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Introduction

The notion of ring of quotients has played an important role in the deve-
lopment of the theories of associative and commutative rings. Its origin can
be placed between 1930 and 1940 in the works of Ore and Osano on the

construction of the total ring of fractions.

In order to ease the difficult task of finding a ring of quotients of a given
ring, Ore proved that a necessary and sufficient condition (the well-known
right Ore condition) for a ring R to have a classical right ring of quotients
is that for any regular element @ € R and any b € R there exist a regular

element ¢ € R and d € R such that bc = ad.

At the end of 50’s, Goldie, Lesieur and Croisot characterized the rings that
are classical right orders in semiprime and right artinian rings. This result is
nowadays known as Goldie’s Theorem. (See [55, Chapter IV].) In 1956,
Utumi introduced in [82] a more general notion of right quotient ring, that
would generalize the others quotients: an overring @) of a ring R is said to be
a (general) right quotient ring of R if given p, ¢ € @, with p # 0, there
exists a € R such that pa # 0 and ga € R.

In his paper, Utumi proved that every ring R without total left zero divisor

(it happens for example when R is semiprime) has a maximal right ring of

r

" ox(R) and constructed it. Maximal in the sense that every right

quotients @)

T

" op(R) via a monomorphism which

quotient ring of R can be embedded into )

is the identity when restricted to R.

I11
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The fact that, in the associative case, rings of quotients allow a deeper un-
derstanding of certain classes of rings motivated to several authors to extend

these notions and results to the non-associative setting.

The study of Jordan algebras of quotients has its origin in the question
raised by Jacobson [47, p. 426] of whether it would be possible to imbed a
Jordan domain in a Jordan division algebra, emulating Ore’s construction
in the associative setting. This problem inspired to many authors to study
suitable algebras of quotients for Jordan algebras and also to try to adapt

Goldie’s theory in the Jordan setting.

The search of a Jordan version of Goldie’s Theorem was solved in the case
of special Jordan algebras J = H(A, %) by D. J. Britten and S. Montgomery.
(See [20, 21, 22, 69].) A definitive solution for linear Jordan algebras was
given by E. Zelmanov in [85, 86] making use of his fundamental result on the
structure theory of strongly prime Jordan algebras. Later on A. Fernandez
Lépez, E. Garcia Rus and F. Montaner extended [37] this result to quadratic

Jordan algebras.

Recently, C. Martinez [25] solved the original problem of finding analogues
of Ore’s ring of fractions by a different approach. In her work, she gave an Ore
type condition for a Jordan algebra to have a classical algebra of fractions.
Moreover, making use of the Tits-Kantor-Koecher construction that relates
the Jordan and Lie structures, she built a maximal Jordan algebra of quotients

considering partial derivations.

The study of algebras of quotients for Lie algebras was initiated by M.
Siles Molina in [79]. She introduced, following the original pattern of Utumi,
the notion of a general (abstract) algebra of quotients of a Lie algebra: an
overalgebra () of a Lie algebra L is said to be an algebra of quotients of

L if given p, ¢ € @, with p # 0, there exists a € L such that [a, p] # 0 and
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la, ad z1ad x5 . . . ad z,q], for every n € N and 4, ..., 2, € L.

In keeping with Martinez’s idea of considering equivalence classes of par-
tial derivations, M. Siles Molina built the maximal algebra of quotients of a
semiprime Lie algebra. (See [79, Section 3].)

Using Siles Molina’s construction of maximal Lie algebras of quotients
and inspired by Martinez’s idea of moving from a Jordan setting to a Lie one
through the Tits-Kantor-Koecher construction, E. Garcia and M. A. Goémez
Lozano gave in [39] the notion of maximal Jordan system of quotients for
non-degenerate Jordan systems.

All these ideas have been the starting point for our work. Concretely, one
can regard the main part of this thesis as a development of the theory of
algebras of quotients of Lie algebras and of Jordan systems of quotients. We
will show that Lie algebras of quotients, in particular graded Lie algebras of
quotients, which will be introduced in Chapter 2, are the natural framework
were to settle the different quotients for Jordan systems that we have just
mentioned.

We describe now the organization of this thesis, namely, the content of the
chapters and their sections. The first chapter is devoted to the study of Lie
and graded Lie algebras of quotients; the original results can be found in the
papers [29, 78]. We start by collecting, in Sections 1.1, 1.2 and 1.3, the main
definitions and results that will be needed throughout the chapter and even
the thesis. The bulk of Section 1.4 is to extend the notion of (weak) algebra

of quotients of Lie algebras for graded Lie ones. We define:

Definitions 1.4.12. Let L = @©,cqL, be a graded subalgebra of a graded
Lie algebra () = ®,c Qo -

— We say that @) is a graded algebra of quotients of L if given 0 # p, €
Q, and ¢, € Q,, there exists z, € L, such that [z,, ps] # 0 and [z,, (¢;)] C
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L. The algebra L will be called a graded subalgebra of quotients of ().

— If for any nonzero p, € @, there exists x, € L, such that 0 # [z,, p,] €
L, then we say that () is a graded weak algebra of quotients of L, and
L is called a graded weak subalgebra of quotients of ().

A necessary and sufficient condition for a graded Lie algebra to have a
graded (weak) algebra of quotients is given.

We show (see Proposition 1.4.18) that as it happens in the non-graded
case, graded algebras of quotients of graded Lie algebras inherit primeness,

semiprimeness and strongly non-degeneracy.

The relationship between Lie and associative quotients has studied by
F. Perera and M. Siles Molina in [75] being one of their main results the

following:

Theorem. ([75, Theorem 2.12 and Proposition 3.5]). Let A be a semiprime
associative algebra and ) a subalgebra of QQ;(A) that contains A. Then

(i) A™/Z4 CQ /Zy and [A, Al/Z1a 4 C [Q, Ql/Z|g,q) are dense exten-

sion.

(ii) @ /Zg is an algebra of quotients of A~/Z, and [Q, Q]/Zjg,q) is an

algebra of quotients of [A, A]/Z4, 4.

Our target in Section 1.5 is to extend the result above to skew Lie algebras.

We will prove the following theorem.

Theorem 1.5.19. Let A be a semiprime associative algebra with an involu-
tion * and let @) be a *-subalgebra of Q4(A) containing A. Then the following

conditions are satisfied:

(i) K4 is a dense subalgebra of K¢, and [K 4, K 4] is a dense subalgebra of
[Kq. Kql.
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(ii) Ka/Zk, is a dense subalgebra of K¢ /Zr,,, and [Ka, Kal/Zjk, i, is a

dense subalgebra of [Kq, Kql/Zik,, ko)-

(iii) Kq/Zk, is an algebra of quotients of K,/Zk,, and [Kq, Kql/Zk,, ko)

is an algebra of quotients of [K4, Ka|/Zk ,, k.-

To conclude the chapter we analyze, in Section 1.6, the relationship be-

tween graded (weak) algebras of quotients and (weak) algebras of quotients.

Following the construction given by Siles Molina in [79] of the maximal
algebra of quotients @), (L) of a semiprime Lie algebra L, we build, in Chapter
2, a maximal graded algebra of quotients for every graded semiprime Lie
algebra. Taking into account that the elements of @Q,,(L) arise from partial
derivations defined on essential ideals, our ingredients now are graded partial
derivations and graded essential ideals. With this idea in mind we introduce
in Construction 2.2.3 a new Lie algebra denoted by Qg,—,,(L). In Section
2.2 we show that (g,_,(L) has good properties; let us point out here that it
is a graded algebra of quotients of L and cannot be enlarged.

Our objective in the rest of the chapter is to compute Q),,,(L) for some Lie
algebras. Specifically, we are interested in Lie algebras of the form L = A~ /Z,
where A~ is the Lie algebra associated to a prime associative algebra A with
center Z, and in Lie algebras of the form L = K/Zy, where K is the Lie
algebra of skew elements of a prime associative algebra with involution and
Zk its center. More concretely:

in Section 2.3 we compute @,,(A~/Z); it turns out that (under a very
mild technical assumption) it is equal to a certain Lie algebra that arises from
derivations from nonzero ideals of A into A. Its definition is a bit technical to
be stated here; let us just mention that this Lie algebra lies between Der(A)
and Der(Qs(A)), where Q4(.) denotes the symmetric Martindale algebra of
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quotients of A. Section 2.4 yields similar results for K/Zx (the analogy with
the A~ /Z case is perfect, the only difference is that we have to deal only with

derivations ¢ that preserve *; in the sense that d(z*) = §(x)*).

The purpose of Chapter 3 is to determine when some important properties
of associative algebras of quotients remain true in the context of Lie algebras
of quotients. The problem of whether @,,(I), where I is an essential ideal
of a semiprime Lie algebra L, is equal to @Q,,(L) is considered in Section
3.1. It is well-known that this result is true in the associative case (see e.g.
[15, Proposition 2.1.10]). In the Lie setting, we will give a positive answer
provided that L is strongly semiprime: a Lie algebra L is said to be strongly

semiprime (respectively, strongly prime) if:
(i) L is semiprime (respectively, prime).

(ii) For each n, given 0# U, <...<1U; < U; < L there exists 0 # W < L
such that W C U,,.

Theorem 3.1.7. Let I be an essential ideal of a strongly semiprime Lie
algebra L. Then Q,,(I) is the maximal algebra of quotients of L, i.e. @, () =
Qm(L).

Once we have built the maximal graded algebra of quotients, it is natural
to ask, as we have just made in section above, whether @Qg,_,, (/) will be
isomorphic to Qg,—m (L), for a graded essential ideal I of a graded semiprime

Lie algebra L. This question will be treated in Section 3.2.

Finally, Section 3.3 is devoted to the question of whether @,,((Q,.(L)) is
equal to @,,(L). While in the associative setting in which the answer to this
question is positive (see [15, Theorem 2.1.11]); we show that in certain special
situations this holds true, namely, if L is a simple algebra or if L = A~ /Z,

where A is either a simple associative algebra (satisfying a minor technical
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assumption) or an affine Pl prime algebra (i.e. a finitely generated prime
algebra which satisfies a polynomial identity). In general, however, it is not
true that Q,,((Qm(L)) agrees with Q,,(L); we give an example (see Example
3.3.7) by using the example that Passman gave in [73] to show that take Q(.)

is not a closure operation.

The relationship between Lie algebras of quotients and Jordan systems
of quotients in the sense of [39] is studied in Chapter 4. It is divided in two
sections. The first one deals with 3-graded Lie algebras; we prove that for a
3-graded semiprime Lie algebra L, the maximal algebra of quotients of L is
3-graded too and coincides with the maximal graded algebra of quotients of

L. Namely, the result is the following:

Theorem 4.1.2. Let L = L_1 & Ly® L, be a semiprime 3-graded Lie algebra.
Then:

(i) @m(L) is graded isomorphic to Qgr—m(L).

(ii) If L is strongly non-degenerate and @ is 2 and 3-torsion free, then @, (L)

is a 3-graded strongly non-degenerate Lie algebra.

Finally, in Section 4.2, and making use of the Tits-Kantor-Koecher con-
struction, we relate maximal Jordan systems of quotients to maximal Lie

algebras of quotients. Our main results are the following:

Theorem 4.2.11. Assume that % € .

(i) Let V be a strongly non-degenerate Jordan pair. Then

On(V) = ((Qu(TKK(V))),, (Qu(TKK(V)))_,)

is the maximal Jordan pair of 9-quotients of V.
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(ii) If L =L_1® Lo® L, is a strongly non-degenerate Jordan 3-graded Lie
algebra satisfying that @,,(L) is Jordan 3-graded, then

Qm(L) = Qu(TKK(V)) = TKK(Qm(V)),
where V' = (Ly, L_;) is the associated Jordan pair of L.

Theorem 4.2.22. Let T" be a strongly non-degenerate Jordan triple system
over a ring of scalars ¢ containing %. Then the maximal Jordan triple system
of M-quotients of T is the first component of the maximal algebra of quotients
of the TKK-algebra of the double Jordan pair V(T') = (T, T) associated to
T, ie.,

Qu(T) = (Qu(TKK(V(T).

Theorem 4.2.27. Let J be a strongly non-degenerate Jordan algebra over a

ring of scalars & containing %. Then

Qm(J) = Qm(Jr) = (Qum(TKK(V (J7))))1,

is the maximal Jordan algebra of quotients of J, where Jr denotes the Jordan
triple system associated to J and V' (Jr) = (Jp, Jr) is the double Jordan pair

associated to Jr.

The reader can find the original results of Chapters 2, 3 and 4 in [19, 78].

During the author’s stay in the University of Maribor (Slovenia), she was
working, jointly M. Bresar and M. Grasi¢, in the problem of whether the
matrices M, (B), where B is any unital algebra (over a fixed commutative
ring ('), are zero product determined. We close this thesis with the results
obtained in [17].

