SSP (SP).

The converse holds trivially.

Another characterization of strong semiprimeness (resp. primeness) is the

following:
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Lemma 3.1.5. ([64, Remark 1.2]). A Lie algebra L is SSP (SP) if and only if

L is semiprime (prime), and for each n, given 0 6= Un�. . .�U2�U1�L there

exists an ideal W of L such that W , viewed as an ideal of Un, is essential.

Lemma 3.1.6. Let L be an SSP Lie algebra. Then, for any n-subideal Un of

L there exists an ideal Ũn of L, which is the largest ideal of L contained in

Un. If Ui is essential in Ui−1, i = 2, . . . , n, and U1 is essential in L, then Ũn

is an essential ideal of L.

Proof. The first assertion is obvious: one just defines Ũn as the sum of all

ideals of L contained in Un. Assume now that Ui is essential in Ui−1 and U1

is essential in L. This implies that I ∩ Un 6= 0 for every nonzero ideal I of L.

Suppose that I ∩ Ũn = 0. Since L is an SSP Lie algebra, I ∩ Un contains a

nonzero ideal J of L. By hypothesis, J ∩ Ũn = 0, and Ũn + J is an ideal of L

bigger than Ũn and contained in Un, which contradicts the maximality of the

ideal Ũn.

We have included below a different proof of Lemma 3.1.6 which makes use

of Lemma 3.1.5 and [79, Lemma 2.11].

Proof. Define, as above, Ũn as the sum of all ideals of L contained in Un. Apply

Lemma 3.1.5 to find an ideal U of L such that U �e Un. By the definition of

Ũn we have U ⊆ Ũn. Since Un is semiprime (viewed as a Lie algebra, see [64,

Remark 1.1]) from Lemma 1.1.13 (ii) it follows AnnUn(U) = 0, which implies,

by using [79, Lemma 2.11], that AnnUn−1(U) = 0. Applying n− 1 times [79,

Lemma 2.11] we obtain AnnL(U) = 0, that is, U is an essential ideal of L and

hence, Ũn is so.

Theorem 3.1.7. Let I be an essential ideal of an SSP Lie algebra L. Then

Qm(I) is the maximal algebra of quotients of L, i. e. Qm(I) ∼= Qm(L).
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Proof. Notice that I viewed as an algebra is SSP (see [64, Remark 2.11]), so

we can consider Qm(I). Define

ϕ : Qm(L) → Qm(I)
δJ 7→ δ(J∩I)2

The map ϕ is well-defined: Since AnnI(J ∩I) ⊆ AnnL(J ∩I) = 0, we have

that J ∩ I is an essential ideal of I. Hence (J ∩ I)2 is also an essential ideal

of I. Finally, note that δ maps (J ∩ I)2 into I.

It is straightforward to verify that ϕ is a Lie algebra monomorphism. To

see the surjectivity take γI′ ∈ Qm(I), with I ′ an essential ideal of I. By

Lemma 3.1.6 there exists an essential ideal J of L contained in I ′. Then, for

γJ ∈ Qm(L) we have ϕ(γJ) = γ(I∩J)2 = γI′ and the proof is complete.

Remark 3.1.8. Let A be a semiprime algebra. For every Lie ideal I of A,

ZI = I ∩ Z since [y, I] = 0, with y ∈ I, implies y ∈ Z; indeed, this follows

from [42, Sublemma, p. 5] which states that an element y in a semiprime

algebra satisfying that [y, [y, x]] = 0 for all element x in the algebra must lie

in its center. Moreover, we have the following isomorphism

I/ZI = I/(I ∩ Z) ∼= (I + Z)/Z.

Corollary 3.1.9. Let A be a semiprime algebra. Then:

Qm([A, A]/Z[A,A]) ∼= Qm(A−/Z).

Proof. Applying Remark 3.1.8 we have Z[A,A] = [A, A] ∩ Z from which it

immediately follows that the map determined by [x, y] + Z[A,A] 7→ [x, y] + Z

is a well-defined Lie algebra monomorphism from [A, A]/Z[A,A] into A−/Z.

Identifying [A, A]/Z[A,A] with its image, we can regard it as an ideal of A−/Z.

We will prove now that [A, A]/Z[A,A] is essential in A−/Z. To this end, given

a ∈ A \ Z it is enough to show that [a, A] * Z[A,A] (see Lemma 1.1.13 (ii)).
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Since a /∈ Z by [42, Sublemma, p. 5] it follows that [a, [a, A]] 6= 0; this means

that [a, A] * Z which implies that [a,A] * Z[A,A], as desired. Keeping in

mind that A−/Z is an SSP Lie algebra, the conclusion follows directly from

Theorem 3.1.7.

Corollary 3.1.10. Let A be a prime algebra. If Der(A) is SP then

Qm(A−/Z) ∼= Qm(Der(A)).

Proof. The result follows from Theorem 3.1.7.

The previous result needs the assumption that Der(A) is strongly prime.

It does not seem clear how to verify whether this condition is fulfilled. In what

follows we give a criterion based only on the ideal lattice of A. An useful tool

to obtain it is the fact of Inn(A) is strongly prime. To make use of it we pause

to reduce the study of the strong primeness of Der(A) to the case

0 6= ad ([I, A]) � Inn(A) � Der(A),

where I is an ideal of A.

Lemma 3.1.11. Let A be a semiprime algebra and let Ĩ be a nonzero ideal

of Inn(A). Then there exists an ideal U of A such that 0 6= ad ([U,A]) ⊆ Ĩ.

Proof. It is easy to see that I = {x ∈ A | adx ∈ Ĩ } is a noncentral Lie ideal

of A (use [42, Sublemma, p. 5]). Apply [43, Theorem 5] to find a nonzero

ideal U of A satisfying 0 6= [U,A] ⊆ I, that is, U is an ideal of A such that

0 6= ad ([U,A]) ⊆ Ĩ and the lemma is proved.

Lemma 3.1.12. Let A be a prime algebra. Assume that for every nonzero

ideal U of A there exists a nonzero ideal Ũ of Der(A) such that Ũ ⊆

ad ([U,A]). Then Der(A) is an SP Lie algebra.
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Proof. Let 0 6= Ĩ�J̃�Der(A). Apply [79, Lemma 2.13] to obtain that Der(A)

is an algebra of quotients of J̃ ∩ Inn(A). Hence, given 0 6= δ ∈ Ĩ ⊆ Der(A)

there exists x ∈ A satisfying 0 6= adx ∈ J̃ ∩ Inn(A) and [δ, adx] 6= 0. Since

Ĩ is an ideal of J̃ , [δ, adx] ∈ Ĩ and [δ, adx] = ad δ(x) ∈ Inn(A), therefore

Ĩ ∩ Inn(A) 6= 0. Consider 0 6= Ĩ ∩ Inn(A) � J̃ ∩ Inn(A) � Inn(A). Since Inn(A)

is an SP Lie algebra, there exists a nonzero ideal K̃ of Inn(A) contained in

Ĩ ∩ Inn(A). Apply Lemma 3.1.11 to find a nonzero ideal U of A such that

0 6= ad ([U,A]) ⊆ K̃. Now, by the hypothesis there exists a nonzero ideal Ũ

of Der(A) satisfying Ũ ⊆ ad ([U,A]) ⊆ Ĩ, as desired.

With the lemma above in hand, the proof of the announced criterion is

now very easy.

Theorem 3.1.13. Let A be a prime algebra. Then the following conditions

are equivalent:

(i) Der(A) is SP.

(ii) Every nonzero ideal of A contains a nonzero ideal of A invariant under

every element of Der(A).

Moreover, if these conditions hold, then

Qm(A−/Z) ∼= Qm(Der(A)).

Proof. Identify A−/Z with Inn(A).

(i) ⇒ (ii). Let I be a nonzero ideal of A. By Remark 1.1.15, ad (I) is a

nonzero ideal of Inn(A). Consider

0 6= ad (I) � Inn(A) � Der(A);

by the hypothesis there exists 0 6= Ĩ � Der(A) contained in ad (I). It is

clear that J :=
∑

δ∈eI Aδ(A)A is a nonzero ideal of A. Moreover, J is indeed
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invariant under every element of Der(A). In fact, for x, y, z ∈ A, δ ∈ Ĩ,

µ ∈ Der(A) we have

µ(xδ(y)z) = µ(x)δ(y)z + xµδ(y)z + xδ(y)µ(z)

= µ(x)δ(y)z + x[µ, δ](y)z + xδµ(y)z + xδ(y)µ(z) ∈ J

since δ, [µ, δ] ∈ Ĩ. This shows that µ(J) ⊆ J for every µ ∈ Der(A). Finally,

taking into account that Ĩ ⊆ ad (I) we have J ⊆ AĨ(A)A ⊆ A[I, A]A ⊆ I.

(ii) ⇒ (i). To prove the strong primeness of Der(A) we will use Lemma

3.1.12. Let us therefore consider

0 6= ad ([U,A]) � Inn(A) � Der(A),

for U an ideal of A. By the hypothesis, there exists a nonzero ideal J of A,

which is contained in U and is invariant under every element of Der(A). Since

ad ([J,A]) is contained in ad ([U,A]), the proof will be complete by showing

that ad ([J,A]) is a nonzero ideal of Der(A). It is straightforward to verify that

ad ([J,A]) is an ideal of Der(A). The containment ad ([J,A]) ⊆ ad ([U,A]) is

obvious. The ideal [J,A] is noncentral; otherwise, apply that Z is a prime

ideal of A− (see [49, Lemma 4]) to obtain J ⊆ Z, which is impossible by

Remark 1.1.15. Thus, [J,A] * Z and therefore ad ([J,A]) 6= 0.

The last assertion follows directly from Corollary 3.1.10.

Example 3.1.14. If A is a prime algebra such that every nonzero ideal I of A

contains a nonzero idempotent ideal J , then Der(A) is SP. This follows from

Theorem 3.1.13 together with the fact that J = J2 implies δ(J) = δ(J2) ⊆ J

for every δ ∈ Der(A). In particular, this holds if A is a prime von Neumann

regular algebra or, more generally, if A is an exchange algebra with zero

Jacobson radical. (In case of rings with unit, the definition of exhange rings

can be found in [34]; the notion of exchange rings for rings without unit was

introduced by P. Ara in [6].)
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Corollary 3.1.15. Let A be a simple algebra such that either deg(A) 6= 3 or

char(A) 6= 3. Then

Qm(A−/Z) ∼= Qm(Der(A)) ∼= Der(A).

Proof. Apply Theorem 3.1.13 to show that Qm(Der(A)) ∼= Qm(A−/Z) and

Corollary 2.3.8 to have that Qm(A−/Z) ∼= Der(A), which completes the proof.

The second part of this section is devoted to the study of similar questions

when the associative algebra A has an involution.

Remark 3.1.16. Let A be a prime algebra with involution ∗. The map

K → ad (K)
x 7→ adx

is a Lie algebra epimorphism with kernel ZK ; this allows to identify K/ZK

with the ideal ad (K) of SDer(A). If the involution is of the first kind and

deg(A) > 2, it is in fact an isomorphism, by Lemma 2.4.4 (ii).

On the other hand, for every ideal I of K, the restriction of the map above

to I, that is,

I → ad (K)
y 7→ ad y

is a Lie algebra homomorphism with kernel ZI = I ∩ ZK , if the involution is

of the second kind, or zero, if it is of the first kind and deg(A) > 2. Indeed,

[y, I] = 0, with y ∈ I, implies [y, [y,K]] = 0. Then apply [16, Theorem 2.13]

or Lemma 2.4.3 to have y ∈ ZK or y = 0. Moreover,

I/ZI = I/(I ∩ ZK) ∼= (I + ZK)/ZK �K/ZK .

Corollary 3.1.17. Let A be a prime algebra with involution. Then:

Qm([K, K]/Z[K,K]) ∼= Qm(K/ZK).
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Proof. Applying Remark 3.1.16 we can regard [K, K]/Z[K,K] as an ideal of

K/ZK . Keeping in mind that K/ZK is an SP Lie algebra, the conclusion

follows directly from Theorem 3.1.7.

The following result is a straightforward corollary to Theorem 3.1.7.

Corollary 3.1.18. Let A be a prime algebra with involution. If SDer(A) is

SP then

Qm(K/ZK) ∼= Qm(SDer(A)).

Let A be a prime algebra with involution. From [48, Theorem 2] we obtain

that the Lie algebra SDer(A) is prime. The question of whether SDer(A) is SP

is again more delicate and is related to the ideal structure of A. Reasoning as

above, the first step is to reduce the study of the strong primeness of SDer(A)

to a particular case of chains:

0 6= ad ([U ∩K,K]) � ad (K) � SDer(A),

where U is a nonzero ∗-ideal of A.

Lemma 3.1.19. Let A be a prime algebra with involution ∗ with deg(A) > 4.

Then, for every nonzero ideal Ĩ of ad (K) there exists a ∗-ideal U of A such

that 0 6= ad ([U ∩K,K]) ⊆ Ĩ.

Proof. The set I := {x ∈ K | adx ∈ Ĩ } is an ideal of K not contained in ZK

and, therefore, it is not contained in Z. Apply [36, Theorem 1] if ∗ is of the

second kind or [36, Theorem 5 and Lemma 7] if it is of the first kind to find a

nonzero ∗-ideal U of A satisfying [U ∩K,K] ⊆ I, that is, ad ([U ∩K,K]) ⊆ Ĩ.

Note that [U ∩ K,K] * ZK as otherwise, U ∩ K ⊆ ZK , which contradicts

Lemma 2.4.5.

Lemma 3.1.20. Let A be a prime algebra with involution ∗ and such that

deg(A) > 4. Assume that for every ∗-ideal U of A there exists a nonzero
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ideal Ũ of SDer(A) such that Ũ ⊆ ad [U ∩K,K]. Then SDer(A) is an SP Lie

algebra.

Proof. Let 0 6= Ĩ� J̃ �SDer(A) by [79, Lemma 2.13] we obtain that SDer(A)

is an algebra of quotients of J̃ ∩ ad (K). Hence, given 0 6= δ ∈ Ĩ ⊆ SDer(A)

there exists x ∈ K satisfying 0 6= adx ∈ J̃ ∩ ad (K) and [δ, adx] 6= 0. Since

Ĩ is an ideal of J̃ , [δ, adx] ∈ Ĩ and [δ, adx] = ad δ(x) ∈ ad (K), therefore

Ĩ ∩ ad (K) 6= 0. Consider 0 6= Ĩ ∩ ad (K) � J̃ ∩ ad (K) � ad (K). Since ad (K)

is an SP Lie algebra, there exists a nonzero ideal Ṽ of ad (K) contained in

Ĩ ∩ ad (K). Apply Lemma 3.1.19 to find a nonzero ∗-ideal U of A such that

0 6= ad ([U ∩K,K]) ⊆ Ṽ . Now, by the hypothesis there exists a nonzero ideal

Ũ of SDer(A) satisfying Ũ ⊆ ad ([U ∩K,K]) ⊆ Ĩ, as desired.