The most important motivation to study this problem is the connection to
the thoroughly studied problems of describing zero (associative, Lie, Jordan)

product preserving linear maps (see e.g. [3, 8, 30, 31, 32, 33, 45, 46, 83]).
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S. Banach can be considered the encourager of this mathematical research
area. He was the first one who described isometries on LP([0, 1]) with p # 2
(see [9]). Although Banach did not give the full proof for this case (this was
provided by J. Lamperti [58]), he pointed out that isometries must take func-
tions with disjoint support into functions with disjoint support. This property
arises in a variety of situations and was considered by several authors. For
example, in the theory of Banach lattices there is an extensive literature
about linear maps T : X — Y, where X and Y are Banach lattices, with the

property that

| T(z) [A[T(y) |=0

whenever z, y € X are such that | z | A | y |= 0. Such maps are called
disjointness preserving operators or d-homomorphisms. We refer the
reader to the monograph [1]. The notion of a disjointness preserving operator
was exported to function algebras by E. Beckenstein and L. Narici (see [12]
for general information). Let A and B be function algebras; linear operators
T : A — B with the property 7'(a)T(b) = 0 are called Lamperti operators
or separating maps. They have been studied over many years and by many
authors; this concept of separating maps can be extended to pure algebra.
The most common and natural way is to consider literally the same condition,
that is, a linear map T from an algebra A into an algebra B is called a zero

product preserving map if

r,y€ A, xzy=0=T(x)T(y) =0.

In the recent paper [18], M. Bresar and P. Semrl consider one of the
most studied linear preserver problems, that is, the problem of describing

commutativity preserving linear maps. It is said that a linear map S : A — B
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preserves commutativity if
S(z)S(y) = S(y)S(x) whenever x,y € A, xy=yx.

The assumption of preserving commutativity can be reformulated as the con-
dition of preserving zero Lie product, as follows:

if S: A — B is a linear map which preserves commutativity then the
bilinear map 7' : A x A — B defined by T'(z, y) = [S(x), S(y)] clearly
satisfies

T(x,y) =0 whenever [z, y] =0,

which means that T preserves zero Lie product.

Bresar and Semrl have proved (see [18, Theorem 2.1]) that in the simplest
case where B = C the matrices M, (C') are zero Lie product determined. We
will obtain it as a consequence of our results. In Section 4.2 we show that
for the ordinary product M,,(B) are zero product determined for every unital
algebra B and every n > 2, and in Section 4.3 we prove the same for the
Jordan product; however we will have to assume that n > 3 and 2 invertible
in B. The behavior of the Lie product is very different; this case will be

treated in Section 4.4.




Resumen en espanol
Spanish abstract

La nocién de anillo de cocientes jugd un papel crucial en el desarrollo de la
teoria de los anillos asociativos conmutativos. Podemos situar sus origenes en
los anos 30 y 40, en los trabajos de Ore y Osano acerca de la construccion de
un anillo total de fracciones.

La tarea de encontrar un anillo de cocientes de un anillo dado no es nada
sencilla, por lo que para facilitarla Ore prové que una condicién necesaria
y suficiente (la hoy conocida por todos como condicién de Ore por la
derecha) para que un anillo R tenga un anillo cldsico de cocientes por la
derecha es que para todo elemento regular a € R y todo b € R exista un
elemento regular ¢ € R y un elemento d € R tales que bc = ad.

A finales de los anos 50, Goldie, Lesieur y Croisot caracterizaron los anillos
que son 6rdenes por la derecha clasicos en anillos semiprimos artinianos por
la derecha, resultado actualmente conocido bajo el nombre de Teoremas de
Goldie. (Ver [55, Chapter IV].) En 1956, Utumi introdujo en [82] una nocién
mas general de anillo de cocientes por la derecha que generalizaria a los demés
cocientes: Se dice que ) O R es un anillo de cocientes (general) por la
derecha de R si dados p, ¢ € ), con p # 0, existe a € R tal que pa # 0,
qa € R.

En su articulo, Utumi probd que todo anillo R sin divisores totales de cero

por la izquierda (esto se tiene, por ejemplo, cuando R es semiprimo) tiene un

XIIT
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‘s

" ax(R) vy dio su construccion.

anillo de cocientes por la derecha maximal @)

Maximal en el sentido de que cualquier otro anillo de cocientes por la derecha

'

" e (R) via un monomorfismo que restringido a

de R puede sumergirse en )

R es la identidad en R.

El hecho de que, en el caso asociativo, el uso de anillos de cocientes permi-
tiera un profundo estudio de ciertas clases de anillos motivé a diversos autores

a extender estas nociones a un contexto no asociativo.

El estudio de algebras de cocientes de algebras de Jordan comenzé a raiz
de la pregunta planteada por Jacobson [47, p. 426] acerca de cuando es posible
sumergir un dominio de Jordan en un algebra de Jordan de divisién, imitando
la construccién de Ore del caso asociativo. Este problema fue la fuente de
inspiracion de varios autores para introducir nociones de algebras de cocientes
para algebras de Jordan en un intento de adaptar la teoria de Goldie al

ambiente Jordan.

D. J. Britten y S. Montgomery [20, 21, 22, 69] dieron, para algebras de
Jordan de la forma J = H(A, %), una versién de los Teoremas de Goldie. La
solucion definitiva para algebras de Jordan lineales fue dada por E. Zelmanov
[85, 86], haciendo uso de su resultado fundamental en la teorfa de estructuras
de las algebras de Jordan fuertemente primas. Este resultado fue extendido

a algebras de Jordan cuadraticas por A. Fernandez Lépez, E. Garcia Rus y

F. Montaner en [37].

Maés recientemente, C. Martinez [25] resolvié el problema original de en-
contrar un andlogo al anillo de fracciones de Ore, desde un punto de vista
totalmente distinto. En su trabajo, dio una condiciéon de tipo Ore para que
toda algebra de Jordan que la satisfaga tenga un algebra clasica de fracciones.
Es mas, haciendo uso de la construccion de Tits-Kantor-Koecher, la cual rela-

ciona las estructuras de Jordan y de Lie, construyo un algebra de Jordan de
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cocientes maximal, considerando derivaciones parciales.

En el ambiente Lie, siguiendo el modelo original de Utumi, M. Siles Molina
inicié en [79] el estudio de las dlgebras de cocientes para &lgebras de Lie
introduciendo la siguiente nocién: Se dice que un algebra de Lie () O L es
un algebra de cocientes de L si dados p, ¢ € ), con p # 0, existe a € L
tal que [a, p| # 0, [a, adxjadzs...adx,q] C L, para cualesquiera n € N,

T1,...,Ty € L.

Basandose en la idea de Martinez de considerar clases de equivalencia de
derivaciones parciales, Siles Molina construyé en [79, Seccién 3] el algebra de
cocientes maximal de un algebra de Lie semiprima. Usando esta construccién
e inspirandose en la idea de Martinez de pasar del contexto Jordan al Lie a
través de la construccion de Tits-Kantor-Koecher, E. Garcia y M. A. Gémez
Lozano introdujeron en [39] nociones de sistemas de cocientes maximales para

sistemas de Jordan no degenerados.

Estas ideas constituyeron el punto de partida de nuestro trabajo. Concre-
tamente, podemos ver parte de esta tesis como una contribucién al progreso
de la teoria de las dlgebras de cocientes de algebras de Lie y de sistemas de
cocientes de sistemas de Jordan. Veremos que los cocientes Lie, en particular
los cocientes de algebras graduadas de Lie, que introduciremos en el Capitulo
2, constituyen el marco perfecto en el que situar los cocientes Jordan que

acabamos de mencionar.

A continuacién, describiremos cémo esté organizada la tesis, es decir, el
contenido de los capitulos y de las secciones. El primero de ellos se centra en el
estudio de dlgebras de cocientes de dlgebras de Lie (graduadas); los resultados
originales pueden verse en los trabajos [29, 78]. Para hacer autocontenida
esta memoria empezaremos recordando, en las Secciones 1.1, 1.2 y 1.3 las

principales definiciones y resultados que usaremos a lo largo de la misma. El
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objetivo de la Seccién 1.4 es extender la nocién de dlgebra (débil) de cocientes

de algebras de Lie a dlgebras de Lie graduadas. Definiremos:

Definiciones 1.4.12. Sea L = @,cqL, una subalgebra graduada de un

algebra de Lie graduada @ = @,c Q-

— Diremos que ) es un algebra graduada de cocientes de L o que
L es una subdlgebra graduada de cocientes de () si para cualesquiera
0# ps € Qo, ¢r € Q, existen z, € L, tales que [z, ps] # 0, [Ta, £(g.)] C L.
— Si para todo p, € @, existe x, € L, tal que 0 # [z, p,| € L, diremos
que () es un algebra graduada débil de cocientes de L, o que L es una

subalgebra graduada débil de cocientes de ().

Daremos una condicion necesaria y suficiente para que un algebra de Lie
graduada tenga un dlgebra graduada (débil) de cocientes.

Probaremos (véase Proposicién 1.4.18) que, al igual que sucede en el caso
no graduado, las dlgebras graduadas de cocientes de algebras de Lie graduadas

heredan la primidad, la semiprimidad y el cardcter no degenerado.

F. Perera y M. Siles Molina estudiaron en [75] la relacién que existe entre
los cocientes asociativos y los cocientes Lie, siendo el siguiente teorema uno
de sus principales resultados:

Teorema. ([75, Theorem 2.12 and Proposition 3.5]). Sea A un algebra asocia-

tiva semiprima y sea () una subdlgebra de Qs(A) que contiene a A. Entonces

(i) A™/Z4 C Q /Zq vy [A, Al/Zia,4 C [Q, Ql/Zig,q) son extensiones

densas.

(ii) @ /Zg es un élgebra de cocientes de A~/Z4 y [Q, Q]/Zjg,q) lo es de
(A, Al/Z1a, 41

Nuestra tarea en la Seccidén 1.5 serd extender el resultado anterior a las

algebras de Lie de tipo skew. Obtendremos el siguiente teorema:
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Teorema 1.5.19. Sea A un édlgebra asociativa semiprima con involucién * y
sea () una x-subdalgebra de @Q5(A) que contiene a A. Entonces se satisfacen

las siguientes condiciones:
(i) K4 es una subdlgebra densa de K¢, y [Ka, Ka] lo es de [Kq, Kg.

(ii) Ka/Zk, es una subélgebra densa de Kq/Zk,, y [Ka, Kal/Zix, k4 10
es de [Kq, Kql/Zikq, ko)-

(i) Kq/Zk, es un algebra de cocientes de Ka/Zk,, vy [Kq, Kql/Zixy, ko]
lo es de [Ka, Kal/Zik, k.-

Acabamos el capitulo analizando en la Seccién 1.6 la relaciéon entre

algebras graduadas (débiles) de cocientes y édlgebras (débiles) de cocientes.

Siguiendo la construccién, dada por Siles Molina en [79], del algebra de
cocientes maximal @,,(L) de un algebra de Lie semiprima L construiremos,
en el Capitulo 2, un algebra de cocientes maximal graduada para cada algebra
de Lie graduada semiprima. Teniendo en cuenta que los elementos de @Q,,,(L)
provienen de derivaciones parciales definidas en ideales esenciales, nuestros
ingredientes seran ahora derivaciones parciales graduadas e ideales esenciales
graduados. Con esta idea en mente, introduciremos en Construcciéon 2.2.3
una nueva algebra de Lie, que denotaremos por Qg—,(L). En la Seccién 2.2
probaremos que (Qg,—n,, (L) tiene buenas propiedades.

Nuestro objetivo en el resto del capitulo serd calcular @),,,(L) para ciertas
algebras de Lie. Concretamente, nos centraremos en las algebras de Lie de
la forma L = A~/Z, donde A~ es el édlgebra de Lie asociada a un algebra
asociativa prima A de centro Z, y en las de la forma L = K/Zk, donde K es
el dlgebra de Lie de los elementos skew de un algebra asociativa prima con

involucién y Zg su centro. En la Seccién 2.3, calcularemos Q,,(A~/Z); se
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tiene que (bajo ciertas hipdtesis) @,,(A~/Z) coincide con una cierta élgebra
de Lie que proviene de derivaciones parciales de A. Debido a que la definicién
es un poco técnica para darla aqui, diremos que dicha &lgebra vive entre
Der(A) y Der(Qs(A)), donde Q(.) denota el algebra de cocientes simétricos
de Martindale de A. En la Seccién 2.4, obtendremos resultados similares para
K/Zk (este caso es totalmente andlogo al de A~ /Z, la tinica diferencia es que

tendremos que considerar derivaciones o que preserven x, en el sentido de que
d(z*) = 6(x)*).

El propdsito del Capitulo 3 es determinar bajo qué condiciones algunas
propiedades importantes de los cocientes asociativos continuian siendo ciertas
para los cocientes Lie. En la Seccion 3.1, estudiaremos el problema de cudndo
Qm(I), donde I es un ideal esencial de un algebra de Lie semiprima L, coin-
cide con a Q,,(L). Se sabe que este resultado es cierto en el caso asociativo
(ver, por ejemplo [15, Proposition 2.1.10]); en el contexto Lie, podremos dar
una respuesta afirmativa imponiendo que L sea fuertemente semiprima: se
dice que un élgebra de Lie L es fuertemente semiprima (respectivamente,

fuertemente prima) si:

(i) L es semiprima (respectivamente, prima).

(ii) Para cada n, dados 0 # U, <... Uy <U; < L existe 0 # W < L tal
que W C U,.