Theorem 3.1.21. Let A be a prime algebra with involution ∗ and such that

deg(A) > 4. Then the following conditions are equivalent:

(i) SDer(A) is SP.

(ii) Every nonzero ∗-ideal of A contains a nonzero ∗-ideal of A invariant

under every element of SDer(A).

Moreover, if the previous conditions are satisfied we have

Qm(K/ZK) ∼= Qm(SDer(A)).

Proof. Taking into account Remark 3.1.16, the skew Lie algebra K−/ZK can

be identified with ad (K).

(i) ⇒ (ii). Let I be a nonzero ∗-ideal of A. By Lemma 2.4.5, ad (I ∩K) is

a nonzero ideal of ad (K). Apply the hypothesis to the chain

0 6= ad (I ∩K) � ad (K) � SDer(A)
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in order to find 0 6= Ĩ� SDer(A) contained in ad (I∩K). It is straightforward

to check that J :=
∑

δ∈eI Aδ(A)A is a nonzero ∗-ideal of SDer(A). Moreover, J

is in fact invariant under every element of SDer(A). To prove it take x, y, z ∈

A, δ ∈ Ĩ, µ ∈ SDer(A) and compute

µ(xδ(y)z) = µ(x)δ(y)z + xµδ(y)z + xδ(y)µ(z)

= µ(x)δ(y)z + x[µ, δ](y)z + xδµ(y)z + xδ(y)µ(z) ∈ J

since δ, [µ, δ] ∈ Ĩ. This shows that µ(J) ⊆ J for every µ ∈ SDer(A). Finally,

taking into account that Ĩ ⊆ ad (I∩K) we have J ⊆ AĨ(A)A ⊆ A[I, A]A ⊆ I.

(ii) ⇒ (i). To prove the strong primeness of SDer(A) we will use Lemma

3.1.20. Let us therefore consider

0 6= ad ([U ∩K, K]) � ad (K) � SDer(A),

for U an ∗-ideal of A. By the hypothesis, there exists a nonzero ∗-ideal J of

A, which is contained in U and is invariant under every element of SDer(A).

Since ad ([J ∩K, K]) is contained in ad ([U ∩K, K]), the proof will be com-

plete by showing that ad ([J ∩ K, K]) is a nonzero ideal of SDer(A). It is

straightforward to verify that ad ([J ∩K, K]) is an ideal of SDer(A). On the

other hand, [J ∩ K, K] * Z; otherwise, apply Lemma 2.4.4 and the fact of

ZK is a prime ideal of K to obtain that J ∩K ⊆ ZK , which is impossible by

Lemma 2.4.5. Thus [J ∩K,K] * Z and therefore ad ([J ∩K,K]) 6= 0.

The last assertion follows directly from Corollary 3.1.10.

As consequences we have:

Corollary 3.1.22. Let A be a prime algebra with involution ∗ such that

deg(A) > 4. If A is a ∗-simple algebra, then:

Qm(K/ZK) ∼= Qm(SDer(A)).
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Corollary 3.1.23. Let A be a simple algebra with involution such that

deg(A) > 4. Then:

Qm(K/ZK) ∼= Qm(SDer(A)) ∼= SDer(A).

Proof. Apply Corollary 3.1.22 to obtain that Qm(SDer(A)) ∼= Qm(K/ZK).

Corollary 2.4.11 implies Qm(K/ZK) ∼= SDer(A).

3.2 The maximal graded algebra of quotients

of a graded essential ideal

Once we have built the maximal graded algebra of quotients, and we have

study what happens in the non-graded case, it is natural to ask whether

Qgr−m(I) will be isomorphic to Qgr−m(L), for a graded essential ideal I of a

graded semiprime Lie algebra L. Of course, as in the non-graded setting this

question only makes sense if we assume that I itself is a graded semiprime

Lie algebra, so that Qgr−m(I) exists at all.

Let us start by introducing the main ingredient in Section 3.2, that is, the

notion of graded strongly semiprimeness (primeness) for graded Lie algebras.

In order to ease the notation, if L is a graded Lie algebra, we shall write

I �gr L to denote that I is a graded ideal of L.

Definition 3.2.1. We say that a graded Lie algebra L is graded strongly

semiprime (graded strongly prime) if:

(i) L is graded semiprime (graded prime).

(ii) For each n, given 0 6= Un �gr . . . �gr U2 �gr U1 �gr L there exists

0 6= W �gr L such that W ⊆ Un.

We shall use graded SSP (or graded SP) as a shorthand for graded strong

semiprimeness (primeness). We will also say that Un as in the definition above

is an n-graded subideal. Of course, 1-graded subideals are just graded ideals.
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The proof of the following result is analogous to the non-graded one which

is Lemma 3.1.4.

Lemma 3.2.2. A Lie algebra L is graded SSP (graded SP) if and only if

(i) L is graded semiprime (graded prime), and

(ii) given 0 6= U2 �gr U1 �gr L, there exists 0 6= W �gr L such that W ⊆ U2.

Lemma 3.2.3. Let L be a graded SSP Lie algebra. Then, for any n-graded

subideal Un of L there exists a graded ideal Ũn of L, which is the largest graded

ideal Ũn of L contained in Un. If Ui is graded essential in Ui−1, i = 2, . . . , n,

and U1 is graded essential in L, then Ũn is a graded essential ideal of L.

The proof of the previous lemma is practically the same of Lemma 3.1.6

but considering now Ũn as the sum of all graded ideals of L contained in Un.

Theorem 3.2.4. Let I be a graded essential ideal of a graded SSP Lie alge-

bra L. Then Qgr−m(I) is the maximal graded algebra of quotients of L, i. e.

Qgr−m(I) ∼= Qgr−m(L).

Proof. Notice that I viewed as a graded Lie algebra is graded SSP (see [64,

Remark 2.11]), so we can consider Qgr−m(I). One can show as in the proof of

Theorem 3.1.7 (using now Lemma 3.2.3) that the map ϕ : Qm(L) → Qm(I)

defined by

ϕ(δJ) = ϕ

(∑
σ

(δσ)J

)
=
∑
σ

(δσ)(J∩I)2 = δ(J∩I)2

is a graded Lie isomorphism.

3.3 Max-closed algebras

This final section is devoted to the problem of whether taking the maximal

algebra of quotients is a closure operation, that is, if Qm(Qm(L)) = Qm(L)
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holds for every semiprime Lie algebra L. Notice that this question makes

sense since Qm(L) is also semiprime ([79, Proposition 2.7 (ii)]). Although in

some interesting special cases the answer is positive, we will prove that the

containment Qm(L) ⊆ Qm(Qm(L)) can be strict.

Definition 3.3.1. We say that a semiprime Lie algebra L is max-closed if

Qm(Qm(L)) = Qm(L).

In the next results we introduce various examples of max-closed Lie alge-

bras.

Corollary 3.3.2. Let A be a simple algebra such that either deg(A) 6= 3 or

char(A) 6= 3. Then A−/Z is max-closed.

Proof. By Corollary 3.1.15 we have Qm(A−/Z) ∼= Qm(Der(A)) ∼= Der(A);

hence taking Qm( . ) into the isomorphisms above, we obtain

Qm(Qm(A−/Z)) ∼= Qm(Der(A)) ∼= Qm(A−/Z),

which proves that A−/Z is max-closed.

Corollary 3.3.3. Let A be a simple algebra with involution ∗ such that

deg(A) > 4. Then K/ZK is max-closed.

Proof. The following isomorphisms Qm(K/ZK) ∼= Qm(SDer(A)) ∼= SDer(A)

hold by Corollary 3.1.23. Take Qm( . ) to obtain

Qm(K/ZK) ∼= Qm(SDer(A)) ∼= Qm(K/ZK).

which concludes the proof.

Theorem 3.3.4. If L is a simple Lie algebra, then Qm(L) ∼= Der(L) is an

SP Lie algebra and L is max-closed.
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Proof. In view of the simplicity of L we clearly have Qm(L) ∼= Der(L). Mo-

reover, these two Lie algebras are prime by [79, Proposition 2.7 (ii)].

We claim that L is isomorphic to the smallest nonzero ideal of Der(L).

Indeed, since ZL = 0 we have L ∼= ad(L)�Der(L). Identify L with ad(L) and

consider 0 6= Ũ � Der(L). Taking into account the simplicity of L and that

0 6= Ũ ∩ L� L we obtain Ũ ∩ L = L, which implies L ⊆ Ũ .

For 0 6= Ĩ � J̃ � Der(L) apply what we have proved to obtain L ⊆ J̃ .

We claim that U = Ĩ ∩ L is a nonzero ideal of L. In fact, [U,L] ⊆ L and

[U,L] ⊆ [U, J̃ ] ⊆ Ĩ, which implies [U,L] ⊆ Ĩ ∩ L = U . To show that U 6= 0,

consider 0 6= δ ∈ Ĩ. Since ZL = 0 there exists x ∈ L such that 0 6= ad δ(x) ∈ L.

Moreover, ad δ(x) = [δ, adx] ∈ Ĩ; hence, 0 6= ad δ(x) ∈ U . Thus, U is a

nonzero ideal of a simple Lie algebra L, so that L = U ⊆ Ĩ. From Lemma

3.1.4 we now see that Der(L) is an SP Lie algebra.

It remains to show that L is max-closed. We have Qm(Qm(L)) ∼=

Qm(Der(L)). Since L is a nonzero ideal of an SP Lie algebra Der(L), it follows

from Theorem 3.1.7 that Qm(L) ∼= Qm(Der(L)).

The following example was the motivation for Example 3.3.7.

Proposition 3.3.5. Let F be a field and A = M2(F [x]). Then the Lie algebra

L = A−/Z is max-closed.

Proof. We first observe that Qs(Qs(A)) ∼= Qs(A) ∼= M2(F (x)) (see, e.g. [80,

p. 61 exercise 9 (i)]). Secondly, we claim that Derm(A) ∼= Der(Qs(A)); the

map ϕ : Derm(A) → Der(Qs(A)) which sends δI ∈ Derm(A) into the unique

extension δ′ ∈ Der(Qs(A)) of the partial derivation δ : I → A, is a well-defined

Lie algebra monomorphism. (See the proof of Lemma 2.3.3.) Moreover, in

our particular case, ϕ is in indeed an isomorphism. To prove that, given

δ ∈ Der(Qs(A)) it is enough to find a nonzero ideal I of A such that δ(I) ⊆ A.
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In fact, if we would have showed that we could consider δI ∈ Derm(A), then,

applying Lemma 2.3.2 to I ⊆ A ⊆ Qs(A) = Qs(I) we would obtain δ = ϕ(δI),

which would complete the proof. In order to check this, let δ ∈ Der(Qs(A));

taking into account the form of the associative derivations of Qs(A), we obtain

that δ(a) = (adu)a+ p
q
a′ where u ∈ Qs(A), p ∈ F [x], 1

q
∈ F (x) and a′ is the

matrix whose elements are the derivative of the elements of a ∈ A.

Denote by J the ideal of F [x] generated by q2
(∏

i, j= 1, 2 vij

)
, where u =(

uij
vij

)
, and set the ideal I := M2(J) of Qs(A). We now claim that δ(I) ⊆ A.

In fact, let a = (aij) be in I; we have:

δ(a) = [u, a] +
p

q
a′ = (ua− au) +

p

q

(
a′ij
)
.

Note that ua ∈ A because ua =
(∑

k
uik
vik
akj

)
and by the definition of J the

elements
akj
vik

are in A. Analogously, we see that au ∈ A and whence [u, a] ∈ A.

To check that p
q
a′ ∈ A, write the elements of a as a product aij = q2fij(x)

where fij(x) ∈ F [x], and compute:

p

q
a′ij =

p

q

(
2qq′fij(x) + q2f ′ij(x)

)
∈ F [x].

Hence p
q
a′ ∈ A and therefore δ(a) ∈ I, as wanted.

To resume, we have just proved that Derm(A) ∼= Der(Qs(A)); then by

Theorem 2.3.5 we have Qm(L) ∼= Der(Qs(A)). On the other hand the sim-

plicity of Qs(A) jointly Corollaries 3.1.15 and 3.3.2 allow us to say that

Ls = Qs(A)−/ZQs(A) is max-closed and it satisfies Qm(Ls) ∼= Der(Qs(A)).

Hence:

Qm(Qm(L)) ∼= Qm(Der(Qs(A)) ∼= Qm(Qm(Ls)) ∼= Qm(Ls) ∼=

Der(Qs(A)) ∼= Qm(L),

which concludes the proof.
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Another class of algebras that provides examples of max-closed algebras

is that of prime affine PI algebra:

Theorem 3.3.6. Let A be a prime affine PI algebra such that either deg(A) 6=

3 or char(A) 6= 3, and let J be a noncentral Lie ideal of A. Then the Lie

algebra J/(J ∩ Z) is max-closed.

Proof. Recall that A−/Z ∼= Inn(A) is an SP Lie algebra (see Exam-

ple 3.1.3). Accordingly, applying Theorems 2.3.7 and 3.1.7 it follows that

Qm(J/(J ∩ Z)) ∼= Qm(A−/Z) ∼= Derm(A). It is well-known that A, as a

prime PI algebra, satisfies Qs(A) = AZ−1, and moreover, that Qs(A) is

a simple algebra (see e.g. [77, Theorem 1.7.9] or [44, Theorem 1.4.3] from

which this can be easily derived). Therefore we infer from Corollary 2.3.9

that Derm(A) ∼= Der(Qs(A)). On the other hand, Corollary 3.1.15 shows that

Qm(Der(Qs(A))) ∼= Der(Qs(A)), and the proof is thereby complete.

We will finish this chapter by finding an example of a Lie algebra which

is not max-closed. The algebra A we shall deal with is the one that Passman

used in [73] to show that Qs( . ) is not a closure operation.

Example 3.3.7. (See [73, Lemma 4.1 (ii), Theorem 4.4 and Proposition 4.5].)

Let F be a field and let

A = F [ t ][x, y | xy = tyx].

Then we have:

(i) A is a domain with center Z = F [ t ];

(ii) Qs(A) = F (t)[x, y | xy = tyx];

(iii) Qs(Qs(A)) = F (t)[x−1, x, y−1, y | xy = tyx].
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We shall make use of (iii) in the proof below, but not in an explicit way.

Theorem 3.3.8. Let A = F [ t ][x, y | xy = tyx]. Then the Lie algebra A−/Z

is not max-closed.

Proof. We shall write Q for Qs(A). Note that the conditions of Corollary 2.3.9

are again fulfilled. Therefore, this corollary together with Theorem 2.3.7 shows

that

Qm(A−/Z) ∼= Derm(A) ∼= Der(Q).

Therefore it is enough to prove that Qm(Der(Q)) ) Der(Q).

Note that Qx = xQ = QxQ; this will be frequently used in the sequel

without mention. We also remark that Q is the vector space direct sum of

Qx and
∑∞

i=0 F (t)yi.