Teorema 3.1.7. Sea [ un ideal esencial de un algebra de Lie fuertemente

semiprima L. Entonces @,,(I) es el algebra de cocientes maximal de L, es

decir Qn (1) = Qm(L).

Una vez que hemos construido el algebra graduada de cocientes maximal,

es natural preguntarse, al igual que hicimos en el caso no graduado, cuando
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Qgr—m (1) serd isomorfo a Qgr_,,(L), para I un ideal graduado esencial de un

algebra graduada semiprima L; trataremos esta cuestion en la Seccién 3.2.

Cerramos este tercer capitulo analizando en la Seccion 3.3 cuando
Qm((Qm(L)) es igual a @Q,,(L). A diferencia del caso asociativo en el que
siempre se tiene esta igualdad (ver [15, Theorem 2.1.11}), probaremos que
en ciertas situaciones especiales, a saber, si L es un algebra de Lie simple o
si L = A" /Z donde A es un algebra asociativa simple (satisfaciendo ciertas
hipdtesis técnicas) o A es un algebra finitamente generada que satisface una
identidad polinémica, la respuesta sigue siendo positiva, pero que en general
Qm((Qm (L)) no coincide con @y, (L); damos un ejemplo (vedse Ejemplo 3.3.7)
haciendo uso del ejemplo dado por Passman en [73] con el que mostré que

tomar Q(.) no es una operacién cerrada.

En el Capitulo 4, estudiaremos la relacion existente entre los cocientes Lie
y los cocientes Jordan en el sentido de [39]. Consta de dos secciones; en la
primera de ellas probaremos que para las algebras de Lie 3-graduadas semipri-
mas, el algebra de cocientes maximal es de nuevo 3-graduada y coincide con el
algebra graduada de cocientes maximal. Concretamente, el resultado obtenido

es el siguiente:
Teorema 4.1.2. Sea L = L 1 @ Ly & Ly un élgebra de Lie 3-graduada
semiprima. Entonces:

(i) @Qm(L) es isomorfa graduada a Qg (L).

(ii) Si L es fuertemente no degenerada y ® es 2 y 3 libre de torsién, entonces

Qm(L) es un algebra de Lie 3-graduada fuertemente no degenerada.

En la Secciéon 4.2, haciendo uso de la construccion de Tits-Kantor-Koecher,
relacionaremos los sistemas de Jordan de cocientes maximales con las dlgebras

de Lie de cocientes maximales. Los principales resultados son:
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Teorema 4.2.11. Supongamos que % € o.

(i) Sea V un par de Jordan fuertemente no degenerado. Entonces

On(V) = ((Qu(TKK(V)),, (Qu(TKK(V))).,)

es el par de Jordan de 91-cocientes maximal de V.

(ii)) Si L = L1 & Ly & Ly es un &lgebra de Lie de Jordan 3-graduada
fuertemente no degenerada tal que @,,(L) es de Jordan 3-graduada,

entonces
Qm(L) = Qu(TKK(V)) = TKK(Qn(V)),

donde V' = (L, L_) es el par de Jordan asociado a L.

Teorema 4.2.22. Sea T' un sistema triple de Jordan fuertemente no dege-
nerado sobre un anillo de escalares ¢ que contiene a %. Entonces el sistema
triple de Jordan de 9J1-cocientes maximal de 7" es la primera componente del
algebra de cocientes maximal de la TKK-algebra del par de Jordan doble
V(T) = (T, T) asociado a T, es decir,

Qm(T) = (Qu(TKK(V(T))))1-

Teorema 4.2.27. Sea J un algebra de Jordan fuertemente no degenerada

sobre un anillo de escalares ® que contiene a %. Entonces

Qm(J) = Qm(Jr) = (Qum(TKK(V (J7))))1,

es el dlgebra de Jordan de cocientes maximal de J, donde Jr denota el sistema
triple de Jordan asociado a J y V' (Jr) = (Jr, Jr) es el par doble par de Jordan

asociado a Jr.

El lector puede encontrar los resultados originales de los Capitulos 2, 3 y

4 en [19, 78].
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Durante la estancia de la autora en la Universidad de Maribor (Eslovenia)
trabajo, junto a M. Bresar y M. Grasi¢, en el problema de estudiar cuando
los anillos de matrices M,,(B), donde B es cualquier dlgebra unitaria (sobre
un anillo conmutativo fijado C') quedan determinadas por un producto nulo.
Concluiremos esta tesis con los resultados obtenidos en [17].

Como motivacién para estudiar este problema, destacaremos la conexién
con los ampliamente estudiados problemas de describir las aplicaciones li-
neales que conservan los productos nulos (ver, por ejemplo [3, 8, 30, 31, 32,
33, 45, 46, 83]).

Podemos considerar a S. Banach el propulsor de esta area de investi-
gacién matematica; fue el primero en describir las isometrias de LP([0, 1])
para p # 2 (ver [9]). Banach no dio la prueba completa para este caso (que
fue dada més tarde por J. Lamperti [58]) pero hizo hincapié en el hecho de
que las isometrias deben aplicar funciones con soporte disjunto en funciones
con soporte disjunto. Esta propiedad surge de manera natural en una gran
cantidad de situaciones y ha sido considerada por diversos autores. Por ejem-
plo, en la teoria de los reticulos de Banach hay una extensa literatura acerca
de aplicaciones lineales T': X — Y, donde X e Y son reticulos de Banach,

satisfaciendo la propiedad de que
| T(z) [N T(y) =0

siempre que z, y € X sean tales que | z | A | y | = 0. A estas aplicaciones se las
llama operadores que preservan la“disjuncién” o d-homomorfismos.
Para mas informacion, referimos al lector a [1].

La nocion de operadores que preservan la“disjuncién” fue trasladada por
E. Beckenstein y L. Narici [12] a las algebras de funciones. Si A, B son algebras
de funciones, a los operadores lineales 7' : A — B que satisfacen T'(a)T'(b) = 0

se les llama operadores de Lamperti o aplicaciones separadoras. Este
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concepto de aplicaciones separadoras puede trasladarse al algebra pura, siendo
la manera mas natural el considerar literalmente la misma condicion, o sea,
se dice que una aplicacion lineal T' de un algebra A en otra B conserva el

producto nulo si
r,y€ A, xy=0=T(z)T(y) =0.

En el reciente articulo [18], M. Bresar y P. Semrl se ocupan de uno de los
problemas mas estudiados, a saber, del problema de describir las aplicaciones
lineales que conservan la conmutatividad. Se dice que una aplicacion lineal

S : A — B conserva la conmutatividad si
S(z)S(y) = S(y)S(x) siempre que z,y € A, zy = yz.

El suponer que la conmutatividad se conserva se puede reformular en términos
de la condicién de conservar el producto de Lie nulo, del siguiente modo:

Si S : A — B es una aplicacién lineal que conserva la conmutatividad,
entonces la aplicaciéon bilineal T': Ax A — B dada por T'(x, y) = [S(z), S(y)]

satisface claramente que
T(x,y) =0 siempre que [z, y] =0,

lo que se expresa diciendo que T conserva el producto nulo de Lie.
Bresar y Semrl probaron (ver [18, Theorem 2.1]) que en el caso més sim-
ple, o sea, cuando B = C' las matrices M, (C') quedan determinadas por el
producto de Lie nulo. Dicho resultado se podra obtener como consecuencia
de los aqui expuestos. En la Seccién 5.2 probaremos que para el producto or-
dinario, las matrices M, (B) quedan determinadas por el producto nulo para
cualquier algebra unitaria B y todo n > 2, y en la Seccién 5.3 mostraremos
lo mismo para el producto Jordan; pero anadiendo las hipétesis de que n > 3
y de que 2 es inversible en B. Veremos que el comportamiento del producto

de Lie, del que nos ocuparemos en la Seccién 5.4, es muy distinto.
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Chapter 1

Algebras and graded algebras of
quotients of Lie algebras

The theory of associative algebras of quotients has a rich history and is still
an active research area. In recent years, there has been a trend to extend
notions and results of associative settings to the non-associative ones. In the
paper [79] M. Siles Molina initiated the study of algebras of quotients of Lie
algebras.

In this chapter we will study algebras of quotients of skew Lie algebras
and we will also introduce the notion of graded algebras of quotients of graded

Lie algebras.

1.1 Introduction

Throughout the chapter and in the rest of the work we will consider Lie and
associative algebras, and we will tacitly assume that all of them are algebras
over a fixed commutative unital ring of scalars ®. Lie algebras will be usually
denoted by L, and associative ones by A. For convenience we will assume
that all our algebras are 2-torsion-free (i.e. 2z # 0 for every nonzero z in
an algebra), although this assumption is not always necessary; we will use

it without further mention. For associative algebras we will not assume that

1
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they must be unital.
Let us start by introducing the basic notation and recalling some defi-
nitions and results. We will omit the proofs of some of these preliminary

well-known facts.

Definitions 1.1.1. Let L be a ®-module together with a bilinear map [, | :
L x L — L, denoted by (x,y) — [z,y] (called the bracket of z and y). We

say that L is a Lie algebra over & if the following axioms are satisfied:

(i) [z,2] =0, and

(i) [z, [y, 2]] + [y, [z, x]] + [z, [z, y]] = O (the so-called Jacobi identity).

Let X be a subset of an (associative or not) algebra A. The set

Ann(X) = Anny(X) ={a € A| ax =0 = za for every z € X}

is called the annihilator of X in A. It is easy to check that Ann(X) is an
ideal of A when X is also an ideal of A. In the special situation that X = A,
Ann(A) is called the center of A and will be denoted by Z = Z4.

In case L is a Lie algebra and X is a subset of L, the annihilator of X

in L is defined as

Ann(X) = Ann,(X) ={a € L | [a,z] =0 for every z € X}.

Every element of Ann(L) will be called a total zero divisor. It will be clear
from the context whether Ann(X) denotes the annihilator in the associative

or in the Lie algebra setting.

Lie algebras abound in the mathematical literature. The following exam-

ples are well-known.
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Example 1.1.2. Lie algebras that arise from associative ones. Let A
be an associative algebra A; we can obtain a Lie algebra A~ by considering

the same module structure of A and bracket given by
[z,y] = zy — yx for every x, y € A.

Ideals of A~ will be called Lie ideals of A, so, a ®-submodule U of A is a
Lie ideal of A if it satisfies [U, A] C U.

Remarks 1.1.3. Clearly, if I is an ideal of A, then it is also a Lie ideal of
A; however, the converse is not true. For example, consider [I, A], the linear
span of all [y, z] with y € [ and x € A, which is a Lie ideal but not necessarily
an ideal of A.

Note that Z4-, the center of the Lie algebra A~, agrees with the associative
center Z of A, and is clearly a Lie ideal of A. So we can form the Lie algebra
A~/Z. In the sequel, we will write I to the denote the ideal (I 4+ Z)/Z of
A~ /Z, for a Lie ideal I of A.

Example 1.1.4. Skew Lie algebras. Let A be an associative algebra with

involution *; then the set of its skew elements
K=Ky={ze€A|z"=—z}

is a subalgebra of A~. The ideal [K, K| of K is particularly important, since
sometimes its use allows to avoid exceptional situations (see [64, 24]). The
Lie algebras K/Zk and [K, K|/Zk ) are called algebras of skew type or

skew Lie algebras.

These kinds of algebras involving commutators are of great interest since
they appear in Zelmanov’s classification of simple M-graded Lie algebras over

fields of characteristic at least 2d 4 1, where d is the width of M (see [84]).
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Example 1.1.5. The Lie algebra of derivations. Let A be an associative

algebra. A linear map 0 : A — A is called a derivation of A if

6(zy) = 6(x)y + 2 (y)

for all x,y € A. For example, if x is an element of A, the map adz: A — A
defined by ad x(y) = [z, y] is a derivation of A.

We denote by Der(A) the set of all derivations of A. Clearly, Der(A) is
a ®-module if we define the operations in the natural way and, moreover, it

becomes a Lie algebra if we define the bracket by

[0, 1] = dp — po,
for every 9, u € Der(A).

Here, we shall give the notions of semiprimeness, primeness, and essen-
tiality for Lie algebras; in case of associative algebras these concepts can be
defined in exactly the same way as those for Lie algebras, just by replacing

the bracket by the associative product.
Definitions 1.1.6. Let L be a Lie algebra.

(i) We say that L is semiprime if for very nonzero ideal I of L, [I,I] # 0.

In the sequel we shall usually denote [, I] by I
(i) L is said to be prime if for every nonzero ideals I, J of L, [I, J] # 0.

There are a several examples of semiprime and prime Lie algebras. The

most interesting for us are the following ones:

Example 1.1.7. The Lie algebra of derivations, Der(A) of a semiprime
(prime) associative algebra A, is semiprime (prime). It was proved by C.

R. Jordan and D. A. Jordan in [49, Theorem 4 (Theorem 2)].
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Example 1.1.8. ([64, Theorem 6.1]). If A is a semiprime associative algebra

with involution * then the skew Lie algebra K/Zk is semiprime.

The following remark asserts that every Lie algebra of the form A~/Z,
where A is an associative algebra with center Z, can be seen as a skew Lie

algebra. This fact constitutes a very useful tool.

Remark 1.1.9. Note that if A is an associative algebra, then the Lie algebra
A~ is isomorphic to K440 and hence A™/Z is isomorphic to Kaga0/Zk,_ 0,

where A° denotes the opposite algebra of A, and A @ A° is endowed with the

exchange involution.
A first application of this remark is written below.

Example 1.1.10. If A is a semiprime associative algebra then the Lie algebra
A~ /Z is also semiprime. It is obtained from Example 1.1.8 taking into account
the remark above. Another proof of this fact can be found in [75, Theorem

2.12]; concretely:

Proof. Let U be a Lie ideal of A~/Z such that [U, U] = 0. Then U is the
image of the Lie ideal U of A via the natural map A~ — A~ /Z. The condition
on U implies that [U, U] C Z. Applying [43, Lemma 1] we obtain U C Z,
that is, U = 0. O

Definition 1.1.11. We say that an ideal I of a Lie algebra L is essential,
and write I <. L to denote it, if I cuts in a nontrivial way every nonzero ideal
of L, i.e., I NJ # 0 for every nonzero ideal J of L. We denote by Z.(L) the

set of all essential ideals of L.

Some examples and properties of essential ideals are collected in the follo-

wing result.

Lemma 1.1.12. Let L be a Lie algebra.
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(i) IfI, J € I.(L) then I NJ € I.(L), that is, the intersection of essential

1deals is again an essential ideal.
(ii) If L 1s semiprime and I € I.(L) then I* € Z.(L).
(iii) If L is prime, then every nonzero ideal of L is essential.

In case of semiprime algebras, essential ideals can be characterized in

terms of their annihilators as follows:

Lemma 1.1.13. ([79, Lemma 1.2]). Let I be an essential ideal of a semiprime

Lie algebra L. Then:
(i) INAnn(/) =0.
(ii) I is an essential ideal of L if and only if Ann(I) = 0.

The proof of the following lemma is included in the proof of [75, Theorem
2.12].

Lemma 1.1.14. Let A be a semiprime algebra. Then for every essential ideal

I of A, the ideal I is essential ideal in A~/ Z.

Proof. Let I be an essential ideal of A; we claim that I = (I + Z)/Z has zero
annihilator in A~ /Z (which implies that it is an essential ideal of A~/Z). If
x € A is such that [7, I] = 0, then [z, I] C Z. Therefore [[x, I], I] = 0 and
making use of the Jacobi identity we have [z, [I, I]] = 0. From [43, Lemma
2] it follows that [z, I] = 0. Note that A is an algebra of quotients of I since

it is an essential ideal of A. Hence, using [79, Lemma 1.3 (iv)] we obtain

[z, A]=0. Thusz=01in A~ /Z. O

Remark 1.1.15. By the previous lemma, an essential ideal I of a noncom-

mutative semiprime algebra A cannot be central.
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1.2 Associative algebras of quotients

The well-known construction of the field of fractions of an integral domain is

a particular case of the notion of right (left) order.

Definition 1.2.1. Let R C () be rings with @) unital. The ring R is said to be
a right (left) order in @, or @ is called a classical right (left) quotient
ring of R if

(i) Every regular element of R is invertible in Q.

(ii) Every element ¢ € @ has the form ¢ = ba™! (¢ = a™'b) for some regular

element @ of R and b € R.

As mentioned, the field of fractions of an integral domain is always a
classical right and left quotient ring of that integral domain but however, not
every example of a classical right (or left) quotient ring comes from the field

of fractions of an integral domain.
Example 1.2.2. Consider the rings

M, (D) € M, (F),

where D is an integral domain and F' its field of fractions. Then M, (D) is a
right order in M, (F), but neither M, (D) is an integral domain nor M, (F)
is a field.

The notion of “being a classical right (or left quotient ring)” has a restric-
tion: we need to consider unital rings; what can we do if our ring () does not
have a unit element? In such a case, we couldn’t consider regular elements.
Y. Utumi [82] solved satisfactorily this question introducing a suitable notion

of ring of quotients for this setting.




MENU SALIR

8 1.2. Associative algebras of quotients

Definition 1.2.3. ([82]). An overring @ of a ring R is said to be a (general)
right quotient ring of R if given p, ¢ € Q, with p # 0, there exists r € R

such pr # 0 and gr € R. Left quotients rings are similarly defined.

Again, any classical right quotient ring ) of aring R is also a right quotient
ring of it:
Given p, ¢ € @, with p # 0, there exists a regular element ¢ € R and

1

an element b € R such that ¢ = ba™ which implies ga = b € R; note, that

pa # 0, since p # 0 and a is a regular element of R and hence, it is invertible
in Q.

At this point, we may ask if there exists a right quotient ring of R such
that any other right quotient ring of R can be embedded into it. Y. Utumi
answered affirmatively this question provided R is left faithful. First, let us

recall some definitions.

Definitions 1.2.4. An element z € R is a total right zero divisor if
xR = 0. A ring R is left faithful if it has no nonzero total right zero divisors,
that is, R = 0 implies z = 0.

A right ideal I of R is said to be dense if given any =, y € R, with x # 0,
there exists a € R such that za # 0 and ya € I, i.e., R is a right quotient ring
of I. The collection of all dense right ideals of R will be denoted by Z4.(R).

One defines total right zero divisors, right faithfulness and dense left ideals

in an analogous fashion.
We pause to mention the notion of essential right ideal.

Definition 1.2.5. A right ideal I of R is essential if it cuts in a nontrivial

way every nonzero right ideal of R.

A discussion of the relationship between essential and dense right ideals

can be found in [15, Section 2.1]. By now we have selected two remarks.
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Remarks 1.2.6. (See [15, Remarks 2.1.3 and 2.1.4].) Every dense right ideal
of a semiprime ring is also an essential right ideal. There are special cases
where these two notions coincide, for example, when the ring is left nonsin-
gular.

Let I be an ideal of a semiprime ring R. Then the following conditions

are equivalent:

(i) I is a dense right ideal.
(ii) I is an essential right ideal.
(iii) I is essential as an ideal.

We are now in a position to explain Utumi’s construction.
Construction 1.2.7. ([82]). Let R be a left faithful ring. We say that two
pairs (f, I), (g, J), where I, J € Zy.(R) and f : Ir — Rg, g : Jr — Rg
are right R-module homomorphisms, are equivalent if and only if there
exists K € Z4(R) contained in I N J and such that f = ¢g on K. This is
an equivalence relation. Denote by f; the equivalence class determined by

(f, I). The set of all such classes becomes a ring if we define addition and

multiplication as follows:

fr+a9:=+9ims [fr95= f95-101)-
Definition 1.2.8. For a left faithful ring R, the ring constructed above will
be called the maximal right ring of quotients of R and will be denoted
by Qo (£2).
An example of maximal right quotient ring is the following:

Examples 1.2.9. If D is an integral domain and F' is its field of fractions,

then Q7 (D) = F. In particular,

max

maa(Z) = Q and Q. (Flz]) = F(x).
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Y. Utumi was the first that constructed this maximal ring of quotients;
there are others “homological” constructions of it available (see, e.g., [56]).
Let us point out that Utumi’s construction is more natural in the sense that
speaking very loosely, given a right R-module homomorphism f : Ir — Rpg
and fa =r, for a € I and r € R, we may “solve” for f and get “f = ra='”,
which says that f is like a fraction.

In a similar fashion, using the set of dense left ideals of a right faithful ring

R, one can construct the maximal left ring of quotients of R, denoted by

l

max(R). Of course the maximal left and maximal right quotient rings need

not coincide.

Example 1.2.10. Consider the ring
F F F
R=1 0 F 0 |,
0 0 F

where F' is a field. As it is shown in [55, p. 372], Q!,..(R) = M3(F) while

max

" w(R) 2 My(F) x My(F), and they are obviously not isomorphic.

max

Proposition 1.2.11. (See [15, Proposition 2.1.7].) Let R be a semiprime
ring. Then Q! ..(R) satisfies:

max

(i) R is a subring of Q7 ..(R).

max

(ii) For all g € Q" ,.(R), there exists J € Ty.(R) such that qJ C R.

(i) For allq € Q! ..(R) and J € Zy.(R), qJ =0 if and only if ¢ = 0.

(iv) For any ideal J € Zy.(R) and any right R-module homomorphism f :
Jr — Rp there ezists ¢ € Q!.,..(R) such that f(z) = qz for everyz € J.

max

R) up to isomorphism.

Furthermore, properties (i)-(iv) characterize Q7 ..(
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Remark 1.2.12. It can be proved, by using [57, Lemma 4.3.2], that condi-
tions (i) and (ii) in Proposition 1.2.11 are equivalent to saying that S is a

right quotient ring of R.

The notion of two-sided ring of quotients was introduced by W. S. Mar-
tindale III in [63] for prime rings (and extended to semiprime ones by S. A.
Amitsur [4]). We are going to describe the construction of the two-sided ring
of quotients for semiprime rings; let us point out here that in case of prime
rings this construction has an especially simple form since every nonzero ideal

of a prime ring is dense (it has zero annihilator).

Construction 1.2.13. ([82]). Let R be a semiprime ring. Denote by Z(R)
the collection of all ideals of R having zero annihilator. Note that Z(R) is
closed under sums and finite intersection; we also mention that any I € Z(R)
is dense and essential as a right (or left) ideal accordingly we shall call such
ideals dense.

We define that two pairs (f, I), (g, J), where I, J € Z(R) and f : I —
Rg, g : Jg — Rpg are right R-module homomorphisms, are equivalent if and
only if there exists K € Z(R) contained in I N J and such that f = g on K.
This is an equivalence relation. Denote by f; the equivalence class determined
by (f, I). The set of all such classes becomes a ring if we define addition and

multiplication as follows:

fr+9:=+9mns, frgr= fo

Definition 1.2.14. For a semiprime ring R, the ring constructed above will

be called the two-sided right ring of quotients of R and will be denoted
by Q.(R).

The following result collects the principal properties of Q,.(R).
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Proposition 1.2.15. (See [15, Proposition 2.2.1].) Let R be a semiprime
ring. Then Q,(R) satisfies:

(i) R is a subring of Q,(R).
(ii) For all g € Q,(R), there exists J € Z(R) such that q¢J C R.
(iii) For all g € Q.(R) and J € Z(R), qJ = 0 if and only if ¢ = 0.

(iv) For any ideal J € Z(R) and any right R-module homomorphism f :
Jr — Rp there ezists ¢ € Q.(R) such that f(x) = qx for every x € J.

Furthermore, properties (i)-(iv) characterize Q,.(R) up to isomorphism.

The next proposition describes the relationship between @7 .. (R) and
Qr(R).

Proposition 1.2.16. (See [15, Proposition 2.2.2].) Given a semiprime ring

R, there exists a unique ring monomorphism o : Q,.(R) — Q.. (R) such that

o(r) =r for all v € R. Further,

Im(o) ={q€ Q] ...(R) | ¢J CR for some JecZI(R)}.

max

Definition 1.2.17. Let R be a semiprime ring. The set
Qs(R)={q¢€ Q,(R) | ¢JUJgC R for some J € Z(R)}
is called the symmetric Martindale ring of quotients of R.

As noted by D. S. Passman (see [73, Proposition 1.4]), Qs(R) may be cha-
racterized by four properties analogous to those which characterize Q! . (R)

max

(see Proposition 1.2.11).

Proposition 1.2.18. (See [15, Proposition 2.2.3].) Let R be a semiprime
ring. Then Q4(R) satisfies:
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(i) R is a subring of Qs(R).
(i) For all g € Qs(R), there exists J € I(R) such that ¢J U Jq C R.

(iii) For all ¢ € Qs(R) and J € Z(R), qJ = 0 (or Jg = 0) if and only if
= 0.

(iv) Given J € Z(R), f : Jr — Rg and g : rJ — gR right and left,
respectively R-module homomorphisms such that xf(y) = g(z)y for all
x,y € J there exists ¢ € Qs(R) such that f(x) = qx, g(x) = zq for

every x € J.
Furthermore, properties (i)-(iv) characterize Qs(R) up to isomorphism.

Remark 1.2.19. (See [15, Remark 2.2.4].) We have defined Q;(R) as a sub-
ring of Q.(R) C @’,..(R) and so, more accurately, we should have called

max

Qs(R) the right symmetric Martindale ring of quotients of R. Ana-

logously, Q4(R) the left symmetric Martindale ring of quotients of R
may be defined as a subring of Q;(R) C Q! ..(R). For ¢ € Q.(R) we define

maxr

G=J and g € Q,(R), where g(z) = xq for all # € J. Then the map ¢ — § is

an isomorphism of Q,(R) onto Q,(R).

Definition 1.2.20. We call the center C = Z(Q,(R)) of the two-sided ring

of quotients of a semiprime ring R the extended centroid of R.
Some important properties of the extended centroid are the following.

Lemma 1.2.21. ([15, 2.3]) Let R be a semiprime ring. Then

Z(Qs(R)) = C = Z(Qn.02(R)) = {q € Qroe(R) | qr =7q for all v € R}.
Moreover, if R is prime then C s a field.