Let δ be a derivation of Q. Since xy = tyx it follows that

δ(x)y + xδ(y) = δ(t)yx+ tδ(y)x+ tyδ(x),

and hence δ(x)y − tyδ(x) ∈ Qx. Writing

δ(x) = qx+
m∑
i=0

λi(t)y
i, where q ∈ Q and λi(t) ∈ F (t),

it follows that
m∑
i=0

λi(t)y
i+1 −

m∑
i=0

tλi(t)y
i+1 ∈ Qx.

That is,
∑m

i=0(1 − t)λi(t)yi+1 ∈ Qx. But then
∑m

i=0(1 − t)λi(t)yi+1 = 0 and

hence λi(t) = 0 for each i. This proves that δ(x) ∈ Qx, which in turn implies

δ(Qx) ⊆ Qx. Thus, Qx is invariant under every derivation of Q.

Let I be the linear span of all inner derivations of the form ad (δ1 . . . δn(x)),

where n ∈ N and δ1, . . . , δn ∈ Der(Q). We claim that I is a nonzero Lie ideal

of Der(Q). Indeed, for every δ ∈ Der(Q) we have

[δ, ad (δ1 . . . δn(x))] = ad (δδ1 . . . δn(x)) ∈ I,
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showing that I is an ideal, and ad (ad y(x)) = ad [y, x], and so I 6= 0. Define

∆ : I → Der(Q) by ∆(d) = [ad x−1, d] for every d ∈ I, so that

∆(ad (δ1 . . . δn(x))) = [ad x−1, ad (δ1 . . . δn(x))] = ad [x−1, δ1 . . . δn(x)];

this makes sense since δ1 . . . δn(x) ∈ Qx by what was proved in the pre-

ceding paragraph. Clearly ∆ is a derivation. This allows us to consider

∆I ∈ Qm(Der(Q)). We claim that ∆I is not in Der(Q). Suppose this was not

true. Then ∆I = ad δDer(Q) for some δ ∈ Der(Q). This means that there exists

a nonzero ideal J of Der(Q) contained in I and such that ∆|J = (ad δ)|J . It

is easy to see that derivations defined on I which agree on a nonzero ideal J

contained in I, must agree on the entire I. Thus, ∆ = (ad δ)|I . That is,

[adx−1, ad (δ1 . . . δn(x))] = [δ, ad (δ1 . . . δn(x))] = ad (δδ1 . . . δn)(x)

for all δ1, . . . , δn ∈ Der(Q). In particular,

ad [x−1, [y, x] ] = [adx−1, ad [y, x] ] = ad (δ([y, x])),

which implies [x−1, [y, x] ]− δ([y, x]) ∈ ZQ = F (t). Since δ, as a derivation of

Q, leaves Qx invariant, it follows that [x−1, [y, x] ] ∈ Qx+ F (t). However,

[x−1, [y, x] ] = x−1(yx−xy)−(yx−xy)x−1 = t−1y−y−y+ty = (t−1 +t−2)y,

a contradiction.



Chapter 4

Jordan systems of quotients
versus Lie algebras of quotients

In recent years, there have appeared different quotients for Jordan systems.

In [65], C. Mart́ınez constructed an algebra of fractions for a linear Jordan

algebra. A notion of quotients for Jordan systems with respect to filters of

ideals was given by E. Garćıa and M. A. Gómez Lozano in [39]. On the

other hand, a Jordan version of Utumi’s rings of quotients was obtained by

F. Montaner in [68] for non-degenerate Jordan algebras. His notion includes

that of E. Garćıa and M. A. Gómez Lozano in the case of algebras.

In this chapter, we will show that graded Lie algebras of quotients are the

natural framework were to settle quotients for Jordan systems introduced by

E. Garćıa and M. A. Gómez Lozano.

4.1 Maximal graded algebras of quotients of

3-graded Lie algebras

Let L be a Z-graded Lie algebra with a finite grading. Recall that we may

write L = ⊕nk=−nLk and it is said that L has a (2n + 1)-grading. In what

follows, we will deal with 3-graded Lie algebras.

In this section we will show that for a 3-graded semiprime Lie algebra L,

89
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the maximal graded algebra of quotients of L is 3-graded too and coincides

with the maximal graded algebra of quotients of L, as defined in Section 2.2.

First, we need a lemma.

Lemma 4.1.1. Let L = L−1 ⊕ L0 ⊕ L1 be a 3-graded Lie algebra and I an

ideal of L. Denote by πi the canonical projection from L into Li (with i ∈

{−1, 0, 1}) and consider Ĩ := J + π−1(J) + π1(J), where J := [[I, I], [I, I]].

Then:

(i) Ĩ is a graded ideal of L contained in I.

If moreover L is semiprime, then:

(ii) I is an essential ideal of L if and only if Ĩ is an essential ideal of L.

(iii) Suppose that I is a graded ideal. Then I is an essential ideal of L if and

only if it is a graded essential ideal of L.

Proof. (i). Note that π0(J) ⊆ Ĩ since π0 = Id− π−1 − π1. Show first that Ĩ is

an ideal of L: take x ∈ Ĩ and y ∈ L and write x = u+ z−1 + t1, where u and

the elements z = z−1 + z0 + z1 and t = t−1 + t0 + t1 are in J . We have

[x, y] = [u, y] + [z−1, y] + [t1, y]. (4.1)

Now, since u is in J , which is an ideal of L, we obtain [u, y] ∈ J ⊆ Ĩ. On the

other hand, writing y = y−1 + y0 + y1 we have [z−1, y] = [z−1, y0] + [z−1, y1];

apply again that J is an ideal to obtain [z, y1], [z, y0] ∈ J , which implies

that the elements [z, y1]0 = [z−1, y1] and [z, y0]−1 = [z−1, y0] are in Ĩ. Hence,

[z−1, y] ∈ Ĩ. Analogously, it can be shown [t1, y] ∈ Ĩ. Put together (4.1) and

this to obtain [x, y] ∈ Ĩ, as desired.

We claim that Ĩ is in fact a graded ideal: consider x = x−1+x0+x1 ∈ Ĩ and

write, as above, x = u+z−1 + t1, with u, z = z−1 +z0 +z1 and t = t−1 + t0 + t1
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elements in J . Then x−1 = u−1 + z−1, x0 = u0 and x1 = u1 + t1. Thus, taking

into account the definition of Ĩ we obtain that xi ∈ Ĩ for i ∈ {−1, 0, 1}.

Finally, we prove that Ĩ is contained in I by showing that π−1(J) and

π1(J) are contained in I. Define δ := π1 − π−1. Then δ2 = π−1 + π1 implies

2π1 = δ2 + δ and 2π−1 = δ2 − δ. Hence, to prove that π−1(J) and π1(J) are

contained in I, it is enough to check that δ2(J) and δ(J) are contained in

I. Take x, y ∈ I and write x = x−1 + x0 + x1 and y = y−1 + y0 + y1 where

xi, yi ∈ Li for i ∈ {−1, 0, 1}. A computation gives

[x, y]−1 = [x−1, y0] + [x0, y−1] = [x−1, y]− [x−1, y1] + [x, y−1]− [x1, y−1]

[x, y]1 = [x0, y1] + [x1, y0] = [x1, y]− [x1, y−1] + [x, y1]− [x−1, y1].

Hence,

δ([x, y]) = [x, y]1 − [x, y]−1 = [x1, y] + [x, y1]− [x−1, y]− [x, y−1] ∈ I,

that is, δ([I, I]) ⊆ I; it can be proved analogously δ(J) ⊆ [I, I] ⊆ I, therefore

δ2(J) ⊆ δ([I, I]) ⊆ I.

(ii). Consider I as an essential ideal of L. Note that the semiprimeness of

L implies that J is also an essential ideal of L. Hence, J ∩ K 6= 0 for any

nonzero ideal K of L and so Ĩ ∩K 6= 0. This shows that Ĩ is an essential ideal

of L.

To prove the converse, suppose that Ĩ is an essential ideal of L. As Ĩ ⊆ I

(by (i)), the ideal I must be essential too.

(iii). It is trivial that I essential as an ideal implies I essential as a graded

ideal. Suppose now that I is a graded essential ideal and let U be a nonzero

ideal of L. Being L semiprime, K := [[U, U ], [U, U ]] is a nonzero ideal of

L. Apply (i) to obtain that Ũ := K + π−1(K) + π1(K) is a graded ideal of

L contained in U . As I is a graded essential ideal, I ∩ Ũ 6= 0 and hence

I ∩ U 6= 0.
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Theorem 4.1.2. Let L = L−1⊕L0⊕L1 be a 3-graded semiprime Lie algebra.

Then:

(i) Qm(L) is graded isomorphic to Qgr−m(L).

(ii) If L is strongly non-degenerate and Φ is 2 and 3-torsion free, then

Qm(L) is a 3-graded strongly non-degenerate Lie algebra.

Proof. (i). Observe that L, viewed as a 3-graded Lie algebra, is graded

semiprime (since L is semiprime), so it has sense to consider Qgr−m(L). Define

ϕ : Qm(L) → Qgr−m(L)
δI 7→ δĨ

where for an essential ideal I of L, Ĩ ⊆ I is the graded essential ideal defined

in Lemma 4.1.1.

The map ϕ is well-defined:

let J = J−1 ⊕ J0 ⊕ J1 be a 3-graded ideal of L; it is easy to check, by

considering the canonical projections onto the subspaces Ji (i ∈ {−1, 0, 1}),

that PDer(J, L) is just ⊕2
i=−2PDergr(J, L)i, which coincides, by definition,

with PDergr(J, L). This fact jointly with the considerations above and the

definitions of Qm(L) and Qgr−m(L) allow us to conclude that ϕ is well-defined.

It is straightforward to verify that ϕ is a graded Lie algebra homomor-

phism. Finally, the bijectivity of ϕ is obtained from Lemma 4.1.1 (iii).

(ii). Apply (i) and [39, Proposition 1.7].

4.2 Quotients of Jordan systems and of

3-graded Lie algebras

Inspired by the characterization of algebras of Lie algebras of quotients in

terms of absorption by ideals given by M. Siles Molina in [79, Proposition

2.15], E. Garćıa and M. A. Gómez Lozano introduced in [39] a notion of

quotients for Jordan systems (algebra, pair or triple system).
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Our first target in this section will be to analyze the relationship between

the notion of Jordan pairs of quotients in the sense of E. Garćıa and M. A.

Gómez Lozano and of (graded) Lie algebra of quotients, via the Tits-Kantor-

Koecher construction.

Definition 4.2.1. A Jordan pair over Φ is a pair V = (V +, V −) of Φ-

modules together with a pair (Q+, Q−) of quadratic maps

Qσ : V σ → Hom(V −σ, V σ) (for σ = ±)

with linearizations denoted by

Qσ
x,z y = {x, y, z} = Dσ

x,yz,

where Qσ
x,z = Qσ

x+z − Qσ
x − Qσ

z , satisfying the following identities in all the

scalar extensions of Φ:

(i) Dσ
x,yQ

σ
x = Qσ

xD
−σ
y,x

(ii) Dσ
Qσxy, y

= Dσ
x,Q−σy x

(iii) Qσ
Qσxy

= Qσ
xQ
−σ
y Qσ

x

for every x ∈ V σ and y ∈ V −σ.

From now on, we shall deal with Jordan pairs V = (V +, V −) over a ring

of scalars Φ containing 1
2
. In order to ease the notation, Jordan products will

be denoted by Qxy, for any x ∈ V σ, y ∈ V −σ.

Notice that {x, y, z} = {z, x, y} and {x, y, x} = 2Qxy for every x, z ∈

V σ, y ∈ V −σ and σ = ±; we will be using these facts even without an explicit

reference to them.

We refer the reader to [62] for basic results, notation and terminology on

Jordan pairs. Nevertheless, we recall here some notions and basic properties.
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Definitions 4.2.2. Let V = (V +, V −) be a Jordan pair.

1. An element x ∈ V σ is called an absolute zero divisor if Qx = 0.

2. We say that V is strongly non-degenerate (non-degenerate in the

terminology of [39]) if it has no nonzero absolute zero divisors.

3. A pair I = (I+, I−) of submodules of V is called an ideal of V if it

satisfies QIσ V
−σ +QV σ I

−σ + {V σ, V −σ, Iσ} ⊆ Iσ or equivalently,

{Iσ, V −σ, V σ}+ {V σ, I−σ, V σ} ⊆ Iσ for σ = ±.

4. The pair V is said semiprime if QI±I
∓ = 0 imply I = 0, being I an

ideal of V , and is called prime if QI±J
∓ = 0 imply I = 0 or J = 0, for

I and J ideals of V . A strongly prime pair is a prime and strongly

non-degenerate pair.

5. For a subset X = (X+, X−) of V , the annihilator of X in V is

AnnV (X) = (AnnV (X)+, AnnV (X)−), where, for σ = ±

AnnV (X)σ = {z ∈ V σ | {z, X−σ, V σ} = {z, V −σ, Xσ}

= {V −σ, z, X−σ} = 0}.

One can check that AnnV (I) is an ideal of V if I is so.

Ideals of Lie algebras having zero annihilator are essentials and when the

Lie algebra where they live is semiprime, the reverse holds, i.e., every essential

ideal has zero annihilator. (See Lemma 1.1.13.) In the context of Jordan pairs,

a similar result can be shown.

Lemma 4.2.3. Let I = (I+, I−) be an ideal of a semiprime Jordan pair

V = (V +, V −). Then:

(i) I ∩ AnnV (I) = 0.

(ii) I is an essential ideal of V if and only if AnnV (I) = 0.
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Proof. (i). If we show that the ideal K := I ∩ AnnV (I) satisfies that

QK±K
∓ = 0, for Kσ = Iσ ∩ AnnV (I)σ, σ = ±, the result follows by

the semiprimeness of V . Given x ∈ Kσ ⊆ AnnV (I)σ for σ = ± we have

{x, K−σ, V σ} = 0 since K−σ ⊆ I−σ. So {Kσ, K−σ, V σ} = 0 for σ = ± and

hence QK±K
∓ = 0, as desired.

(ii). Consider an essential ideal I = (I+, I−) of V ; then I ∩ AnnV (I) =

0 by (i), and by the essentiality, AnnV (I) = 0. Conversely, suppose that

AnnV (I) = 0 and consider an ideal K = (K+, K−) of V satisfying I ∩K = 0.

For x ∈ Kσ, with σ = ±, and taking into account that I and K are ideals

of V , we obtain

{x, I−σ, V σ}, {x, V −σ, Iσ}, {V −σ, x, I−σ} ⊆ I ∩K = 0,

hence, K ⊆ AnnV (I) = 0. This shows that I is an essential ideal of V .

Let us recall the connection between Jordan 3-graded Lie algebras and

Jordan pairs. First we give some definitions.