The following result will play an important role in our computations.
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Proposition 1.2.22. See ([15, Proposition 2.5.1].) Let R be a semiprime ring.
Any derivation § of R can be extended uniquely to a derivation of Q7. . (R)

max

also denoted by §. Furthermore 6(Q,(R)) C Q,.(R) and 6(Qs(R)) C Qs(R).

We conclude this section by recalling the notion of generalized polynomial
identity with involution. Let A be a semiprime associative algebra with an
involution *. It is easy to see that * can be lifted to an involution, also denoted

by *, of Qs(A). Moreover, the extended centroid C of A, remains *-invariant.

Definition 1.2.23. Let X be a countably infinite set (of “formal variables”)
and let X* be a disjoint copy of X. Denote, as usual, by C'(X U X*) the free
associative algebra over C' generated by X U X*, and by Q4(A)c(X U X*)
the coproduct of the C-algebras Qs(A) and C(X U X*). An element ¢ =
O(X1,+yXn, X175, , Xn™) of Qs(A)e(X U X*) is said to be a generalized
polynomial identity with involution (in short x-GPI) on a nonzero *-ideal
(i.e. ideal invariant under *) U of A if s(¢) = 0 for all (x-substitution) C-
algebra homomorphisms s : Qs(A)c(X U X*) — Q4(A) such that s(X) C U,
s(x*) = s(x)* for all x € X and s(q) = ¢ for all ¢ in Qs(A).

1.3 Lie algebras of quotients

Let L C @ be Lie algebras. For any ¢ € @, we denote by 1(q) the linear span
in () of ¢ and the elements of the form ad z;ad x5 ... ad x,q, where n € N and
T1,...,%, € L. In particular, if ¢ € L, note that then 1(g) is just the ideal of

L generated by g¢.

Definition 1.3.1. ([79, Definition 2.1].) Let L C @ be Lie algebras. We say
that ) is an algebra of quotients of L (or also that L is a subalgebra of
quotients of Q) if given p and ¢ in @ with p # 0, there exists x in L such
that [z, p] # 0 and [z, .(q)] C L.
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A Lie algebra L has an algebra of quotients if and only if it has no nonzero
total zero divisors, or, equivalently, Ann(L) = 0 (see [79, Remark 2.3]).

Certain properties of a Lie algebra are inherited by each of its algebras
of quotients (see Proposition 1.3.4 below). In fact, these results remain valid
under a weaker hypothesis, that of “being a weak algebra of quotients”, notion

that we proceed to introduce.

Definition 1.3.2. ([79, Definition 2.5].) Let L C @ be Lie algebras. We say
that () is a weak algebra of quotients of L if for every nonzero element

q € @ there exists z € L such that 0 # [z, ¢] € L.

Remark 1.3.3. Let us point out that every algebra of quotients of a Lie
algebra L is a weak algebra of quotients, but as it was shown in [79, Remark

2.6] the converse is not true.

Proposition 1.3.4. Let ) be a weak algebra of quotients of a subalgebra L.
(i) For every nonzero ideal I of Q, I N L is a nonzero ideal of L.
(ii) L semiprime (prime) implies Q) semiprime (prime).

(iii) If ® is two and three-torsion free and L is strongly non-degenerate, then

Q is strongly non-degenerate.

One can prove that the definition of algebra of quotients of a Lie algebra
L can be expressed in terms of ideals of L with zero annihilator. (See [79,

Proposition 2.15].)

Definition 1.3.5. ([79, Definition 2.9].) Let L C @ be Lie algebras. We say
that @ is ideally absorbed into L, that is, for every nonzero element ¢ € Q)
there exists an ideal [ of L with Anny (/) = 0 such that 0 # [I,¢] C L.
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1.4 Graded Lie algebras of quotients

Following the idea of M. Siles Molina [79] of introducing a notion of algebra
of quotients for Lie algebras and taking into account the success obtained by
G. Aranda Pino and M. Siles Molina [7] in the context of graded associative
setting, our aim in this section is to extend such a notion to the more general
case of graded Lie algebras.

We begin by introducing the main definitions and some basic results de-

rived from them.

Definitions 1.4.1. Let G be an abelian group (whose neutral element will
be denoted by e); a Lie algebra L is called G-graded if L = @©,¢¢L,, where
L, is a ®-subspace of L and [L,, L,] C L,, for every o, 7 € G. In the sequel,
we sometimes use the term “graded” instead of “G-graded” when the group
is understood.

The set of homogeneous elements is | J, ., Lo. Elements of L, are called
homogeneous of degree o.

For any subset X of L, its support is defined as
Supp(X) = {0 € G | z, # 0 for some = € X}.

The grading on L is called finite if Supp(L) is a finite set and it is said
trivial if L = L, and L, = 0 for every ¢ € GG with o # e. In the particular
case of having L a finite Z-grading, we may write the Lie algebra L as a finite

direct sum L =L_, & ...® L, and we say that L has a (2n + 1)-grading.
Example 1.4.2. Every Lie algebra L becomes a graded Lie algebra over any
abelian group G, by considering the trivial grading, that is, by doing L. = L
and L, = 0 for o # e.

There are several examples of graded associative algebras. Let us point out

that if A is a G-graded associative algebra then the Lie algebra A~ associated
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to A is automatically a G-graded Lie algebra. Keeping this fact in mind, other

examples of graded Lie algebras are the following:

Example 1.4.3. The algebra of polynomials, R = Alz|, where A is a

noncommutative algebra, is a Z-graded algebra with grading given by

o [ A i n>0
no 0 otherwise

Thus R~ becomes a Z-graded Lie algebra.

Example 1.4.4. Matrix algebras, R = M,,(A) are (2n — 1)-graded with
Rk = Z Aem
{i.5€{L,...n}| i—j=k}
for £ < n and R, = 0 otherwise. It turns out that the Lie algebra R~ has a

(2n — 1)-grading.

Definitions 1.4.5. Given G-graded Lie algebras L and ), with L a subalge-
bra of (), we say that L is a graded subalgebra of () if L, C @), for every
oeq.

A Lie algebra homomorphism ¢ : L — @ is a graded homomorphism
of degree 7 € G if p(L,) C Q,, for all ¢ € G. Graded monomorphisms,
graded epimorphisms and graded isomorphisms are defined in the natural

way.

Definitions 1.4.6. Let L = ®,c L, be a graded Lie algebra. An ideal I of
L is called a graded ideal if whenever y = > vy, € I we have y, € I, for
every o € G.

A graded ideal I of L is said to be graded essential if every nonzero

graded ideal of L hits I, i.e., I NJ # 0 for every nonzero graded ideal J of L.

We will use the following lemma without further mention.
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Lemma 1.4.7. Let L = ®,c L, be a graded Lie algebra and I, J two graded
1deals of L. Then

(i) I+ J and I N J are graded ideals of L. Further, if I and J are graded

essential then I N J is again a graded essential ideal.
(i) [Z, J] is a graded ideal of L.

Proof. 1t is well-known that all of the sets considered in the statements are
ideals of L. It only remains to prove that they are indeed graded.

(i). The case of the sum and the intersection are similar. For example, to
show that [ + J is graded, consider x € [ and y € J. Decomposing x and
y into their homogeneous components and taking into account that I and J
are graded ideals we have x =Yz, € I, with z, € I, and y = ) __ y,, with
Yo € J. Hence the o-homogeneous component of = + y is x, + y,, which lives
inside 1 + J.

(ii). Take z € I and y € J and consider the element z := [z, y] € [I, J].
In order to check that [I, J] is graded, it is enough to show that the homo-
geneous components of z belong to [I, J]|. Decomposing = and y into their
homogeneous components and applying that I and J are graded ideals we
may write x = ) _x,, with z, € I, and y = ) __ v,, with y, € J. Note that

the homogeneous components of z are

Ro = [ZI}, y]U = Z[xTJ Yr—1 0]7

T

all of them living inside [/, J]. O

Following the definitions of primeness and semiprimeness for Lie alge-
bras (see Definitions 1.1.6), one can now introduce the notions of graded

semiprimeness and graded primeness for graded Lie algebras; concretely:
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Definitions 1.4.8. Let L be a graded Lie algebra. We say that L is graded
semiprime if for every nonzero graded ideal I of L, [I,I] # 0. In the sequel
we shall usually denote [, I] by I?.

The Lie algebra L is said to be graded prime if for nonzero graded ideals
I'and Jof L, [1,J] # 0.

An (homogeneous) element x of L is called an (homogeneous) absolute
zero divisor if (ad z)?> = 0. The algebra L is said to be (graded) strongly
non-degenerate if it does not contain nonzero (homogeneous) absolute zero

divisors.

Remark 1.4.9. It is obvious from the definitions that (graded) strongly non-
degenerate Lie algebras are (graded) semiprime, but the converse does not

hold. (See [79, Remark 1.1].)

As we have in the non-graded case, we can characterize the graded essential

ideals in terms of their annihilators.

Lemma 1.4.10. Let I be a graded ideal of a graded Lie algebra L = @y L, .
Then Ann(1) is a graded Lie ideal of L. In particular, Zy, the center of L, is

a graded ideal of L. If moreover L is graded semiprime, then:
(i) I? is a graded essential ideal of L if I is so.
(ii) /N Ann(I) =0.
(iii) I is a graded essential ideal of L if and only if Ann(I) = 0.

Proof. Tt is straightforward to check, by using the Jacobi identity that, Ann(/)
is an ideal of L; so the only thing we are going to show is that every ho-
mogeneous component of any element # € Ann([) is again in Ann([). Fix

7 € G. Note that [z,, I;] = 0 for every 0 € G because otherwise there
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would exist y, € I, such that [z,, y,] # 0 for some o € G this would imply
0 # [z, I;] C [z, I] = 0, a contradiction. Hence [z, I] = ®,cclrs, I;] = 0.

Assume now that L is graded semiprime.

(i). Let I be a graded essential ideal of L. Apply Lemma 1.4.7 (ii) to
obtain that I? is also a graded ideal of L; the graded essentiality of L follows
now from the essentiality of I.

To obtain (ii) and (iii), see the proofs of conditions (i) and (ii) in [79,
Lemma 1.2]. O

Recall that the elements of the center were called total zero divisors. An

use of the lemma above gives:

Lemma 1.4.11. A graded Lie algebra L has no nonzero homogeneous total

zero divisors if and only if it has no nonzero total zero divisors.

Proof. Suppose first that L has no homogeneous total zero divisors, and con-
sider # € Ann(L). Then, by Lemma 1.4.10 (i), we have [z,, L] = 0 for every
o € G. This implies z, = 0 and so x = 0. The reverse implication is ob-

vious. OJ

We are now ready to introduce which may be considered the main objects

of this section.

Definitions 1.4.12. Let L = ®,c¢L, be a graded subalgebra of a graded
Lie algebra QQ = ®yec Qo -

— We say that () is a graded algebra of quotients of L if given 0 # p, €
Q, and ¢, € @, there exists x, € L, such that [z,, p,] # 0 and [z,, (¢, )] C

L. The algebra L will be called a graded subalgebra of quotients of ().

— If for any nonzero p, € @, there exists =, € L, such that 0 # [z,, p,] €
L, then we say that () is a graded weak algebra of quotients of L, and
L is called a graded weak subalgebra of quotients of ().
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Remark 1.4.13. These definitions are consistent with the non-graded ones
(see Definitions 1.3.1 and 1.3.2) in the sense that if @) is a (weak) algebra of
quotients of a Lie algebra L, then it is also a graded (weak) algebra of L when

considering the trivial gradings on L and Q).

The necessary and sufficient condition for a graded Lie algebra to have a
graded (weak) algebra of quotients is the absence of homogeneous total zero
divisors different from zero, condition that turns out to be equivalent to have

zero center. More concretely, the result is the following:

Lemma 1.4.14. Let L be a graded Lie algebra. The following conditions are

equivalent:

(i) L is a graded algebra of quotients of itself.
(ii) L has a graded algebra of quotients.
(iii) L has no nonzero homogeneous total zero divisors.

(iv) L has no nonzero total zero divisors.

Proof. (i) = (ii) is obvious.

(ii) = (i). Let @ be a graded overalgebra of L with @ being a graded
algebra of quotients of L; take 0 # p, € L, C @, and ¢, € L, C Q.
Applying the hypothesis on @ we find z, € L, such that [z, p,| # 0 and
[Za, £(¢-)] € L. This means that L is a graded algebra of quotients of itself,
as desired.

(i) = (iii). Take z, € L,, with [L, z,] = 0. If x, # 0 we would find
x, € L, such that [z,, z,| # 0, a contradiction; so necessarily z, = 0.

(iii) = (i). Given 0 # p, € L, and ¢, € L,, by (iii) there exists x, € L,
such that [z,, p,| # 0. It is obvious that z, satisfies that [z, »(¢.)] C L.

Finally (iii) < (iv) is Lemma 1.4.11. O
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Although every graded algebra of quotients is a graded weak algebra of
quotients, the converse is not true, as shown in the following example (see

[79, Remark 2.6]).

Example 1.4.15. Consider the C-module P of all polynomials > " ja,z",
with o; € C and m € N, with the natural Z-grading. Denote by ¢ : C — C
the complex conjugation. Then the following product makes P into a Z-graded

Lie algebra:

[Z o, x’, Z ﬁs:ﬁ] = Z(arﬁg — Bsaf)z" T,
=0 s=0

r r,S

Let @ be the Z-graded Lie algebra P/I, where I denotes the Z-graded
ideal of P consisting of all polynomials whose first nonzero term has degree

at least 4, and let L be the following graded subalgebra of Q:

L= {ao —|—5252 +ng3 | O, Oig, 03 € C},

where 7 denotes the class of an element y € P in P/I. Then @ is a graded
weak algebra of quotients of L, but @ is not a graded quotient algebra of L

since no [ € L satisfies [[,Z] € L and [, T°] # 0.

Parallel to what happened in the non-graded case (see Proposition 1.3.4),
we are going to show how certain properties of a graded Lie algebra L are
inherited by each of its algebras of quotients. First, we need some definitions

and results.

Definition 1.4.16. Let X and Y be two subsets of a Lie algebra L. The set
QAnny (Y) :={z € X | [z,[z,y]] = 0 for every y € Y}

is called the quadratic annihilator of YV in X.
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Note that the quadratic annihilator of an ideal needs not be an ideal.

Examples 1.4.17. ([76, Examples 1.1]) 1. Consider a field F' and the Lie
algebra t(3, F'). Then

QAHH(L) = {a(en —+ €929 —+ 633) —+ b€13 + CeEa3 | a, b, C € F} U

{a(en + €99 + 633) + bejs + ces ‘ a, b, (S F},

where, as usual, e;; denotes the matrix in Mj3(F') whose entries are all zero
except the one in row ¢ and column j which is 1. Then QAnn(L) is not closed

under sums.

2. Now, consider the Lie algebra L := L/Z, for L as before. Then
QAnn(L) = {aei3 +beys | a, b € F} U{aen +beis | a, b € F},

where Z denotes the class of an element = in L. Again we have the quadratic

annihilator of this algebra L is not closed under sums.

Proposition 1.4.18. Let ) = ®,c Qs be a graded weak algebra of quotients
of a graded subalgebra L. Then:

(i) For every nonzero graded ideal I of Q, I N L is a nonzero graded ideal

of L.

(ii) L graded semiprime (graded prime) implies Q) graded semiprime (graded

prime).

(i) Suppose that ® is 2 and 3-torsion free. Then L graded strongly non-

degenerate implies () graded strongly non-degenerate.

Proof. (i). Let I be a nonzero graded ideal of @) and take a nonzero y, € I,
for some 7 € (. By the hypothesis, there exists z, € L, satisfying that
0 # [z, y-] € I N L.
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(ii). Suppose that L is graded prime and take nonzero graded ideals I and
J of Q. Applying (i) we obtain that I:=1NnLand.J:=JnN L are nonzero
graded ideals of L, while the graded primeness of L implies 0 # [17, j] C 1, J],
which proves that () is graded prime. The graded semiprimeness of () can be

shown in a similar way.

(iii). Suppose that there exists an element 0 # ¢, in @, such that
(ad ¢,;)* = 0. Since Q is a graded weak algebra of quotients of L, 0 # y :=
[¢r, 5] € L for some x5 € L,. As g, is in QAnng(Q) € QAnng (L) we have,
by [76, Theorem 2.1], that [y, [y, u]] € QAnn; (L) for every u € L (observe
that the map u — ad u gives an isomorphism between L and its image inside
A(Q), the Lie subalgebra of End(Q) generated by the elements ad x for z in
(); this allows to apply the result in [76]). But QAnn; (L) is zero, because L
is graded strongly non-degenerate, therefore [y, [y, u]] = 0 for every u € L.
Again the same reasoning leads to y = 0, a contradiction. This shows the

statement. O

Definition 1.4.19. Let L be a graded subalgebra of a graded Lie algebra
Q = Dreal),. We say that () is graded ideally absorbed into L if for
every nonzero element ¢, € (), there exists a nonzero graded ideal I of L

with Anny (/) = 0 and such that 0 # [1, ¢;] C L.

It is immediate to see that “being graded ideally absorbed” implies “being
a graded weak algebra of quotients”. Our following aim will be to show that
the notions of graded algebra of quotients and of absorption by graded ideals

are equivalent. First we gather together several lemmas.

Recall that given a subalgebra L of a Lie algebra () and an element ¢ € @,

the set

(L:gq):={re L]z r(g)] € L}
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is an ideal of L. (See [79, Lemma 2.10 (i)].)

Lemma 1.4.20. Let L be a graded subalgebra of a graded Lie algebra () =
Boc Qs and consider q. € Q.. Then:

(i) (L: g,) is a graded ideal of L.

(i) If Q is a graded algebra of quotients of L then Anny((L : ¢q;)) = 0. In

particular, (L : q;) is a graded essential ideal of L.

(iii) If Q is graded ideally absorbed into L then Annp((L : ¢;)) = 0. In

particular, (L : q;) is a graded essential ideal of L.
Proof. (i). To prove that (L : ¢,) is graded, take x = ) . %, € (L : ¢;).
GivenneN, vy, e Gandy, € L, (i=1,...,n),

[z, ady; ... adynq,| = Z[xa, ady; ... adyngr] € Boe Qo vnr-

o

Note that each [z,, ady; ...ady,q.] is one of the homogeneous compo-

nents of the element [z, ady; ...ad y,q,| € L, which yields
[z,, ady; ... ad ynq,| € Low,..v,r C L. (1.1)

Now, consider arbitrary (and not necessarily homogeneous) elements
21y...,2n € L. Since [z,, ad 21 ...ad z,¢;] is a sum of elements as in (1.1),
this same result implies [z,, ad z; . ..ad z,¢,] € L, that is, z, € (L : ¢,) for
every o € G.

(ii). Suppose that @ is a graded algebra of quotients of L. We prove first
that (L : ¢,) is a graded essential ideal of L. Let I be a nonzero graded ideal
of L, and pick 0 # y, € I, for some pu € G. Apply that @ is a graded algebra
of quotients of L to find z, € L, satistying [z, y,| # 0 and [z,, (¢;)] C L,
e, 2o €(L: q;). As (L: ¢;) is an ideal, 0 # [z4, y,) € IN(L : ¢,); in other

words, (L : ¢.) is a graded essential ideal.
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If Anng((L : ¢-)) # 0, the essentiality of (L : ¢,;) would imply the exis-
tence of a nonzero homogeneous element u, € Anng((L : ¢.)) N (L : ¢;).
Applying that ) is a graded algebra of quotients of L we would find
z, € L, (for some p € G) satisfying [z,, u,] # 0 and [z, r(¢;)] C L.

This would mean that x, is an element in (L : g¢,) which does not annihilate

uq € Anng((L : ¢,)), a contradiction. Consequently, Anny((L : ¢;)) = 0.

(iii). Suppose now that @ is graded ideally absorbed into L. Take a graded
ideal I of L such that Anny (/) = 0 (in particular [ is a graded essential ideal)
and 0 # [I, ¢;] € L. We are going to show that I C (L : ¢,), in which case
Anny((L: ¢;)) € Anng(f) = 0 and the proof will be complete.

We will prove, by induction on n, that [I, ady; ...ad y,q,| C L for every
neNandy, € L (i=1,...,n). Forn=1,

[Iv [yly QTH g [[I7 01]7 QT] + [yl, [I7 QT]] g [‘[7 QT] + {L7 [I, QTH g L.

Suppose the result true for n —1 and consider y; € L, with i = 1,...,n. Then

we have

N

[I, ady ... ad ynq,] [, y1], adys ... ad yng-] + [t1, [{, adys ... ad y,q.]]

C [I,adys...ady,q,| + [L, [I, adys ... ad y,q,|]] C L

by the induction hypothesis. This shows our claim. O]

Lemma 1.4.21. Let QQ = $,c Qs be a graded weak algebra of quotients of
L. Then, for every graded ideal I of L, Anny(I) = 0 implies Anng(I) = 0.

Proof. Let I be a graded ideal of L with Anng(/) = 0. Suppose on the
contrary that Anng(I) # 0. Reasoning as in the proof of condition (i) in
Lemma 1.4.10, it can be shown that Anng(/) contains every homogeneous

component of each of its elements, hence we may choose 0 # ¢, € Anng(I),
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for some 7 € G. By the hypothesis, there exist « € G and z, € L, such that

0 # [Za, ¢;] € L. Since Anny (1) = 0 we find y € I satisfying

O 7& [y7 [l’a, QTH = [[y; l’a], QT] + ['ICW [y7 QTH < [Iv QT] + [L7 [I7 QT]] = 07

which is a contradiction. O

With these lemmas in mind we are now ready to prove the announced
equivalency of the notions of “being a graded algebra of quotients” and “being

graded ideally absorbed”. The result is the following:

Proposition 1.4.22. Let L be a graded subalgebra of a graded Lie algebra
Q = Bocc®o- Then Q is a graded algebra of quotients of L if and only if Q

18 graded ideally absorbed into L.

Proof. Suppose that @) is a graded algebra of quotients of L and consider
0 # g, € Q-. Applying Lemma 1.4.20 (ii) we have that (L : ¢,) is a graded
ideal of L with zero annihilator in L, and by Lemma 1.4.21 it has also zero
annihilator in @, so 0 # [(L: ¢,), ¢;] C L.

Conversely, assume that @) is graded ideally absorbed into L, and take
0 # p, € Qy and ¢, € Q.. By Lemma 1.4.20 (iii) and Lemma 1.4.21, [(L :
q-), Ps] # 0, so there exist x € (L : ¢;) and o € G such that [z, p,] #
0. Since (L : ¢,) is a graded ideal of L, we have x, € (L : g¢,), that is,

[, £(¢:)] C L, which completes the proof. ]

The following result is a first application of the characterization below.

Corollary 1.4.23. Let Q = ©oeccQy be a graded algebra of quotients of a
graded semiprime Lie algebra L. Then for every graded essential ideal I of L
we have that Q) is a graded algebra of quotients of I.
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Proof. Let I be a graded essential ideal of L. We will show that @ is graded
ideally absorbed into I and the conclusion will follow from Proposition 1.4.22.

Take 0 # ¢, € @,; by Proposition 1.4.22 there exists a graded ideal J
of L with Anny(J) = 0 satisfying 0 # [J, ¢;] € L. As J and I are graded
essential ideals of L, the graded semiprimeness of L implies that (I N J)?
is also a graded essential ideal of L, equivalently (condition (iii) in Lemma
1.4.10) Anng((I N J)?) = 0; in particular Ann;((1 N J)?%) = 0.

On the other hand, it follows from Lemma 1.4.21 that Anng((INJ)?) = 0,
so that [(I N J)2, g.] # 0. Finally, [J, ¢;] C L and the Jacobi identity yield
0# [(INJ)? ¢] C I, which completes the proof. O

We continue by studying the relationship between graded (weak) algebras
of quotients and (weak) algebras of quotients, a useful tool that (combined

with other results) will provide with examples of graded algebras of quotients.

Lemma 1.4.24. Let L be a graded subalgebra of a graded Lie algebra () =
Borea®os. If Q is a weak algebra of quotients of L then () is also a graded

weak algebra of quotients of L.

Proof. For 0 # ¢, € @Q., apply the hypothesis to find x € L such that
0 # [z, ¢;] € L; in particular, 0 # [z, ¢;] € L, for some a € G. O

The following lemma is a graded Lie version of the generalized common

denominator property for associative setting.

Lemma 1.4.25. Let Q = ®,cc@, be a graded algebra of quotients of a
graded semiprime Lie algebra L. Then, given 0 # p, € Q, and q,, € Q,, with
7, €Gandi=1,...,n (for anyn € N), there exist « € G and x,, € L, such

that [xa, ps] # 0 and [Ta, (¢r)] C L for everyi=1,...,n.

Proof. Consider 0 # p, € Q, and ¢,, € Q,,, with i = 1,...,n. By Lemma

1.4.20 (i), (L : ¢,) is a graded essential ideal of L for every ¢, hence I =
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N, (L : g.,) is again a graded essential ideal of L. Condition (iii) in Lemma
1.4.10 implies Ann; (/) = 0 and by Lemma 1.4.21 we obtain Anng (/) = 0.
So, there exists € I such that [z, p,| # 0, and if we decompose x into its
homogeneous components we find some a € G satisfying [z,, py] # 0. Now

the proof is complete because x,, € I as [ is a graded ideal and = € I. O]

Proposition 1.4.26. Let L be a graded subalgebra of a graded Lie algebra

Q = BoecQo. Consider the following conditions:
(i) @ is an algebra of quotients of L.
(i) Q is a graded algebra of quotients of L.

Then (i) implies (ii). Moreover, if L is graded semiprime then (ii) implies

(i)

Proof. (i) = (ii). Given 0 # p, € @, and ¢, € Q,, by the hypothesis there
exists ¢ € L satisfying [z, p,] # 0 and [z, .(¢.)] C L, that is, z € (L : ¢,).
This means, by Lemma 1.4.20 (i), that z, € (L : ¢,).

(ii) = (i). Suppose now that () is a graded algebra of quotients of L, with
L graded semiprime. Take p, ¢ in @), with p # 0; let ¢ € G be such that
po # 0 and write 7y, 7o,..., 7, to denote the elements of Supp(q).