Definitions 4.2.4. A 3-graded Lie algebra L = L−1 ⊕ L0 ⊕ L1 is called

Jordan 3-graded if [L1, L−1] = L0 and there exists a Jordan pair structure

on (L1, L−1) whose Jordan product is related to the Lie product by

{x, y, z} = [[x, y], z],

for any x, z ∈ Lσ, y ∈ L−σ, σ = ±. In this case, V = (L1, L−1) is called the

associated Jordan pair.

Since 1
2
∈ Φ, the product on the associated Jordan pair is unique and

given by

Qxy =
1

2
{x, y, x} =

1

2
[[x, y], x].

Conversely, for any 3-graded Lie algebra, the formula above defines a pair

structure on (L1, L−1) whenever 1
6
∈ Φ (see [72, 1.2]).
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One important example of a Jordan 3-graded Lie is the TKK-algebra of

a Jordan pair. It is built as follows:

Construction 4.2.5. Let V = (V +, V −) be a Jordan pair; a pair (δ+, δ−) ∈

EndΦ(V +)× EndΦ(V −) is a derivation of V if it satisfies

δσ({x, y, z}) = {δσ(x), y, z}+ {x, δ−σ(y), z}+ {x, y, δσ(z)}

for any x, z ∈ V σ and y ∈ V −σ, σ = ±. For (x, y) ∈ V the map δ(x, y) :=

(Dx,y, −Dy,x) is a derivation of V (by the identity (JP12) in [62]) called

inner derivation. Denote by IDer(V ) the Φ-module spanned by all inner

derivations of V and define on the Φ-module

TKK(V ) := V + ⊕ IDer(V )⊕ V −

the following product:

[x+ ⊕ γ ⊕ x−, y+ ⊕ µ ⊕ y−] = (γ+x
+ − µ+x

+) ⊕ ( [γ, µ] + δ(x+, y−)

− δ(y+, x−) ) ⊕ (γ−y
−µ−x

−),

where xσ, yσ ∈ V σ and γ = (γ+, γ−), µ = (µ+, µ−) ∈ IDer(V ). Then, it

can be proved that TKK(V ) becomes a Lie algebra (see e.g. [67]). As this

construction has its origin in the fundamental papers [50, 51, 52] by Kantor,

in [53, 54] by Koecher and in [81] by Tits, TKK(V ) is called the Tits-Kantor-

Koecher algebra of V or the TKK-algebra for short. It is easy to check

that the following provides TKK(V ) with a 3-grading:

TKK(V )1 = V +, TKK(V )0 = IDer(V ), TKK(V )−1 = V −.

Moreover, TKK(V ) is a Jordan 3-graded Lie algebra with V as associated

Jordan pair.
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If L is a Jordan 3-graded Lie algebra with associated Jordan pair V , then

the TKK-algebra associated to V is not in general isomorphic to L. Rather,

we have:

Lemma 4.2.6. ([71, 2.8]). Let L be a Jordan 3-graded Lie algebra with asso-

ciated Jordan pair V . Then TKK(V ) ∼= L/CV , where CV = {x ∈ L0 |

[x, L1] = 0 = [x, L−1]} = Z(L) ∩ L0.

The following lemma gives us a lot of information about the relationship

between ideals of Jordan pairs and certain ideals of their respective TKK-

algebras.

Lemma 4.2.7. Let V be a semiprime Jordan pair, and I = (I+, I−) an ideal

of V . Define by IdTKK(V )(I) = I+ ⊕ ( [I+, V −] + [V +, I−] ) ⊕ I− the graded

ideal of TKK(V ) generated by I. Then AnnTKK(V )(IdTKK(V )(I)) = 0 if and

only if AnnV (I) = 0.

Proof. See [39, Lemma 2.9].

Let us recall what may be the main definition of this section.

Definition 4.2.8. (See [39, 2.5].) Let V be a semiprime Jordan pair contained

in a Jordan pair W . It is said that W is a pair of M-quotients of V if for

every 0 6= q ∈ W σ (with σ = ±) there exists an ideal I of V with AnnV (I) = 0

such that

{q, I−σ, V σ}+ {q, V −σ, Iσ} ⊆ V σ and {I−σ, q, V −σ} ⊆ V −σ,

with either

{q, I−σ, V σ}+ {q, V −σ, Iσ} 6= 0 or {I−σ, q, V −σ} 6= 0.

We are now in a position to show the equivalence between Jordan pairs

of quotients and Lie algebras of quotients of their respective TKK-algebras.
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Theorem 4.2.9. Let V be a semiprime subpair of a Jordan pair W . Then

the following conditions are equivalent:

(i) W is a pair of M-quotients of V .

(ii) TKK(W ) is an algebra of quotients of TKK(V ).

Proof. (i) ⇒ (ii) is [39, Theorem 2.10].

(ii) ⇒ (i). Take 0 6= qσ ∈ W σ (σ = ±) and apply Propositions 1.4.26 and

1.4.22 to find a 3-graded ideal I of TKK(V ) with AnnTKK(V )(I) = 0 and such

that 0 6= [I, qσ] ⊆ TKK(V ). We claim that IV := I1⊕( [I1, V
−]+[V +, I−1] )⊕

I−1 is an essential ideal of TKK(V ), where I = I1 ⊕ I0 ⊕ I−1. Let K =

K1 ⊕K0 ⊕K−1 be a nonzero 3-graded ideal of TKK(V ); the semiprimeness

of V implies that either I1 ∩ K1 6= 0 or I−1 ∩ K−1 6= 0 (see the proof of

[41, Proposition 2.6]) and therefore IV ∩K 6= 0. By Lemma and 1.4.10 (iii),

AnnTKK(V )(IV ) = 0, and by Lemma 4.2.7, AnnV ((I1, I−1)) = 0.

Denote I1 and I−1 by I+ and I−, respectively. Then, for σ = ± we have:

{qσ, I−σ, V σ} ⊆ [ [qσ, I−σ], V σ] ⊆ V σ

{I−σ, qσ, V −σ} ⊆ [ [I−σ, qσ], V −σ] ⊆ V −σ

{qσ, V −σ, Iσ} ⊆ [ [qσ, V −σ], Iσ] ⊆ [ [V −σ, Iσ], qσ] ⊆ V σ

To complete the proof we have to check that either {qσ, I−σ, V σ} +

{qσ, V −σ, Iσ} 6= 0 or {I−σ, qσ, V −σ} 6= 0. We have just showed that

AnnTKK(V )(IV ) = 0; using [79, Lemma 2.11] we obtain that AnnTKK(W )(IV ) =

0 and hence 0 6= [IV , q
σ] ⊆ [I, qσ] ⊆ TKK(V ) which implies that either

[(IV )0, q
σ] 6= 0 or [I−σ, qσ] 6= 0. In the first case, we have:

0 6= [(IV )0, q
σ] = [ [Iσ, V −σ], qσ] + [ [V σ, I−σ], qσ]

⊆ {Iσ, V −σ, qσ}+ {V σ, I−σ, qσ}.
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In the second case, apply that the representation of IDer(V ) on V is

faithful to obtain

0 6= [ [I−σ, qσ], V −σ] = {I−σ, qσ, V −σ} or

0 6= [ [I−σ, qσ], V σ] ⊆ [ [V σ, I−σ], qσ] = {V σ, I−σ, qσ} = {qσ, I−σ, V σ}.

Inspired by C. Mart́ınez’s idea [65] of moving from a Jordan setting to

a Lie one through the TKK-construction and using the construction of the

maximal algebra of quotients of a semiprime Lie algebra given by M. Siles

Molina [79], E. Garćıa and M. A. Gómez Lozano built [39] the maximal Jordan

system of quotients of a strongly non-degenerate Jordan system.

Our next objective is to examine the relationship between maximal Jordan

pairs of M-quotients (see [39, 3.1 and Theorem 3.2] for precise definition) and

maximal algebras of quotients of Jordan 3-graded Lie algebras.

Lemma 4.2.10. Let V = (V +, V −) be a strongly non-degenerate Jordan

pair. If I is an essential ideal of TKK(V ), then there exists an essential ideal

Î of V such that IdTKK(V )(Î) is contained in I.

Proof. Consider an essential ideal I of TKK(V ), which is a strongly non-

degenerate Lie algebra (by [38, Proposition 2.6]); in particular, it is semiprime.

Therefore, we may apply Lemma 4.1.1 (i) and (ii) to find an essential graded

ideal Î−1⊕ Î0⊕ Î1 of TKK(V ) contained in I. It can be shown, as in the proof

of Theorem 4.2.9, that

Î−1 ⊕ ( [Î1, V
−] + [V +, Î−1] )⊕ Î1 ⊆ I

is an essential ideal of TKK(V ) and, by means of Lemma 4.2.7, Î := (Î1, Î−1)

is an essential ideal of V .
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For a strongly non-degenerate Jordan pair V , denote its maximal Jordan

pair of M-quotients by Qm(V ). (See [39, 3.1] for its construction.)

Theorem 4.2.11. Assume that 1
6
∈ Φ.

(i) Let V be a strongly non-degenerate Jordan pair. Then

Qm(V ) =
(

(Qm(TKK(V )))1, (Qm(TKK(V )))−1

)
is the maximal Jordan pair of M-quotients of V.

(ii) If L = L−1 ⊕ L0 ⊕ L1 is a strongly non-degenerate Jordan 3-graded Lie

algebra satisfying that Qm(L) is Jordan 3-graded, then

Qm(L) ∼= Qm(TKK(V )) ∼= TKK(Qm(V )),

where V = (L1, L−1) is the associated Jordan pair of L.

Proof. (i). The Lie algebras QFTKK
(TKK(V )) and Qm(TKK(V )) are iso-

morphic by Lemmas 4.2.7 and 4.2.10 (see [39] for the definition of

QFTKK
(TKK(V )). On the other hand, Theorem 4.1.2 (i) implies that they

are isomorphic to Qgr−m(TKK(V )). (Note that TKK(V ) is a strongly non-

degenerate Lie algebra by [39, Proposition 2.6] so, it has sense to consider its

maximal graded algebra of quotients.) Now, the result follows by [39, Theorem

3.2].

(ii). The Lie algebra L has zero center because it is strongly non-

degenerate, hence L ∼= TKK(V ) (use Lemma 4.2.6) and, obviously, Qm(L) ∼=

Qm(TKK(V )). This one is a strongly non-degenerate Lie algebra (by [79,

Proposition 2.7 (iii)]) and has a 3-grading (by (i)) with associated Jordan

pair Qm(V ). The hypothesis on Qm(L) allows us to use again Lemma 4.2.6

obtaining Qm(L) ∼= TKK(Qm(V )).
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The following is an example of a strongly non-degenerate Jordan 3-graded

Lie algebra L such that its maximal (graded) algebra of quotients Qm(L) is

not Jordan 3-graded. If we denote by V the associated Jordan pair of L,

we obtain that TKK(Qm(V )) is not (graded) isomorphic to Qm(L)) (since

TKK(Qm(V )) is Jordan 3-graded) which thereby means that the condition

on L in Theorem 4.2.11 (ii) is necessary.

Example 4.2.12. Denote by M∞(R) = ∪∞n=1Mn(R) the algebra of infinite

matrices with a finite number of nonzero entries and consider

L := sl∞(R) = {x ∈M∞(R) | tr(x) = 0},

which is a simple Lie algebra of countable dimension (see [10, Theorem 1.4]).

Denote by eij the matrix whose entries are all zero except for the one in

row i and column j and consider the orthogonal idempotents e := e11 and

f := diag(0, 1, 1, . . .) (note that f /∈M∞(R)); we can see L as a 3-graded Lie

algebra by doing L = L−1 ⊕ L0 ⊕ L1, where L−1 = eLf , L0 = {exe + fxf |

x ∈ L} and L1 = fLe.

Let exe + fxf be an element of L0 with x = (xij) ∈ Mn(R) for some

n ∈ N. Taking into account that tr(x) = 0, we obtain:

exe+ fxf =
n∑
i=2

n∑
j=2

[−e1j, xijei1] ∈ [L−1, L1],

This shows that L0 = [L−1, L1], i.e., L is Jordan 3-graded.

In what follows, we will prove that Der(L) is not Jordan 3-graded. The

simplicity of L implies that Qm(L) ∼= Der(L); on the other hand, the strongly

non-degeneracy of L allows us to apply [39, Proposition 1.7] obtaining that

Der(L) is 3-graded. Now, take, δ := ad e; one can easily check that:

δ(L−1) ⊆ L−1, δ(L0) = 0 and δ(L1) ⊆ L1,
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which means that δ ∈ Der(L)0. But note that δ /∈ [Der(L)−1, Der(L)1]

since the elements of [Der(L)−1, Der(L)1] have zero trace on every finite di-

mensional subspace of L while the trace of δ is always nonzero. Therefore,

[Der(L)−1, Der(L)1]  Der(L)0, i.e., Der(L) is not Jordan 3-graded.

Remark 4.2.13. Note that there exist non-trivial Jordan 3-graded Lie alge-

bras such that their maximal (graded) algebra of quotients are also Jordan

3-graded Lie algebras. For example:

Let F be a field and consider the Lie algebra

L := sl2(F ) = {x ∈M2(F ) | tr(x) = 0}.

We have that L is a Jordan 3-graded Lie algebra with the grading L =

L−1 ⊕ L0 ⊕ L1, where

L−1 = Fe21, L0 = F (e11 − e22) and L1 = Fe12.

Moreover, L is a finite dimensional semisimple Lie algebra and applying [79,

Lemma 3.9] we obtain that L ∼= Qm(L).

We want to obtain now an analogue to Theorem 4.2.11 for Jordan triple

systems and Jordan algebras. Let us first start with Jordan triple systems.

Definition 4.2.14. A Jordan triple system over Φ is a Φ-module T to-

gether with a quadratic map P : T → EndΦ(T ) with linearizations denoted

by

Px,z y = {x, y, z} = Lx,y z,

where Px,z = Px+z−Px−Pz, satisfying the following identities in all the scalar

extensions of Φ:

(i) Lx,y Px = Px Ly,x
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(ii) LPxy, y = Lx, Pyx

(iii) PPxy = PxPyPx

for every x, y ∈ T .

As in case of Jordan pairs, we shall deal with Jordan triple systems T

over a ring of scalars Φ containing 1
2
. Notice that {x, y, z} = {z, x, y} and

{x, y, x} = 2Pxy for every x, y, z ∈ T .

We refer the reader to [62, 70, 67] for basic results, notation and termi-

nology on Jordan triple systems. Again, we give here some definitions and

properties.

Definitions 4.2.15. Let T be a Jordan triple system.

1. An element x ∈ T is called an absolute zero divisor if Px = 0.

2. We say that T is strongly non-degenerate (non-degenerate in the

terminology of [39]) if it has no nonzero absolute zero divisors.

3. A submodule I of T is called an ideal of T if it satisfies PI T + PT I +

{T, T, I} ⊆ I or equivalently, {I, T, T}+ {T, I, T} ⊆ I.

4. The triple T is said semiprime if PII = 0 imply I = 0, being I an

ideal of T , and is called prime if PIJ = 0 imply I = 0 or J = 0, for

I and J ideals of T . A strongly prime triple is a prime and strongly

non-degenerate triple.