By Lemma 1.4.25 it is possible to find an element z, € L, satisfying
[Ta, Po] # 0 and [z4, £(g,)] € L for every i = 1,...,n, hence [z,,p] # 0 and
[Za, £(q)] C L; this shows that @ is an algebra of quotients of L. ]

We conclude the section with an important example of graded algebras of
quotients of graded Lie algebras. We refer the reader to [35, 5.4] to see the
definitions involved in it. However, in Section 4.2 (more concretely in 4.2.5)

we will explain that the TKK-algebra of a Jordan pair is. Recall that any
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strongly prime hermitian Jordan pair V' is sandwiched as follows (see [35,
5.4]):
H(R, ) 2V < H(Q(R), ),

where R is a *-prime associative pair with involution and Q(R) is its associa-

tive Martindale pair of symmetric quotients.

Example 1.4.27. Let R be a *prime associative pair with involution, and
Q(R) its Martindale pair of symmetric quotients. Then TKK(H (Q(R), %)) is
a 3-graded algebra of quotients of TKK(H (R, *)).

Proof. From [38, Proposition 4.2 and Corollary 4.3], @ := TKK(H(Q(R), %))
is ideally absorbed into the strongly prime Lie algebra L := TKK(H (R, *));
use [79, Proposition 2.15] to obtain that @ is an algebra of quotients of L and

Proposition 1.4.26 to reach the conclusion. O]

1.5 Lie algebras of quotients for skew Lie
algebras

In order to foresee the importance of the concept of algebra of quotients in
the non-associative setting, F. Perera and M. Siles Molina undertook in [75]
a study of the relationship between the Lie and associative quotients. It is
mentioned (see the previous comments to Lemma 3.6 in [75]) that similar
results to [75, Theorem 2.12 and Proposition 3.5] should be available for skew
Lie algebras. In what follows, our goal will be to prove that this is in fact the
case.

Our tools to reach it will be the theory of generalized polynomial identities,
for which our basic reference will be [15], Herstein’s Lie theory, as treated in
[64] and [11], dense extensions and also multiplicative semiprime algebras.

Throughout this section we will consider algebras over a field with cha-

racteristic different from 2.
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Definition 1.5.1. Let A be an (associative or not) algebra; denote by L(A)
the algebra of all linear mappings from A into A. For a € A, L, and R, will
stand for the left and right, respectively, multiplication operators by a on A.
The multiplication algebra M (A) of A is the subalgebra of L(A) generated
by the identity operator Id4 and the set {L,, R, | a € A}.

Remark 1.5.2. Let A be an associative algebra. From the fact that ada =
L, — R,, where ada denotes the multiplication operator by a on the Lie
algebra A~ it follows that M (A™) is a subalgebra of M (A). By the way, note
that if A' denotes the unital envelope of A, and, for a,b € A!, we denote by
M,  the two-sided multiplication operator on A defined by M, ,(z) = axb

for all x € A, then

M(A) = {ZMai,bi :n €N, a;,b € A (1 gign)},
i=1

A motivation to introduce multiplicative semiprime algebras is that the
multiplication algebra M (A) of a not necessarily associative semiprime alge-

bra A needs not be semiprime. An example of this is the following:

Example 1.5.3. (Albert, 1942). Consider the three-dimensional unital al-

gebra A over a field F' with generators {1, u, v} given by the relations

It is easy to verify that the only nonzero proper ideals of A are
Fv, Fv+ F(14u) and Fv+ F(1 —u).

Hence, it follows that A is in fact prime. However M(A) is not semiprime:

LyR, # 0 but L,R,M(A)L,R, = 0.

Definition 1.5.4. An algebra A is multiplicative semiprime (prime)

whenever A and its multiplication algebra M (A) are semiprime (prime).
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Several examples of multiplicative semiprime (prime) algebras are the

following:

Example 1.5.5. Semiprime (prime) associative algebras are multiplicative
semiprime (prime). It was shown by M. Cabrera and A. A. Mohammed in

27].

This fact suggests that the same must be true for algebras that are nearly
associative. It was corroborated by M. Cabrera and A. R. Villena [28]. They

proved that

Example 1.5.6. Strongly non-degenerate (non-degenerate in their termino-
logy) alternative and strongly non-degenerate Jordan algebras are multiplica-

tive semiprime.

J. C. Cabello, M. Cabrera, G. Lépez, W. S. Martindale III studied in [24]
the multiplicative semiprimeness of skew Lie algebras. Let A be a semiprime

(prime) algebra over a field of characteristic not 2, then

Example 1.5.7. The Lie algebra A~/Z is multiplicative semiprime (prime)
in some important cases that are covered in [24, Corollary 2.4], but not in
general (see [24, Theorem 2.1]). This contrasts with the case of [A, A]/Z}4 4),
which is always multiplicative semiprime (prime) provided A is semiprime

(prime) (see [24, Corollary 2.4]).

Furthermore, the same results hold for skew Lie algebras; if our algebra

A is endowed with an involution *, it turns out that

Example 1.5.8. The skew Lie algebras K/Zx and [K, K|/Zk, k) are multi-

plicative semiprime. (See [24, Theorems 2.3 and 3.4].)

The notion of dense subalgebra was introduced by M. Cabrera in [25]
and, as we will explain below, corresponds to the concept of e-density for the

e-closure in the terminology of [23].
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Definitions 1.5.9. ([25]). Let B C A be an extension of algebras, which
means that B is a subalgebra of A; the annihilator of B in M (A) is defined
by B :={T € M(A)| T(b) =0 for every b € B}.

We say that it is a dense extension (or also that B is a dense subalge-

bra of A) if every nonzero element in M (A) remains nonzero when restricted

to B, ie., B = 0.

The first examples of dense extensions were given in the context of mul-

tiplicative semiprime algebras.

Example 1.5.10. M. Cabrera has proved in [25] that every essential ideal of

a multiplicative semiprime algebra is dense.

F. Perera and M. Siles Molina found in [75] new and significant instances

where dense extensions naturally appear. More concretely:

Example 1.5.11. (See [75, Lemma 3.4 and Proposition 3.5].) Let A be

a semiprime associative algebra and ) a subalgebra of Q7 . (A) that con-

tains A. Then the extensions A C Q, A~/Z4 C Q™ /Zq and [A, A]/Zja, 4 C
Q. Ql/Zq, q) are dense.

The following elemental result asserts that, for an extension of algebras
B C A, the multiplication operators of B can be extended to multiplication

operators of A.

Proposition 1.5.12. Let B C A be an extension of algebras. Then for each
F € M(B) there exists T € M(A) such that T|g = F.

Proof. 1t is easy to see that the set S = {F € M(B) | there exists T' €
M (A) such that T'|g = F'} is a subalgebra of M (B). Moreover, it is clear that
Ida(z) = Idg(z), Li{(x) = Ly(z), and Ri(z) = Ry(x) for all z,b € B, where,

to avoid any confusion, we have denoted by Li' and R;' the left and right




MENU SALIR

34 1.5 Lie algebras of quotients for skew Lie algebras

(respectively) multiplication operators by b on A. Therefore, Idg, Ly, Ry € S
for all b € B, and hence § = M(B) and the proof is complete. H

As a consequence we deduce that dense subalgebras are just those in which
the multiplication operators have the unique extension property (this is

condition (ii) in the corollary below).

Corollary 1.5.13. Let B C A be an extension of algebras. Then the following

assertions are equivalent:
(i) B is a dense subalgebra of A.
(ii) For each F € M(B) there ezists a unique T' € M(A) such thatT|p = F.

Proof. Assume that B is a dense subalgebra of A. Taking into account
Proposition 1.5.12, it only remains to prove uniqueness. Assume that, for
F € M(B), there exist T1, Ty € M(A) satistying T1(z) = Tz(x) = F(x) for
all x € B. Then 77 — T, € B = (0 by the density of B. Hence, T7 = T5.

To prove the converse, it is enough to note that each T" € B is an

extension of the zero operator in M(B), and consequently 7" = 0. O

Corollary 1.5.14. Let B C A be a dense extension of algebras. Then M (B)

can be regarded as a subalgebra of M(A).

Proof. The map ¢ : M(B) — M(A) given by ¢(F) = F', where F” is the
unique extension of F' which exists by Corollary 1.5.13, is a well-defined

monomorphism that allows us to consider M (B) as a subalgebra of M(A). O
Definitions 1.5.15. ([23]). Let A be an (associative or not) algebra A.

1. For each subspace N of M(A), we define

Nown ={a € A : N(a) =0}
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2. The e-closure of a subspace S of A is defined by S” = (S“™) 4.

It is easy to check that U” is an ideal of A whenever U is so.

3. A subspace S of A is said to be e-closed whenever S” = S and e-dense

if it satisfies that S = A.

Trivial examples of e-closed ideals of A are 0, Ann(A) and A.

Remark 1.5.16. Note that this notion of e-density coincides with the density
give in Definition 1.5.9. In fact, an extension of algebras B C A is dense if
and only if the annihilator of B in M(A) is equal to zero, that is, B*"" = 0,

which is equivalent to say that B = A, i.e., B is a e-dense subalgebra of A.

The behavior of the e-closure with respect to the action of evaluation was

determined in [23, Proposition 1.8] obtaining the continuity property:
If T e M(A) and if S is a subspace of A, then T'(S") C T(S)".

As a consequence, we have S{*S5" C (5152)” for all subspaces Sy, Sy of A.

Now, we will show that, for a general algebra A, the density condition
behaves properly with respect to the actions of passing to A/Ann(A) and A%

First, we study the annihilator of a dense subalgebra.
Proposition 1.5.17. Let B C A be a dense extension of algebras. Then
(i) Ann(B) = Ann(A) N B and the correspondence
z+ Ann(B) — x + Ann(A)

is a well-defined monomorphism from B/Ann(B) into A/Ann(A) that
allows us to regard B/Ann(B) as a subalgebra of A/Ann(A).

(ii) B/Ann(B) is a dense subalgebra of A/Ann(A).
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Proof. (i). It is clear that Ann(A) N B C Ann(B). To prove the converse
inclusion take x € Ann(B) and note that L4(B) = R4(B) = 0, from which it
follows, taking into account that B is dense in A, that L7 = R4 = 0 and, as a
result, x € Ann(A). Thus, we have proved the equality Ann(B) = Ann(A)NB,
from which it immediately follows that the correspondence x + Ann(B) —
r+Ann(A) is a well-defined monomorphism from B/Ann(B) into A/Ann(A).

(ii). Regarding B/Ann(B) as a subalgebra of A/Ann(A), we will show that
B/Ann(B) is dense in A/Ann(A). To this end, we will consider the quotient

map 0: A — A/Ann(A), as well as the map
o'+ M(4) = M(A/Ann(A)),

which is uniquely determined by the condition ¢/(T") o o = gpo T for all T' €
M(A). 1t is straightforward to verify that ¢’ is an epimorphism from M (A)
onto M(A/Ann(A)) with kernel

[Ann(A) : A :={T € M(A) : T(A) C Ann(A)}.

Suppose that F' € M(A/Ann(A)) satisfies F'(B/Ann(B)) = 0 and take T €
M (A) such that ¢/(T') = F. Then, for each b € B we have

and hence T'(B) C Ann(A). Using this fact, the continuity property and that
B" = A (because the density of B), we obtain that

T(A)=T(B") CT(B)" C Ann(A)" = Ann(A).

Therefore, T € [Ann(A) : A] and so F' = ¢/(T) = 0, which concludes the

proof. O

The following result was proved for Lie algebras in [75, Lemma 3.3].
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Proposition 1.5.18. Let A be an algebra. If B is a dense subalgebra of A,

then B2 is a dense subalgebra of A2.

Proof. Let B be a dense subalgebra of A. Assume that F' € M (A?) satisfies
F(B?) = 0, and choose T € M(A) such that T'(z) = F(z) for all z € A2
which is possible by Proposition 1.5.12. From the continuity property and

taking into account the density of B in A we deduce that
T(A*) =T((B")*) CT((B*)") € T(B*)" = F(B*)" =0.
Therefore T(A?) = 0 and hence F' = 0, as desired. O

As we have said, our aim here is to extend [75, Theorem 2.12 and Propo-

sition 3.5] to skew Lie algebras. We are now in a position to show it.

Theorem 1.5.19. Let A be a semiprime associative algebra with an involu-
tion * and let Q) be a x-subalgebra of Qs(A) containing A. Then the following

conditions are satisfied:

(i) K4 is a dense subalgebra of Kq, and [K4, Ka4] is a dense subalgebra of
[Kq, Kol

(ii) Ka/Zk, is a dense subalgebra of Kq/Zr,, and [Ka, Kal/Zk 4, K4 15 @

dense subalgebra of [Kq, Kql|/Zik,, kq)-

(iii) Kq/Zk, is an algebra of quotients of Ka/Zk,, and [Kq, Kql/Zk,, ko)

is an algebra of quotients of [Ka, Kal/Zik,, k.)-

Proof. Let A be a semiprime associative algebra with an involution * and let
() be a x-subalgebra of Q4(A) containing A.