5. For a subset X of T , the annihilator of X in V is

AnnT (X) = {z ∈ T | {z, X, T} = {z, T, X} = {T, z, X} = 0}.

One can check that AnnT (I) is an ideal of T if I is so.
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The following remark describe the connection between Jordan pairs and

Jordan triple systems; it will be a useful tool for our purpose.

Remark 4.2.16. ([62, 1.13]). Every Jordan triple system T gives rise to a

Jordan pair (T, T ) with quadratic maps Qx = Px for every x ∈ T . It is called

the double Jordan pair associated to T and denoted by V (T ).

From the definitions, it is obvious that a Jordan triple system T is strongly

non-degenerate if and only if its double Jordan pair V (T ) is so.

After the definition of the double Jordan pair V (T ) of a Jordan triple

system T , a natural question rises: is there any relationship between ideals

of T and ideals of V (T )? In the subsequent lemma we answer easily this

question. We will use it without further mention.

Lemma 4.2.17. Let T be a Jordan triple system and V (T ) its double Jordan

pair. Then

(i) If I is an ideal of T the pair V (I) = (I, I) is an ideal of V (T ).

(ii) If Î = (Î+, Î−) is an ideal of V (T ) the components Î+ and Î− of Î are

ideals of T .

(iii) Every ideal Î = (Î+, Î−) of V (T ) contains an ideal of the form V (I)

for some ideal I of T .

Proof. Keeping in mind the definition of ideals for Jordan pairs and the defi-

nition of ideals for Jordan triples (i) and (ii) follow directly from the cons-

truction of the double Jordan pair of a Jordan triple system.

If Î = (Î+, Î−) is an ideal of V (T ), (iii) follows from (ii) taking the ideal

I = Î+ ∩ Î− of T .

We now examine the behavior of essentiality and annihilators of ideals of

a Jordan triple system with respect to ideals of its double Jordan pair.
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Lemma 4.2.18. Let T be a Jordan triple system, I an ideal of T and V (T )

the double Jordan pair associated to T . Then:

(i) I is essential in T if and only if V (I) is so in V (T ).

(ii) AnnV (T )(V (I)) = (AnnT (I), AnnT (I)).

(iii) If Î = (Î+, Î−) is an ideal of V (T ) having zero annihilator, then the

ideal I = Î+ + Î− of T has zero annihilator.

Proof. (i). Suppose first that I is an essential ideal of T and take a nonzero

ideal Î = (Î+, Î−) of V (T ); so either Î+ 6= 0 or Î− 6= 0 and applying the

essentiality of I we obtain that either I ∩ Î+ 6= 0 or I ∩ Î− 6= 0. In any case,

V (I) ∩ Î 6= 0 which means that V (I) is an essential ideal of V (T ).

To prove the converse, consider a nonzero ideal U of T . Since we are

assuming V (I) essential in V (T ) we obtain V (I) ∩ V (U) 6= 0 and hence

I ∩ U 6= 0 which concludes the proof.

(ii). By definition AnnV (T )(V (I)) = (AnnV (T )(V (I))+, AnnV (T )(V (I))−),

where for σ = ±, we have

AnnV (T )(V (I))σ = {x ∈ V (T )σ | {x, V (I)−σ, V (T )σ} =

{x, V (T )−σ, V (I)σ} = {V (T )−σ, x, V (I)−σ} = 0} =

{x ∈ T | {x, I, T} = {x, T, I} = {T, x, I} = 0} =

AnnT (I).

(iii). Given Î = (Î+, Î−) an ideal of V (T ) with AnnV (T )(Î) = 0. Consider

the ideal I = Î+ + Î− of T ; then V (I) = (I, I) is an ideal of V (T ) contained

on Î and, hence satisfying that AnnV (T )(V (I)) = 0. Thus, by (ii) it follows

AnnT (I) = 0.
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As it happened in the Lie and Jordan pair contexts, one can identify the

essential ideals of a Jordan triple system T with the ideals of T having zero

annihilator, provided T is semiprime.

Lemma 4.2.19. Let I be an ideal of a semiprime Jordan triple system T .

Then:

(i) I ∩ AnnT (I) = 0.

(ii) I is an essential ideal of T if and only if AnnT (I) = 0.

Proof. (i). If we show that the ideal K := I∩AnnT (I) satisfies that PKK = 0,

the conclusion holds by the semiprimeness of T . Given x ∈ K ⊆ AnnT (I) we

have {x, K, T} = 0 since K ⊆ I. So {K, K, T} = 0 and hence PKK = 0, as

desired.

(ii). Let I be an essential ideal of T ; then I ∩ AnnT (I) = 0 by (i), and

by the essentiality, AnnT (I) = 0. Conversely, suppose that AnnT (I) = 0 and

take an ideal K of T satisfying I ∩K = 0. Taking into account that I and K

are ideals of T , we obtain for x ∈ K that

{x, I, T}, {x, T, I}, {T, x, I} ⊆ I ∩K = 0,

hence, K ⊆ AnnT (I) = 0. This shows that I is an essential ideal of T .

Definition 4.2.20. (See [39, 4.1]). Let T be a semiprime Jordan triple system

contained in a Jordan triple system Q. We say that Q is a triple system of

M-quotients of T if for each 0 6= q ∈ Q there exists an ideal I of T with

AnnT (I) = 0 such that

0 6= {q, I, T}+ {q, T, I}+ {I, q, T} ⊆ T.

Theorem 4.2.21. Let T be a strongly non-degenerate subtriple system of a

Jordan triple system Q. Then the following conditions are equivalent:
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(i) Q is a triple system of M-quotients of T .

(ii) V (Q) is a pair of M-quotients of V (T ).

(iii) TKK(V (Q)) is an algebra of quotients of TKK(V (T )).

Proof. Note that V (T ) is a strongly non-degenerate Jordan pair by the

strongly non-degeneracy of T . So V (T ) is semiprime and it has sense to speak

about Jordan pairs of M-quotients of it.

(ii) ⇔ (iii) follows from Theorem 4.2.9.

(i) ⇒ (ii). Take 0 6= q ∈ V (Q)σ = Q (σ = ±) from (i) we find an ideal I

of T with AnnT (I) = 0 satisfying that

0 6= {q, I, T}+ {q, T, I}+ {I, q, T} ⊆ T.

The conclusion follows now by applying Lemma 4.2.18 (ii) to the ideal V (I) =

(I, I) of V (T ).

(ii) ⇒ (i). Taking into account that V (T ) = (T, T ), given 0 6= q ∈ Q =

V (Q)σ, by (ii) we can find an ideal Î = (Î+, Î−) of V (T ) with AnnV (T )(Î) = 0

such that 0 6= {q, Î−σ, T}+ {q, T, Îσ}+ {Î−σ, q, T} ⊆ T . By Lemma 4.2.18

(iii) the ideal I = Î+ + Î− of T satisfies AnnT (I) = 0 and

0 6= {q, I, T}+ {q, T, I}+ {I, q, T} ⊆ T,

which concludes the proof.

For a strongly non-degenerate Jordan triple system T , denote its max-

imal Jordan triple system of M-quotients by Qm(T ). (See [39, 4.5] for its

construction.)

Theorem 4.2.22. Let T be a strongly non-degenerate Jordan triple system

over a ring of scalars Φ containing 1
6
. Then the maximal Jordan triple system
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of M-quotients of T is the first component of the maximal algebra of quotients

of the TKK-algebra of the double Jordan pair V (T ) = (T, T ) associated to T ,

i.e.,

Qm(T ) = (Qm(TKK(V (T ))))1.

Proof. The Jordan pair V (T ) = (T, T ) is strongly non-degenerate since T is

so. By Theorem 4.2.11 (i) we have

Qm(V (T )) =
(

(Qm(TKK(V (T ))))1, (Qm(TKK(V (T ))))−1

)
.

The conclusion follows now from Lemma 4.2.18 (i) and (iii), Lemma 4.2.19

(ii) and from [39, 4.5 and Theorem 4.6].

We will finish the chapter with an analogue to Theorem 4.2.11 for Jordan

algebras. We first recall some definitions.

Definition 4.2.23. ([62]). A Jordan algebra over Φ is a Φ-module J to-

gether with quadratic maps

U : J → EndΦ(J) and 2 : J → J (square)

with linearizations denoted by x ◦ y, Ux,z y = {x, y, z} = Vx,y z, where Ux,z =

Ux+z−Ux−Uz and x◦y = (x+y)2−x2−y2 satisfying the following identities

in all the scalar extensions of Φ:

(i) Vx,xy = x2 ◦ y

(ii) Ux(x ◦ y) = x ◦ Uxy

(iii) Uxx
2 = (x2)2

(iv) UxUyx
2 = (Uxy)2

(v) Ux2 = U2
x
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(vi) UUxy = UxUyUx

for every x, y ∈ J .

Since we will assume that 1
2
∈ Φ, it is enough to consider the lineariza-

tion of the square, ◦, because it is related with the linear triple product by

2{x, y, z} = (x ◦ y) ◦ z − (x ◦ z) ◦ y + (y ◦ z) ◦ x.

Definition 4.2.24. An element of a Jordan algebra J is said to be an ab-

solute zero divisor if Ux = 0. The algebra J is called strongly non-

degenerate (non-degenerate in the terminology of [39]) if it has no nonzero

absolute zero divisors.

Definition 4.2.25. ([39, 5.1]). A Jordan overalgebra Q of a Jordan algebra J

is said to be a Jordan algebra of M-quotients of J if for every 0 6= q ∈ Q

there exists an ideal I of J having zero annihilator such that 0 6= q ◦ I ⊆ J .

Remark 4.2.26. ([62, 1.13]). Note that a Jordan algebra J gives rise to a

Jordan triple system JT by simply forgetting the squaring and taking P = U .

From definitions, it is clear that J is non-degenerate if and only if JT is so.

We call JT the Jordan triple system associated to J.

Denoting by Qm(J) the maximal Jordan algebra of M-quotients of a

strongly non-degenerate Jordan algebra J (see [39, 5.4] for its construction),

the announced result is the following:

Theorem 4.2.27. Let J be a strongly non-degenerate Jordan algebra over a

ring of scalars Φ containing 1
6
. Then

Qm(J) = Qm(JT ) = (Qm(TKK(V (JT ))))1,

is the maximal Jordan algebra of quotients of J , where JT denotes the Jordan

triple system associated to J and V (JT ) = (JT , JT ) is the double Jordan pair

associated to JT .
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Proof. Note that JT is a strongly non-degenerate Jordan triple system by the

strongly non-degeneracy of the Jordan algebra J . From [39, 5.4 and Theorem

5.5] it follows that the maximal Jordan algebra of quotients Qm(J) is Qm(JT ).

Finally apply Theorem 4.2.22 to reach the conclusion.



Chapter 5

Zero product determined
matrix algebras

The bulk of this chapter is devoted to the problem of whether the algebra

Mn(B) of n×n matrices over a unital algebra B is zero (Lie, Jordan) product

determined. In Section 4.2 we prove that for the ordinary product the answer

is “yes” for every algebra B and every n ≥ 2, and in Section 4.3 we show the

same for the Jordan product - however, for n ≥ 3 and additionally assuming

that B contains the element 1
2

(i.e., 2 is invertible in B). The Lie product

case, treated in Section 4.4, is more entangled. We will see that Mn(B) is not

zero Lie product for all unital algebras B. However, if B is zero Lie product

determined, then Mn(B) is so.

5.1 Introduction and definitions

Throughout the chapter we shall consider algebras over a fixed commutative

unital ring C.

Let us start by introducing the basic definitions and results related with

the problems that we will study in this chapter.

Definition 5.1.1. Let A be an algebra over C. By A2 we will denote the

C-linear span of all elements of the form xy where x, y ∈ A. Let X be a

111
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C-module and let {. , . } : A × A → X be a C-bilinear map. Consider the

following conditions:

(a) for all x, y ∈ A such that xy = 0 we have {x, y} = 0;

(b) there exists a C-linear map T : A2 → X such that {x, y} = T (xy) for

all x, y ∈ A.

Trivially, (b) implies (a). We shall say that A is a zero product determined

algebra if for every C-module X and every C-bilinear map {. , . } : A×A→

X, (a) implies (b).

So far A could be any nonassociative algebra. Assume now that A is

associative. Recall that A becomes a Lie algebra, usually denoted by A−, if

we replace the original product by the so-called Lie product given by [x, y] =

xy− yx. Similarly, A becomes a Jordan algebra, denoted by A+, by replacing

the original product by the Jordan product given by x ◦ y = xy + yx.

Definition 5.1.2. We say that A is a zero Lie product determined al-

gebra if A− is a zero product determined algebra. That is to say, for every

C-bilinear map {. , . } : A × A → X, where X is any C-module, we have

that {. , . } must be of the form {x, y} = T ([x, y]) for some C-linear map

T : [A,A]→ X provided that [x, y] = 0 implies {x, y} = 0.

Definition 5.1.3. The algebra A is said to be a zero Jordan product

determined algebra if A+ is a zero product determined algebra, that is,

{. , . } must be of the form {x, y} = T (x ◦ y) for some C-linear map T :

A ◦ A→ X provided that x ◦ y = 0 implies {x, y} = 0.

There are various reasons for introducing these concepts. Let us mention

one important motivation which can most be easily explained. This is the

connection to the thoroughly studied problems of describing zero

(associative, Lie, Jordan) product preserving linear maps.
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Motivation 5.1.4. We say that a linear map S from an algebra A into an

algebra B preserves zero products if for all x, y ∈ A, xy = 0 implies

S(x)S(y) = 0.

The standard goal is to show that, roughly speaking, S is “close” to a

homomorphism. Defining

{. , . } : A× A→ B by {x, y} = S(x)S(y)

we see that {. , . } satisfies (a); now if A is zero product determined, then it

follows that

S(x)S(y) = T (xy) for all x, y ∈ A,

for some linear map T which brings us quite close to our goal. For example,

if we further assume that A and B are unital and S(1) = 1, then it follows

that

T (x) = T (x · 1) = S(x)S(1) = S(x) for every x ∈ A.

Hence S = T is a homomorphism; let us point out that without this assump-

tion the problem remains nontrivial.

Similar remarks can be stated for zero Lie product preserving maps (also

known as commutativity preserving maps) and zero Jordan product preser-

ving maps. The approach that we have just outlined was used in recent papers

[2] (for zero product preservers) and [18] (for zero Lie product preservers).

We point out now two general facts about the problem of showing that a

bilinear map {. , . } : A× A→ X satisfies the condition (b).

Remarks 5.1.5. It is clear that the only possible way of defining T : A2 → X

is given by T (
∑

t xtyt) =
∑

t{xt, yt}. The problem, however, is to show that

T is well-defined. Accordingly, (b) is equivalent to the condition

(b’) if xt, yt ∈ A, t = 1, . . . ,m, are such that
∑m

t=1 xtyt = 0, then∑m
t=1{xt, yt} = 0.
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Secondly, if A is a unital algebra, then (b) is equivalent to

(b”) if x1, x2, y1, y2 ∈ A, are such that
∑2

t=1 xtyt = 0, then
∑2

t=1{xt, yt} = 0.

Indeed, if (b”) is fulfilled, then we infer from x · y − xy · 1 = 0 that {x, y} −

{xy, 1} = 0. Thus {x, y} = T (xy) where T : A2 → X is defined by T (z) =

{z, 1}.

Incidentally, Lemma 5.4.6 below shows that the assumption that A is

unital cannot be omitted. This lemma actually considers the case when A

is a Lie algebra. Let us say that the two remarks above hold for algebras

that may be nonassociative. In what follows, however, by an algebra we will

always mean an associative algebra.

5.2 Zero (associative) product determined

matrix algebras

In what follows, we will consider the matrix algebra Mn(B) where B is a

unital algebra (associative, but not necessarily commutative). As usual, a

matrix unit will be denoted by eij. By beij, where b ∈ B, we denote the

matrix whose (i, j) entry is b and all other entries are 0.

Theorem 5.2.1. If B is a unital algebra, then Mn(B) is a zero product

determined algebra for every n ≥ 2.

Proof. Set A = Mn(B). Let X be a C-module and let {. , . } : A×A→ X be a

bilinear map such that for all x, y ∈ A, xy = 0 implies {x, y} = 0. Throughout

the proof, a and b will denote arbitrary elements in B and i, j, k, l will denote

arbitrary indices.

We begin by noticing that

{aeij, bekl} = 0 if j 6= k, (5.1)
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since aeij bekl = 0. Further, we claim that

{aeij, bejl} = {ab eik, ekl} if j 6= k. (5.2)

Indeed, as k 6= j we have (aeij + ab eik)(bejl − ekl) = 0, which implies {aeij +

ab eik, bejl − ekl} = 0. Apply (5.1) and (5.2) follows.

Replacing a by ab and b by 1 in (5.2) we get

{abeij, ejl} = {ab eik, ekl}. (5.3)

Together with (5.2) this yields

{aeij, bejl} = {ab eij, ejl}. (5.4)

Let xt, yt ∈ A be such that
∑m

t=1 xt yt = 0, and let us show that∑m
t=1{xt, yt} = 0 (as pointed out above, we could assume that m = 2, but

this does not simplify our proof). Writing

xt =
n∑
i=1

n∑
j=1

atij eij and yt =
n∑
k=1

n∑
l=1

btkl ekl

it follows, by examining the (i, l) entry of xtyt, that for all i and l we have

m∑
t=1

n∑
j=1

atij b
t
jl = 0. (5.5)

Note that
m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

{atij eij, btkl ekl}.

By (5.1) this summation reduces to

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1

{atij eij, btjl ejl}.

Using first (5.4) and then (5.3) we see that

{atij eij, btjl ejl} = {atijbtjl eij, ejl} = {atijbtjl ei1, e1l}.



116 5.3. Zero Jordan product determined matrix algebras

Therefore

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1

{atijbtjl ei1, e1l} =

n∑
i=1

n∑
l=1

{( m∑
t=1

n∑
j=1

atijb
t
jl

)
ei1, e1l

}
= 0 by (5.5).

5.3 Zero Jordan product determined matrix

algebras

In the recent paper [33] M. A. Chebotar, W.-F. Ke, P.-H. Lee and R.-B. Zhang

have considered zero Jordan product preserving maps on matrix algebras.

Fortunately, some arguments from this paper are almost directly applicable

to the more general situation treated here. There is one problem, however,

which we have to face: unlike in [33], where the map {x, y} = S(x) ◦ S(y) is

studied, we cannot assume in advance that our map {. , . } treated below is

symmetric (in the sense that {x, y} = {y, x} for all x and y).

Theorem 5.3.1. If B is a unital algebra containing the element 1
2
, then

Mn(B) is a zero Jordan product determined algebra for every n ≥ 3.

Proof. Let A = Mn(B), let X be a C-module, and let {. , . } : A×A→ X be

a bilinear map such that for all x, y ∈ A, x ◦ y = 0 implies {x, y} = 0. Let

a and b denote arbitrary elements from B and let i, j, k, l denote arbitrary

indices.

First, since aeij ◦ bekl = 0 if i 6= l and j 6= k, it is clear that

{aeij, bekl} = 0 if i 6= l and j 6= k. (5.6)

Let i 6= k. Then aeik ◦ (ekk − eii) = 0 and so

{aeik, ekk} = {aeik, eii}. (5.7)
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Similarly,

{ekk, aeik} = {eii, aeik}. (5.8)

From (aeik−eii)◦ (aeik+ekk) = 0, i 6= k, we derive {aeik−eii, aeik+ekk} = 0.

Since {aeik, aeik} = 0 and {eii, ekk} = 0 by (5.6), it follows that {aeik, ekk} =

{eii, aeik}. This identity together with (5.7) and (5.8) yields

{aeik, eii} = {aeik, ekk} = {eii, aeik} = {ekk, aeik}. (5.9)

Now let i 6= k and j 6= k. Then (aeij + abeik) ◦ (bejk − ekk) = 0, and

hence {aeij + ab eik, bejk − ekk} = 0. By (5.6) this reduces to {aeij, bejk} =

{ab eik, ekk}. On the other hand, we also have (bejk− ekk) ◦ (aeij + abeik) = 0,

and so {bejk − ekk, aeij + abeik} = 0. By (5.6) this reduces to {bejk, aeij} =

{ekk, abeik}. Since {ab eik, ekk} = {ekk, abeik} by (5.9), it follows that

{aeij, bejk} = {ab eik, ekk} = {bejk, aeij} if i 6= k and j 6= k. (5.10)

If i 6= k, then (aeik−eii)◦(abeik+bekk) = 0 and (abeik+bekk)◦(aeik−eii) =

0. By a similar argument as before this yields

{aeik, bekk} = {ab eik, ekk} = {bekk, aeik} if i 6= k. (5.11)

Setting i = j in (5.10) we get

{aeii, beik} = {abeik, ekk} = {beik, aeii} if i 6= k.

Further, {abeik, ekk} = {abeik, eii} by (5.9), and so we have

{aeii, beik} = {abeik, eii} = {beik, aeii}.

For our purposes it is more convenient to rewrite this identity so that the

roles of i and k, and the roles of a and b are replaced. Hence we have

{bekk, aki} = {baeki, ekk} = {aeki, bekk} if i 6= k. (5.12)
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Further, we claim that

{aeij, beji} =
1

2
({abeii, eii}+ {baejj, ejj}) . (5.13)

If i 6= j, then
(

1
2
abeii + aeij − 1

2
baejj

)
◦ (beji − eii + ejj) = 0 and consequently{

1

2
ab eii + aeij −

1

2
ba ejj, beji − eii + ejj

}
= 0.

Using (5.6), (5.9), (5.10), (5.11) and (5.12) this yields

{aeij, beji} =
1

2
({abeii, eii}+ {baejj, ejj}) .

We still have to prove (5.13) for i = j.

Let i 6= k. Then (aeii − beik + beki − aekk) ◦ (beii − aeik + aeki − bekk) = 0

and this gives {aeii− beik + beki−aekk, beii−aeik +aeki− bekk} = 0. By (5.6),

(5.9), (5.10) and (5.11) this can be reduced to

{aeii, beii}+ {aejj, bejj} =
1

2
({(a ◦ b)eii, eii}+ {(a ◦ b)ejj, ejj}) . (5.14)

Since n ≥ 3, we can choose l such that l /∈ {i, k}. Applying (5.14) we get

({aeii, beii}+ {aekk, bekk}) + ({aeii, beii}+ {aell, bell}) =

1

2
({(a ◦ b)eii, eii}) + {(a ◦ b)ekk, ekk}) +

1

2
({(a ◦ b)eii, eii}+ {(a ◦ b)ell, ell}) =

{(a ◦ b)eii, eii}+
1

2
({(a ◦ b)ekk, ekk}+ {(a ◦ b)ell, ell}) =

{(a ◦ b)eii, eii}+ {aekk, bekk}+ {aell, bell}.

Consequently, {aeii, beii} = 1
2
{(a ◦ b)eii, eii} which proves the i = j case of

(5.13).

Let xt, yt ∈ A be such that
∑m

t=1 xt ◦ yt = 0. We have to prove that∑m
t=1{xt, yt} = 0. Writing

xt =
n∑
i=1

n∑
j=1

atij eij and yt =
n∑
k=1

n∑
l=1

btkl ekl
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it follows that for all i and l we have

m∑
t=1

n∑
j=1

(atijb
t
jl + btija

t
jl) = 0. (5.15)

First notice that

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

{atij eij, btkl ekl}

and by (5.6) this summation reduces to

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{atij eij, btjl ejl}+
m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1
k 6=j

{atij eij, btki eki}+

m∑
t=1

n∑
i=1

n∑
j=1

{atij eij, btji eji}.

Using (5.10) and (5.11) in the first two summations and (5.13) in the third

summation, we see that this is further equal to

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{atijbtjl eil, ell}+
m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1
k 6=j

{btkiatij ekj, ejj}+

m∑
t=1

n∑
i=1

n∑
j=1

(
1

2

(
{atijbtji eii, eii}+ {btjiatij ejj, ejj}

))
.

Rewriting the second summation as

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l6=i

{btijatjl eil, ell},

and the third summation as

1

2

m∑
t=1

n∑
i=1

n∑
j=1

({atijbtji eii, eii}+ {btijatji eii, eii}),
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it follows that

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{(atijbtjl + btija
t
jl) eil, ell}+

1

2

m∑
t=1

n∑
i=1

n∑
j=1

{(atijbtji + btija
t
ji) eii, eii} =

n∑
i=1

n∑
l=1
l 6=i

{
m∑
t=1

n∑
j=1

(atijb
t
jl + btija

t
jl) eil, ell

}
+

1

2

n∑
i=1

{
m∑
t=1

n∑
j=1

(atijb
t
ji + btija

t
ji) eii, eii

}
;

each of these two summations is 0 by (5.15).

We were unable to find out whether or not Theorem 5.3.1 also holds for

n = 2; therefore we leave this as an open problem.

5.4 Zero Lie product determined matrix

algebras

In the preceding sections, we have shown that (square) matrix algebras (over

unital algebras) are always zero product determined, and under some techni-

cal restrictions they are also zero Jordan product determined. At this point,

natural questions arise:

What can we say about the Lie product? Are Mn(B) zero Lie product

determined?

We will show that this does not hold true for every unital algebra B.

However, we will prove that Mn(B) is zero Lie product determined provided

B is so.

Theorem 5.4.1. If B is a zero Lie product determined unital algebra, then

Mn(B) is a zero Lie product determined algebra for every n ≥ 2.
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Proof. Let A = Mn(B), let X a C-module, and let {. , . } : A× A→ X be a

bilinear map such that {x, y} = 0 whenever x, y ∈ A are such that [x, y] = 0.

First notice that {x, x} = 0 for all x ∈ A, and hence {x, y} = −{y, x}

for all x, y ∈ A. Further, the equality {x2, x} = 0 holds for all x ∈ A, and

linearizing it we get

{x ◦ y, z}+ {z ◦ x, y}+ {y ◦ z, x} = 0

for all x, y, z ∈ A. We shall use these identities without mention.

Our first goal is to derive various identities involving elements of the form

aeij. In what follows a and b will be arbitrary elements in B and i, j, k, l will

be arbitrary indices.

First, it is clear that

{aeij, bekl} = 0 if j 6= k and i 6= l (5.16)

since [aeij, bekl] = 0. Similarly,

{aeii, eii} = 0. (5.17)

Also, if i 6= j, then [a eij + a eji, eij + eji] = 0, and so

{a eij + a eji, eij + eji} = 0.

As {a eij, eij} = 0 and {a eji, eji} = 0 by (5.16), it follows that

{a eij, eji} = −{a eji, eij} if i 6= j. (5.18)

Next, we claim that

{aeij, bejk} = {ab eik, ekk} = −{ab eik, eii} if i 6= k. (5.19)

Indeed, since [ab eik, eii + ekk] = 0 we have {ab eik, eii + ekk} = 0, and so

{ab eik, ekk} = −{ab eik, eii}. We now consider two cases, when j 6= k and

when j = k. In the first case we have, since also i 6= k,

[aeij + ab eik, bejk − ekk] = 0, and hence {aeij + ab eik, bejk − ekk} = 0.
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From (5.16) it follows that {aeij, ekk} = 0 and {ab eik, bejk} = 0, and so the

identity above reduces to

{aeij, bejk} = {ab eik, ekk}.

In the second case, when j = k, we have [aeik − eii, ab eik + bekk] = 0, which

implies {aeik−eii, ab eik+bekk} = 0. Since {aeik, ab eik} = 0 and {eii, bekk} =

0 by (5.16), it follows that

{aeik, bekk} = {eii, ab eik} = −{ab eik, eii},

and (5.19) is thereby proved.

Let us prove that

{aeij, beji} = {ab eij, eji}+ {a ejj, b ejj}. (5.20)

In view of (5.17) we may assume that i 6= j. Then we have

{aeij, beji} = {eij ◦ aejj, beji} = −{beji ◦ eij, aejj} − {a ejj ◦ beji, eij}.

Since {beii, aejj} = 0 by (5.16) and {ab eij, eji} = −{ab eji, eij} by (5.18),

(5.20) follows.

Finally, we claim that

{aeij, beji} = {ab eik, eki} − {ba ejk, ekj}+ {a ekk, b ekk}. (5.21)

Assume first that i 6= j. Taking into account (5.17) and (5.20) we see that

(5.21) holds if k = i or k = j. If k 6= i and k 6= j, then

{a eij, b eji} = {a eik ◦ ekj, beji} = −{ba ejk, ekj}+ {a eik, b eki},

and so applying (5.20) we get (5.21). Now suppose that i = j. Then

{a eii, b eii} = {a eik ◦ eki, b eii} = −{ba eik, eki}+ {a eik, b eki}.
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From (5.20) it follows that

{a eii, b eii} = {ab eik, eki} − {ba eik, eki}+ {a ekk, b ekk},

and so (5.21) holds is this case as well.

Now pick xt, yt ∈ A such that
∑m

t=1[xt, yt] = 0. The theorem will be

proved by showing that
∑m

t=1{xt, yt} = 0. Write

xt =
n∑
i=1

n∑
j=1

atijeij and yt =
n∑
k=1

n∑
l=1

btklekl

where atij, b
t
kl ∈ B. Computing the (i, l) entry of [xt, yt] we see that

m∑
t=1

n∑
j=1

(atijb
t
jl − btijatjl) = 0 for all i, l. (5.22)

By (5.16) we have

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

{atijeij, btklekl} =

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{atijeij, btjlejl}+
m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1
k 6=j

{atijeij, btkieki}

+
m∑
t=1

n∑
i=1

n∑
j=1

{atijeij, btjieji}.

Rewriting the second summation as

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{atjlejl, btijeij} = −
m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{btijeij, atjlejl},
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and using (5.19) we see that the sum of the first and the second summation

is equal to

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l6=i

({atijbtjleil, ell} − {btijatjleil, ell}) =

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l6=i

{(atijbtjl − btijatjl)eil, ell} =

n∑
i=1

n∑
l=1
l 6=i

{(
m∑
t=1

n∑
j=1

(atijb
t
jl − btijatjl)

)
eil, ell

}
= 0

by (5.22). Hence

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

{atijeij, btjieji}.

We claim that this sum is equal to zero. Applying (5.21) we have that

{atijeij, btjieji} = {atijbtjiei1, e1i} − {btjiatijej1, e1j}+ {atij e11, b
t
ji e11}.

Therefore

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

{atijbtjiei1, e1i} −
m∑
t=1

n∑
i=1

n∑
j=1

{btjiatijej1, e1j}+

m∑
t=1

n∑
i=1

n∑
j=1

{atij e11, b
t
ji e11}.

Rewriting the second summation as

m∑
t=1

n∑
i=1

n∑
j=1

{btijatjiei1, e1i}

and applying (5.22), we obtain

m∑
t=1

{xt, yt} =
m∑
t=1

n∑
i=1

n∑
j=1

{(atijbtji − btijatji)ei1, e1i}+



5. Zero product determined matrix algebras 125

m∑
t=1

n∑
i=1

n∑
j=1

{atij e11, b
t
ji e11} =

n∑
i=1

{(
m∑
t=1

n∑
j=1

(atijb
t
ji − btijatji)

)
ei1, e1i

}
+

m∑
t=1

n∑
i=1

n∑
j=1

{atij e11, b
t
ji e11} =

m∑
t=1

n∑
i=1

n∑
j=1

{atij e11, b
t
ji e11}.

Thus, the proof will be complete by showing that

m∑
t=1

n∑
i=1

n∑
j=1

{atij e11, b
t
ji e11} = 0. (5.23)

Consider the map 〈 . , .〉 : B×B → X defined by 〈a, b〉 = {a e11, b e11} for

all a, b ∈ B. It is clear that 〈 . , .〉 is bilinear and has the property that [a, b] = 0

implies 〈a, b〉 = 0. Since B is a zero Lie product determined algebra, 〈 . , .〉

also satisfies the condition that
∑m

t=1[at, bt] = 0 implies
∑m

t=1〈at, bt〉 = 0.

Taking l = i in (5.22) we have that

m∑
t=1

n∑
j=1

(atijb
t
ji − btijatji) = 0

for every i, and hence
m∑
t=1

n∑
i=1

n∑
j=1

[atij, b
t
ji] = 0.

This implies
m∑
t=1

n∑
i=1

n∑
j=1

〈atij, btji〉 = 0,

which is of course equivalent to (5.23).

As consequence, we have

Corollary 5.4.2. If B is a commutative unital algebra, then Mn(B) is a zero

Lie product determined algebra for every n ≥ 2.
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Proof. Note that commutative algebras are trivially zero Lie product deter-

mined. Thus the conclusion follows from Theorem 5.4.1.

Remark 5.4.3. In the simplest case whereB = C this corollary was proved in

[18]. In fact, for this case [18, Theorem 2.1] tells us more than Corollary 5.4.2.

In particular it states that for a C-bilinear map {. , . } : A × A → X, where

A = Mn(C) and X is a C-module, the following conditions are equivalent:

(a) if x, y ∈ A are such that [x, y] = 0, then {x, y} = 0;

(b) there is a C-linear map T : [A,A]→ X such that {x, y} = T ([x, y]) for

all x, y ∈ A;

(c) {x, x} = {x2, x} = 0 for all x ∈ A;

(d) {x, x} = {xy, z}+ {zx, y}+ {yz, x} = 0 for all x, y, z ∈ A.

The condition (c) has proved to be important because of the applications to

the commutativity preserving map problem. So it is tempting to try to show

that these conditions are equivalent in some more general algebras A.

We remark that trivially (b) implies (c) and (d), (a) implies (c), and also

(d) implies (c) as long as A is 3-torsion-free (just set x = y = z in (d)). In

the next example we show that in the algebra M2(C[x, y]) neither (c) nor (d)

implies (a), and so [18, Theorem 2.1] cannot be generalized to matrix algebras

over commutative algebras.

Example 5.4.4. Let A = M2(C[x, y]). We define a C-bilinear map

{. , . } : A× A→ C

as follows:

{xe11, ye11} = {xe22, ye22} = 1, {ye11, xe11} = {ye22, xe22} = −1,

{xe12, ye21} = {xe21, ye12} = 1, {ye21, xe12} = {ye12, xe21} = −1,
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and

{ueij, vekl} = 0

in all other cases, that is, for all remaining choices of monomials u and v and

i, j, k, l ∈ {1, 2}. Since [xe11, ye11] = 0 and {xe11, ye11} = 1, {. , . } does not

satisfy (a) (or (b)). However, as we check below the map {. , . } satisfies (c)

and (d).

Proof. In order to show (c); take X = ae11 + be12 + ce21 + de22 be in A and

notice that the only coefficients of a, b, c and d involved in our computations

are the respective ones to 1, x and y so let us write

a = α0 + α1x+ α2y + . . .

b = β0 + β1x+ β2y + . . .

c = γ0 + γ1x+ γ2y + . . .

d = δ0 + δ1x+ δ2y + . . .

where αi, βi, γi, δi ∈ C for i = 0, 1, 2. Then we compute:

{X, X} = α1α2{xe11, ye11}+ α2α1{ye11, xe11}+ β1γ2{xe12, ye21}+

β2γ1 {ye12, xe21}+ γ1β2 {xe21, ye12}+ γ2β1{ye21, xe12}+

δ1δ2{xe22, ye22}+ δ2δ1{ye22, xe22} = α1α2 − α2α1 + β1γ2 −

β2γ1 + γ1β2 − γ2β1 + δ1δ2 − δ2δ1 = 0.

Since X2 = (a2 + bc)e11 + (ab+ bd)e12 + (ac+ cd)e21 + (bc+ d2)e22 we may

write

a2 + bc = α2
0 + β0γ0 + (2α0α1 + β0γ1 + β1γ0)x+

(2α0α2 + β0γ2 + β2γ0) y + . . .

ab+ bd = α0β0 + β0δ0 + (α0β1 + α1β0 + β0δ1 + β1δ0)x+
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(α0β2 + α2β0 + β0δ2 + β2δ0) y + . . .

ac+ cd = α0γ0 + γ0δ0 + (α0γ1 + α1γ0 + γ0δ1 + γ1δ0)x+

(α0γ2 + α2γ0 + γ0δ2 + γ2δ0) y + . . .

bc+ d2 = β0γ0 + δ2
0 + (β0γ1 + β1γ0 + 2δ0δ1)x+

(β0γ2 + β2γ0 + 2δ0δ2) y + . . .

So, we have

{X2, X} = (2α0α1α2 + β0γ1α2 + β1γ0α2){xe11, ye11} +

(2α1α0α2 + α1β0γ2 + α1β2γ0){ye11, xe11} +

(α0β1γ2 + α1β0γ2 + β0δ1γ2 + β1δ0γ2){xe12, ye21} +

(α0γ2β1 + α2γ0β1 + γ0δ2β1 + γ2δ0β1){ye21, xe12} +

(α0γ1β2 + α1γ0β2 + γ0δ1β2 + γ1δ0β2){xe21, ye12} +

(α0β2γ1 + α2β0γ1 + β0δ2γ1 + β2δ0γ1){ye12, xe21} +

(β0γ1δ2 + β1γ0δ2 + 2δ0δ1δ2){xe22, ye22} +

(β0γ2δ1 + β2γ0δ1 + 2δ0δ2δ1){ye22, xe22} = 2α0α1α2 + β0γ1α2 +

β1γ0α2 − 2α1α0α2 − α1β0γ2 − α1β2γ0 + α0β1γ2 + α1β0γ2 +

β0δ1γ2 + β1δ0γ2 − α0γ2β1 − α2γ0β1 − γ0δ2β1 − γ2δ0β1 +

α0γ1β2 + α1γ0β2 + γ0δ1β2 + γ1δ0β2 − α0β2γ1 − α2β0γ1 −

β0δ2γ1 − β2δ0γ1 + β0γ1δ2 + β1γ0δ2 + 2δ0δ1δ2 − β0γ2δ1 −

β2γ0δ1 − 2δ0δ2δ1 = 0.

Hence, (c) is satisfied.

We will finish this chapter by finding an example of a unital algebra B

such that Mn(B) is not a zero Lie product determined algebra, which thereby

shows that indeed one has to impose some condition on B in Theorem 5.4.1.
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For this we need two preliminary results which are of independent interest.

The first one, however, is not really surprising, and possibly it is already

known. Anyway, the following proof, which was suggested to us by M. A.

Chebotar, is very short.

Until the end of this section we are going to assume that C is a field. Let

us denote it by F .

Lemma 5.4.5. Let A = F 〈x1, x2, . . . , x2n〉 be a free algebra in 2n non-

commuting indeterminates. Then [x1, x2] + [x3, x4] + . . .+ [x2n−1, x2n] cannot

be written as a sum of less than n commutators of elements in A.

Proof. Let ai, bi ∈ A, i = 1, . . . ,m, be such that

[a1, b1] + [a2, b2] + . . .+ [am, bm] = [x1, x2] + [x3, x4] + . . .+ [x2n−1, x2n]. (5.24)

We have to show that m ≥ n. We proceed by induction on n. The case

when n = 1 is trivial, so we may assume that n > 1. Considering the degrees

of monomials appearing in (5.24) we see that we may assume that all ai’s and

bi’s are linear combinations of the xi’s. In particular, bm =
∑2n

j=1 µjxj with

µj ∈ F . Without loss of generality we may assume that µ2n 6= 0. Of course,

we may replace any indeterminate xi by any element in A in the identity

(5.24). So, let us substitute 0 for x2n−1 and −
∑2n−2

j=1 µ−1
2nµjxj for x2n. Then

we get

[c1, d1] + . . .+ [cm−1, dm−1] = [x1, x2] + . . .+ [x2n−3, x2n−2]

where all ci’s and di’s are linear combinations of x1, . . . , x2n−2. By induction

assumption we thus have m− 1 ≥ n− 1, and so m ≥ n.

For any n ≥ 2, let Bn denote the unital F -algebra generated by

1, u1, . . . , u2n with the relation [u1, u2] + [u3, u4] + . . .+ [u2n−1, u2n] = 0. That
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is,

Bn = F 〈x1, x2, . . . , x2n〉/I

where I is the ideal of F 〈x1, x2, . . . , x2n〉 generated by

[x1, x2] + [x3, x4] + . . .+ [x2n−1, x2n],

and ui = xi + I.

Lemma 5.4.6. There exists a bilinear map 〈. , . 〉 : Bn × Bn → F such

that for all vt, wt ∈ Bn,
∑n−1

t=1 [vt, wt] = 0 implies
∑n−1

t=1 〈vt, wt〉 = 0, but

〈u1, u2〉 + 〈u3, u4〉 + . . . + 〈u2n−1, u2n〉 6= 0. Moreover, there is no linear map

T : [Bn, Bn]→ F such that 〈x, y〉 = T ([x, y]).

Proof. The set S consisting of 1 and all possible products ui1 . . . uik of the ui’s

spans the linear space Bn, and the elements u1, u2 are linearly independent.

Therefore we can define a bilinear map 〈. , . 〉 : Bn × Bn → F such that

〈u1, u2〉 = −〈u2, u1〉 = 1 and 〈s, t〉 = 0 for all other possible choices of s, t ∈ S.

In particular, 〈u1, u2〉+ 〈u3, u4〉+ . . .+ 〈u2n−1, u2n〉 = 1.

Assume now that vt, wt ∈ Bn are such that
∑n−1

t=1 [vt, wt] = 0. We can write

vt = λtu1 + µtu2 + pt and wt = αtu1 + βtu2 + qt,

where λt, µt, αt, βt ∈ F and pt, qt lie in the linear span of S \ {u1, u2}. Note

that
n−1∑
t=1

〈vt, wt〉 =
n−1∑
t=1

(λtβt − µtαt).

Thus, the lemma will be proved by showing that
∑n−1

t=1 (λtβt − µtαt) = 0.

Let us write

vt = λtx1 + µtx2 + lt + ft + I and wt = αtx1 + βtx2 +mt + gt + I,
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where λt, µt, αt, βt ∈ F , lt,mt are linear combinations of x3, . . . , x2n and

ft, gt are linear combinations of monomials of degrees 0 or at least 2. Since∑n−1
t=1 [vt, wt] = 0, it follows that

n−1∑
t=1

[λtx1 + µtx2 + lt + ft, αtx1 + βtx2 +mt + gt] ∈ I.

Therefore,

n−1∑
t=1

[λtx1 + µtx2 + lt + ft, αtx1 + βtx2 +mt + gt] =

ω
(

[x1, x2] + [x3, x4] + . . .+ [x2n−1, x2n]
)

+ h,

where ω ∈ F and h ∈ I is a linear combination of monomials of degree at least

3. Considering the degrees of monomials involved in this identity it clearly

follows that

n−1∑
t=1

[λtx1+µtx2+lt, αtx1+βtx2+mt] = ω
(

[x1, x2]+[x3, x4]+. . .+[x2n−1, x2n]
)
.

We may now apply Lemma 5.4.5 and conclude that ω = 0. Thus,

0 =
n−1∑
t=1

[λtx1 + µtx2 + lt, αtx1 + βtx2 +mt] =
(n−1∑
t=1

(λtβt − µtαt)
)

[x1, x2] + f,

where f is a linear combination of monomials different from x1x2 and x2x1.

Consequently,
∑n−1

t=1 (λtβt − µtαt) = 0.

Finally, if T : [Bn, Bn]→ F is a linear map satisfying that

〈x, y〉 = T ([x, y])

for every x, y ∈ Bn, we would have

0 = T ([u1, u2] + [u3, u4] + . . .+ [u2n−1, u2n]) =

T ([u1, u2]) + T ([u3, u4]) + . . .+ T ([u2n−1, u2n]) =

〈u1, u2〉+ 〈u3, u4〉+ . . .+ 〈u2n−1, u2n〉, a contradiction.
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Remarks 5.4.7. Note that Lemma 5.4.6 in particular shows that Bn is not

a zero Lie product determined algebra for every n ≥ 2.

We remark in this context that it is very easy to find examples of algebras

that are not zero product determined or zero Jordan product determined,

simply because there are algebras without nonzero zero divisors (domains),

as well as such that the Jordan product of any of their two nonzero elements

is always nonzero. On the contrary, finding algebras that are not zero Lie

product determined is more difficult since in every algebra we have plenty of

elements commuting with each other.

We are now in a position to show that matrix algebras are not always zero

Lie product determined.

Theorem 5.4.8. For every n ≥ 1, the algebra Mn(Bn2+1) is not zero Lie

product determined.

Proof. By Lemma 5.4.6 there exists a bilinear map 〈. , . 〉 : Bn2+1×Bn2+1 → F

such that
∑n2

t=1[vt, wt] = 0 implies
∑n2

t=1〈vt, wt〉 = 0, but there are ut ∈ Bn2+1,

t = 1, . . . , 2n2 + 2, such that

n2+1∑
t=1

[u2t−1, u2t] = 0 while
n2+1∑
t=1

〈u2t−1, u2t〉 6= 0.

Set A = Mn(Bn2+1), and define {. , . } : A× A→ F according to

{v, w} =
n∑
i=1

n∑
j=1

〈vij, wji〉,

where vij and wij are entries of the matrices v and w, respectively. We claim

that {. , . } satisfies the condition

“[v, w] = 0⇒ {v, w} = 0”,

but does not satisfy the condition

“
∑
t

[vt, wt] = 0⇒
∑
t

{vt, wt} = 0”.
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The latter is obvious, since we may take vt = u2t−1e11 and wt = u2te11,

t = 1, . . . , n2 + 1. Now pick v and w in A such that [v, w] = 0, i. e. vw = wv.

Considering just the diagonal entries of matrices on both sides of this identity

we see that
n∑
j=1

vijwji =
n∑
j=1

wijvji

for every i = 1, . . . , n. Accordingly,

n∑
i=1

n∑
j=1

vijwji =
n∑
i=1

n∑
j=1

wijvji.

Rewriting
∑n

i=1

∑n
j=1wijvji as

∑n
i=1

∑n
j=1wjivij we thus see that∑n

i=1

∑n
j=1[vij, wji] = 0. However, this implies

∑n
i=1

∑n
j=1〈vij, wji〉 = 0, that

is, {v, w} = 0.
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Cerramos la tesis analizando los objetivos que hemos alcanzando.

En el Caṕıtulo 1 nos planteábamos esencialmente dos metas, a saber: dar

una noción de álgebra de cocientes para álgebras de Lie graduadas que gene-

ralizara la dada en [79] por Siles Molina para álgebras de Lie no graduadas

y extender a álgebras de Lie de tipo “skew” uno de los principales resultados

que Perera y Siles Molina probaron en [75] acerca de la relación que hay entre

las álgebras de cocientes de álgebras asociativas y de Lie.

La primera de ellas fue alcanzada en la Sección 1.4 en la que introdujimos

este nuevo concepto (ver Definiciones 1.4.12); seguidamente nos cercioramos

de que efectivamente ésta era una buena generalización del caso no graduado

(ver Observación 1.4.13). Hecho esto y siguiendo el modelo de [79] para el

caso no graduado, estudiamos las principales propiedades (ver Proposiciones

1.4.18, 1.4.22) aśı como la relación con el caso no graduado (ver Lema 1.4.24

y Proposición 1.4.26).

Nuestro segundo objetivo en el Caṕıtulo 1 surgió a ráız de la reflexión

que Perera y Siles Molina haćıan en [75] acerca de que los resultados [75,

Teorema 2.12 y Proposición 3.5] debeŕıan tenerse también para álgebras de

Lie de tipo “skew”; efectivamente, como probamos en Teorema 1.5.19, estaban

en lo cierto.

En el Caṕıtulo 2, continuando con la idea de extender las nociones de

álgebras de cocientes de álgebras de Lie a álgebras de Lie graduadas cons-
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truimos en la Sección 2.2, tras un breve repaso a la construcción de [79] (ver

Construcción 2.1.6) para el caso no graduado, el álgebra graduada de cocientes

maximal de un álgebra de Lie graduada semiprima (ver Construcción 2.2.3 y

Teorema 2.2.4).

El objetivo del resto del Caṕıtulo 2 fue calcular Qm(L) para ciertas

álgebras de Lie. Concretamente, en la Sección 2.3 calculamos Qm(A−/Z) para

un álgebra asociativa prima A con centro Z; teniendo en cuenta que los ele-

mentos del álgebra de cocientes maximal de un álgebra de Lie son clases de

derivaciones parciales definidas en ideales esenciales y que nuestra álgebra de

Lie A−/Z proviene de un álgebra asociativa, construimos (ver Construcción

2.3.1) una nueva álgebra de Lie que denotamos por Derm(A) y probamos que,

bajo ciertas hipótesis técnicas, Qm(A−/Z) coincide con Derm(A) (ver Teo-

rema 2.3.7). En la Sección 2.4 obtuvimos resultados similares (ver Teorema

2.4.10) para el cálculo de Qm(K/ZK), donde K era el álgebra de los elemen-

tos skew de un álgebra asociativa prima con involución, considerando ahora

en la construcción de SDerm(A) las derivaciones de A que conmutan con la

involución.

En el Caṕıtulo 3 estudiamos si dos de las más importantes propiedades de

las álgebras de cocientes asociativas continuaban siendo ciertas en el contexto

de álgebras de Lie; concretamente:

1. Si el álgebra de cocientes maximal Qm(L) de un álgebra de Lie

semiprima L, coincide con el álgebra de cocientes maximal Qm(I) para

todo ideal esencial I de L.

2. Si tomar Qm(.) era una operación cerrada, esto es, si Qm(Qm(L)) =

Qm(L) para toda álgebra de Lie semiprima L.

Como vimos en la Sección 3.1, la respuesta a la primera pregunta era afir-

mativa suponiendo que nuestra álgebra de Lie L fuese fuertemente semiprima
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(ver Definición 3.1.1 y Teorema 3.1.7). En la Sección 3.2 estudiamos la misma

cuestión para álgebras de Lie graduadas haciendo uso del álgebra graduada de

cocientes maximal construida en el caṕıtulo anterior. En cuanto a la segunda

pregunta, introdujimos en la Sección 3.3 la noción de álgebra de Lie maximal-

cerrada que es aquélla para la que Qm(Qm(L)) = Qm(L); dimos ejemplos de

álgebras de Lie maximal-cerradas (ver Corolarios 3.3.2 , 3.3.3, Proposición

3.3.5 y Teorema 3.3.6) y haciendo uso del ejemplo dado por Passman (ver

Ejemplo 3.3.7) probamos (ver Teorema 3.3.8) que hay álgebras de Lie que

no son maximal-cerradas, o sea, que la respuesta a la segunda pregunta es

negativa en general.

En el Caṕıtulo 4 probamos que las álgebras graduadas de cocientes de

álgebras de Lie graduadas constituyen el marco perfecto para situar los co-

cientes de sistemas de Jordan introducidos por Garćıa y Gómez Lozano en

[39]. Comenzamos probando (ver Teorema 4.1.2) en la Sección 4.1 que el

álgebra de cocientes maximal de un álgebra de Lie 3-graduada semiprima es

de nuevo 3-graduada y además coincide con el álgebra graduada de cocientes

maximal. Tras esto y haciendo uso de la construcción de Tits-Kantor-Koecher

obtuvimos relaciones, en la Sección 4.2, entre los sistemas de cocientes maxi-

males de sistemas de Jordan y las álgebras de Lie de cocientes maximales (ver

Teoremas 4.2.11, 4.2.22 y 4.2.27).

En el Caṕıtulo 5 tratamos el problema de averiguar cuándo las ma-

trices Mn(B) quedan determinadas por un producto nulo; en la Sección

5.2 probamos (Teorema 5.2.1) que, para el producto ordinario, las matri-

ces Mn(B) quedan determinadas por el producto nulo para cualquier álgebra

unitaria B y todo n ≥ 2; en la Sección 5.3 demostramos (Teorema 5.3.1)

lo mismo para el producto Jordan pero suponiendo que n ≥ 3 y que 2 es

inversible en B. Vimos en la Sección 5.4 que el caso del producto de Lie
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requiere la hipótesis adicional de que el álgebra B quede determinada por

el producto de Lie nulo (Teorema 5.4.1). Concluimos la sección mostrando

(Teorema 5.4.8) que esta hipótesis es necesaria.
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Notation

∅ empty set
N positive integers
Z integers
Q rational numbers

F [x] algebra of polynomials
F (x) field of fractions of polynomials

Reg(R) set of regular elements
Mn(R) matrix ring
Mn(A) matrix algebra

eij matrix whose entries all are zero except for the one in
row i and column j

tr(x) trace of a matrix
∗ involution
∼= isomorphism
≤ substructure
∪ union
∩ intersection

⊆ ⊂ subset
( proper subset
/ ideals

/gr graded ideals
/e essential ideals

Ie(A) family of essential ideals
Idr(R) family of dense right ideals

Supp(X) support of a subset of a graded algebra
Ann(X) AnnY (X) annihilator of X in Y

QAnn(X) QAnnY (X) quadratic annihilator of X in Y

Z ZA center of an algebra
char(A) characteristic of an algebra
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deg(A) degree of an algebra
A0 opposite algebra

M(A) multiplication algebra
L Lie algebra

A− Lie algebra that arises from an associative algebra
K KA skew elements of an algebra with *

K/ZK [K, K]/Z[K,K] skew Lie algebras
Der(A) Lie algebra of derivations
Inn(A) Lie algebra of inner derivations

SDer(A) Lie algebra of derivations that commute with *
Qr
max(R) maximal right ring of quotients
Qr(R) two-sided right ring of quotients
Qs(R) symmetric Martindale ring of quotients
Qm(L) maximal Lie algebra of quotients

Qgr−m(L) maximal Lie graded algebra of quotients
V = (V +, V −) Jordan pair

T Jordan triple system
J Jordan algebra

TKK(V ) TKK algebra of Jordan pair of V

V (T ) double Jordan pair of a Jordan triple system T

JT Jordan triple system associated to a Jordan algebra J

Qm(V ) maximal Jordan pair of M-quotients
Qm(T ) maximal Jordan triple system of M-quotients
Qm(J) maximal Jordan algebra of M-quotients
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2n+1-grading, 16, 89
3-graded Lie algebra, 89, 90, 92, 95

absolute zero divisor, 19, 94, 101, 102,
108

affine algebra, 62, 86
annihilator, 2, 6, 15, 19, 24, 25, 33, 35,

94, 102–105, 108

center, 2, 3, 19–21, 45, 100

degree of an
algebra, 45, 61, 62, 64–68, 77–81, 83,
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element, 45

dense
extension, VI, 30, 33–35
right ideal, 8, 9
subalgebra, VI, VII, 32–35, 37, 40

derivation, 4, 44–48, 56, 63, 65, 96

essential
associative ideal, 56
ideal of a

Jordan pair, 94, 99
Jordan triple system, 103, 104
Lie algebra, 5, 6, 9, 46, 47, 56, 72,

90, 94, 99
Lie ideal, VIII
right ideal, 8, 9

extended centroid, 13, 14, 45, 63

field of fractions, 7, 9

generalized polynomial identity, 30
with involution, 14

graded
associative algebra, 16, 40, 41
essential ideal, 17–19, 25, 27, 47, 48,

81, 82, 90

homomorphism, 17
ideal, VIII, 17–19, 23–26, 47, 81, 82,

90, 97
ideally absorbed, 24, 25, 27, 55
Lie algebra, V, VI, 1, 16–20, 40, 48,

81
of quotients, V, VI, 20–22, 24, 25,

27–29, 41, 50, 55
partial derivation, see derivation
prime Lie algebra, 19, 23, 81, 82
semiprime

associative algebra, 40, 41
Lie algebra, 18, 19, 23, 27–29, 43,

48–50, 52, 53, 81, 82, 89, 92
semiprime Lie algebra, VIII
strongly

non-degenerate Lie algebra, 19
prime Lie algebra SP, 81, 82
semiprime Lie algebra SSP, 81, 82

subalgebra, V, 17, 23, 41, 49
weak Lie algebra of quotients, 20–

24, 26, 28

homogeneous
absolute zero divisor, 19
component, 18, 19, 25, 26, 29, 50, 52,

54
element, 16, 19, 48
total zero divisor, 20, 21

ideally absorbed, 15, 30
inner derivation, see derivation
integral domain, 7, 9
involution, VI, 3, 5, 14, 30, 32, 37, 40,

63–68, 77–81, 83

Jordan
3-graded Lie algebra, 95–97, 99, 100
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algebra, 107, 108
of quotients, 108

derivation, see derivation
pair, 29, 93–97, 102

of quotients, 97, 98
triple system, 101, 102, 108

of quotients, 105

left faithful ring, 8, 9
Lie algebra, 2, 3, 5, 46, 56, 57, 63, 66, 86

of derivations, 4, 59, 74, 75
of quotients, VI, VII, 1, 14–16, 29,

37, 40, 97, 98, 105
Lie derivation, see derivation

max-closed Lie algebra, 83, 84, 86, 87
maximal

graded Lie algebra of quotients, 47,
52, 53, 56, 90, 92

Jordan algebra of quotients, 108
Jordan pair of quotients, 100
Jordan triple system of quotients,

106
left ring of quotients, 10
Lie algebra of quotients, VIII, 43,

44, 46, 47, 56, 72, 83, 90, 92
right algebra of quotients, 33
right ring of quotients, 9

multiplication
algebra, 31, 34, 35
operator, 31, 33, 34

multiplicative
prime algebra, 31, 32
semiprime algebra, 30–33

opposite algebra, 5, 40, 41

partial derivation, see derivation
PI algebra, 86
prime

associative algebra, 32, 61, 86
with involution, 64–68, 77–80

Jordan pair, 94
Jordan triple system, 102
Lie algebra, VIII, 4, 70–72

quadratic annihilator, 22, 23

regular element, 7, 8
right

order, 7
quotient ring, 8, 11

semiprime
associative algebra, 31–33, 40, 56,

59, 73
with involution, VI, 14, 37, 63

Jordan pair, 94, 97, 98
Jordan triple system, 102, 104, 105
Lie algebra, VIII, 4, 6, 19, 70–72, 83,

90
ring, 9

simple
associative algebra, 77, 83

with involution, 81, 83
Lie algebra, 83

skew
element, 3
Lie algebra, VII, 3, 5, 30, 32, 37, 63

strongly
non-degenerate

alternative algebra, 32
Jordan algebra, 32, 108
Jordan pair, 94, 99, 100, 102, 105,

106
Jordan triple system, 102, 105,

106, 108
Lie algebra, 19, 92, 99, 100

nondegenerate
Jordan algebra, X
Jordan pair, IX
Lie algebra, IX, X

prime Jordan pair, 94
prime Jordan triple system, 102
prime Lie algebra SP, VIII, 70–72,

74, 75, 79, 83
semiprime Lie algebra SSP, VIII,

70–72
support, 16
symmetric Martindale quotients, VI, 14,

37, 40, 41, 57, 62, 66, 68

TKK algebra, 29, 96, 97, 105, 106
total zero divisor, 20, 21
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trivial grading, 16, 21, 55

weak Lie algebra of quotients, 15, 20, 28

zero Jordan product determined, see
zero product determined

zero Lie product determined, see
zero product determined

zero product determined, X, XII, 109,
110, 112, 114, 118, 123, 126, 130
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