(). Assume that F' € M(Kg) satisfies FI(K4) = 0. Regarding K4 as a
subalgebra of Q4(A)~, and keeping in mind Proposition 1.5.12, we can choose

T € M(Qs(A)™) such that T'(q) = F(q) for all ¢ € Kg. Let n € N and
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pi,¢i € Qs(A) (1 =1,...,n) besuch that T'(¢) = >, piqq; for all ¢ € Qs(A).
Since T'(a — a*) = F(a — a*) = 0 for each a € A, it follows that

V(X)) =Y pixgi— Y pix'y;
=1 i=1

is a *-GPI on A. By [15, Theorem 6.4.7] ¢ also is a *-GPI on Qs(A), hence
TlKQs(A) = 0, and so F' = 0. Thus, we have proved that K, is a dense
subalgebra of K. Now, by Proposition 1.5.18 (or, alternatively, [75, Lemma
3.3]), [Ka, K4l is a dense subalgebra of [Kq, Kg).

ii). Since K4 is a dense subalgebra of Kq, applying Proposition 1.5.17
Q
we obtain that

Zi, = Ziy N Ka,

and K,/Zk, can be regarded as a dense subalgebra of Kq/Zk,. Analogously,
since [K 4, K 4] is a dense subalgebra of [K, K¢, again by Proposition 1.5.17

we have that

Z[KA,KA] = Z[KQ7KQ} N [KAv KA]v

and [Ka, Kal/Zik, k4 can be also regarded as a dense subalgebra of the
algebra [Kq, Kql/Zik,, ko)-

(iii). First we note that, for an essential x-ideal U of A, the inclusion
map from U into A can be extended to an *-isomorphism from Q(U) onto
Qs(A) (see [66, Theorem 4.1]). Hence, keeping in mind conclusion (ii) in the
statement, Ky /Zk, can be seen as a dense subalgebra of Kq/Zk,, and also

as a dense ideal of K 4/Zk . From this it follows that
Anng, z,, (Ku/Zk,) © Ann(Ka/Zxk,) (1.2)

and

Annggz,c, (Ku/Zk,) © Ann(Kq/Zi,). (1.3)
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Since A is semiprime, and so is ) (by [15, Lemma 2.1.9 (i)]), it follows from
(64, Theorem 6.1] that K4/Zf, and Ko/Zk,, are semiprime Lie algebras. In
particular,

Ann(Ka/Zk,) =0 and Ann(Kq/Zk,) = 0.

Thus, (1.2) and (1.3) allow us to conclude that
AnnKA/ZKA (KU/ZKU) =0 and AHHKQ/ZKQ (KU/ZKU) =0 (14)

for any essential *-ideal U of A.

Now, let ¢ € Kg\Zk, and choose an essential *-ideal U of A such that
qU +Uq C A. Then 0 # [q¢ + Zk,, Ku/Zk,] € Ka/Zk, by (1.4). Thus
KQ/ZKQ is an algebra of quotients of K,/Zk,.

To verify that [Kg, Kql|/Zix,, ko) is an algebra of quotients of the Lie
algebra [K4, Kal/Zk ,, k., we will consider the map ¢ = o o ¢, where ¢ is
the inclusion map from [K 4, K4] into K4 and p is the quotient map from
K4 onto K4/Zk . It is clear that ¢ is a homomorphism from [K 4, K 4] into
K4/Zk , such that o([Ka, Ka|) = [Ka/Zk,, Ka/Zk,]. Since, by [11, Lemma
2.14], Zik, ka) = [Ka, Kal N Zg,, it follows that ker (¢) = Zix,, k.- Thus,

we have an isomorphism
(Ka/Zkas Ka/Zk,] = [Ka, Kal/Zix,, k). (1.5)
Analogously, we also have that
Ko/ Zkqy: Ko/ Zko) = [Kq: Kql/Zikg, kq)- (1.6)

Taking into account that K,/Zk, is a semiprime Lie algebra and Kq/Zk,
is an algebra of quotients of K4/Zk,, it follows from [75, Lemma 2.13] that
(Kq/Zk,, Kqo/Zk,] is an algebra of quotients of [K4/Zk,, Ka/Zk,]. The iso-
morphisms (1.5) and (1.6) allow us to conclude now that [Kq, Kq|/Zx,, ko]

is an algebra of quotients of [Ka, Kal/Z[k ,, k.- O
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We close this section by showing that [75, Theorem 2.12 and Proposition

3.5] can be obtained as a corollary of the theorem above.

Corollary 1.5.20. Let A be a semiprime associative algebra and Q) be a

subalgebra of Qs(A) containing A. Then

(i) A~ is a dense subalgebra of Q~, and [A, A] is a dense subalgebra of
@, Q.

(i) A7/Z4 is a dense subalgebra of Q™ /Zq, and [A, A]/Za, 4] is a dense
subalgebra of [Q, Ql/Zig,q)-

(iii) Q@™ /Zq is an algebra of quotients of A~ /Z4, and [Q, Q]/Z|g,q is an
algebra of quotients of [A, Al/Za, a)-

Proof. Consider the semiprime associative algebra A ® A° endowed with the
exchange involution. It is easy to see that the inclusion map from A @ A into
Qs(A @ A% can be extended to a *-isomorphism from Q,(A) ® Q,(A)° onto
Qs(A® A%). In this way Q ® Q° can be seen as a *-subalgebra of Q,(A @ A°)
containing A @ A°. Keeping in mind that A~ is isomorphic to K 4e40 and
()~ is isomorphic to Kgggo, the conclusions follow directly from Theorem

1.5.19. [l

1.6 Graded Lie algebras of quotients for skew
graded Lie algebras

Let A be a G-graded associative algebra with an involution * satisfying that
Ar = A,, for all 0 € G. Then the Lie algebras K4 and K,/Zy, are G-graded

Lie algebras too.

Theorem 1.6.1. Let A be a semiprime G-graded associative algebra with an

involution * such that A% = A,, for every o € G, and let Q) = ®,ccQ, be
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a G-graded overalgebra of A contained in Qs(A) and satisfying Q% = Q. for

every o € G. Then:
(i) Kq/Zk, is a graded algebra of quotients of Ka/Zk,.
(i) [Kq, Kql/Ziky, ko) i a graded algebra of quotients of [Ka, Kal/Zix s i 4)-

Proof. By Theorem 1.5.19 (iii), Ko/Zk, and [Kq, Kq|/Zk, K, are alge-
bras of quotients of Ka/Z, and [Ka, Ka]/Zik , i), tespectively. Since A is
semiprime, and so is @ (by [15, Lemma 2.1.9 (i)]) which imply that K,/Zk,
and Kq/Zk, are semiprime Lie algebras. In particular, they are graded

semiprime, hence Proposition 1.4.26 applies to get the result. O
As a consequence we have:

Corollary 1.6.2. Let A be a semiprime graded associative algebra and () be

a graded subalgebra of Qs(A) containing A. Then
(i) Q= /Zg is a graded algebra of quotients of A~ /Z 4.
(i) [@Q,Q]/Zig,q) is a graded algebra of quotients of [A, A]/Za,a)-

Proof. 1t is enough to note that for an arbitrary graded associative algebra A,
the graded Lie algebra A~ is graded isomorphic to K 4440 and hence A~ /Z 4 is

graded isomorphic to K qa0/Z where A denotes the opposite algebra

ApA0?

of A, and A @ A° is endowed with the exchange involution and apply the

theorem above. O







Chapter 2

Maximal and maximal graded
algebras of quotients of Lie
algebras

Following the original pattern of Y. Utumi and adapting some ideas coming
from the Jordan setting [65], M. Siles Molina introduced in [79] the notion of
the maximal algebra of quotients @,,(L) of a semiprime Lie algebra L. The

reason for this name is that every algebra of quotients of L can be embedded

into Q. (L).

Inspired by M. Siles Molina’s construction, our first target in this second
chapter will be to build a maximal algebra of quotients for every graded
semiprime Lie algebra. Secondly, while the preceding chapter mostly consi-
dered abstract properties of algebras of quotients, in this one our target will
be to compute @,,(L) for some Lie algebras. Specifically, we are interested in
Lie algebras of the form L = A~/Z  where A~ is the Lie algebra associated
to a prime associative algebra A with center Z, and in Lie algebras of the
form L = K/Zk, where K is the Lie algebra of skew elements of a prime

associative algebra with involution and Zj its center.

43
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2.1 The maximal algebra of quotients of a
semiprime Lie algebra

Definitions 2.1.1. Let B be a subalgebra of an algebra A. A linear map

0: B — A is called a partial derivation if

o(zy) = 6(x)y + 2 (y)

for all x,y € B. Let us denote by PDer(B, A) the set of all partial derivations
from B to A.

Any element x of A determines a map adz: A — A defined by ad z(y) =
[z, y] which is a derivation of A. For every Lie ideal U of A, the restriction of
the map ad: A — Der(A) to U,

U — Der(A)
y — ady

defines a Lie algebra homomorphism with kernel Ann(U), which allows us to
identify U/Ann(U) with the subalgebra ad (U) of Der(A). For any y € U and
0 € Der(A), we have

[0,ad y] = ad d(y),
hence ad (U) is an ideal of Der(A) whenever 6(U) C U for every ¢ € Der(A).
We denote by Inn(A) the ideal ad (A) of Der(A) and we call the elements of
Inn(A) inner derivations of A. Note that A~/Z = Inn(A).

Partial derivations are defined analogously in the Lie algebra context.

Definitions 2.1.2. Let M be a subalgebra of a Lie algebra L; a linear map

0 : M — L is called a partial derivation if

6([z,y]) = [6(z), y] + [z, 6(y)]

for all x,y € M. By PDer(M, L) we will denote the set of all partial deriva-
tions from M to L and by Der(L) we will mean the Lie algebra of all deriva-

tions from L into L.
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Remark 2.1.3. Incidentally, if § is a derivation of an associative algebra
A, then it is also a derivation of the Lie algebra A~. The converse is not
true in general: for example, every linear map from A into the center of A
that vanishes on [A, A] is a derivation of A~. We call derivations of A~ Lie

derivations of A.

We also have to define the concept of degree of a prime algebra A. The
reason for this is that algebras of certain low degrees must be excluded in
the results on Lie derivations [13, 14] that we are going to apply. In the
case of having an involution, we shall need to use results that appear in
[16, 36, 59, 60], which also require restrictions on the degree which can not

be eliminated.

Definition 2.1.4. Let A be a prime algebra. For every x € A we define
deg(z), the degree of z, as the degree of algebraicity of = over the extended
centroid C, provided z is algebraic over C. If x is not algebraic over C, then

we write deg(z) = 0o. The degree of A is defined as,
deg(A) = sup{deg(z) | x € A}.

Remark 2.1.5. Note that deg(A) < oo if and only if A is a PI algebra.
Furthermore, it is known that deg(A) = n < oo if and only if A satisfies the
standard polynomial identity of degree 2n, but does not satisfy any polyno-
mial identity of degree < 2n, and this is further equivalent to the condition
that A can be embedded into the matrix algebra M, (F') for some field F' (say,
one can take F' as the algebraic closure of C), but cannot be embedded into

M, 1 (F') for any commutative algebra F'.

We have now all the ingredients to explain the construction of the maximal

algebra of quotients of a Lie algebra L. We have to confine ourselves to the
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case where L is semiprime. The definition is based on partial derivations

defined on essential ideals of L.

Construction 2.1.6. (See [79, Lemma 3.2 and Theorem 3.4].) Let L be a
semiprime Lie algebra. We say that two pairs (6, I), (u, J), where I, J are
essential ideals of L and § : I — L, u : J — L are partial derivations, are
equivalent if  and u agree on some essential ideal contained in I N J.

This is an equivalence relation. Denote by d; the equivalence class deter-
mined by (J, I). The set of all such classes becomes a Lie algebra if we define

addition, scalar multiplication, and bracket as follows:

Or + g =0+ p)ins, adr) = (ad)r, [61,ps] = (Op — M5)(1mJ)2-

This Lie algebra is called the maximal algebra of quotients of L, and
will be denoted by @,,(L). One may identify L with a subalgebra of Q,,(L)
via the embedding x — ad 2. The maximality of Q,,(L) is shown in the next

result.

Proposition 2.1.7. (See [79, Proposition 3.6].) Let L be a semiprime Lie
algebra. Then Q,,(L) is semiprime and an algebra of quotients of L. Moreover,
Qm(L) is mazimal among the algebras of quotients of L, in the sense that if
Q is an algebra of quotients of L, then there exists a Lie monomorphism
Y Q — Qum(L) which is the identity on L. In particular, the map

v Q —  Qu(l)

r o adz.
18 a Lie monomorphism which is the identity when restricted to L.
The axiomatic characterization of the symmetric Martindale rings of quo-

tients (see Proposition 1.2.18) inspired to M. Siles Molina to give the following

description of the maximal algebra of quotients of a semiprime Lie algebra.
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Theorem 2.1.8. (See [79, Theorem 3.8].) Let L be a semiprime Lie algebra
and consider an overalgebra Q) of L. Then @ is isomorphic to Q,,(L), under an
1somorphism which is the identity on L if and only if Q) satisfies the following

properties:
(i) for every q € Q there exists an essential ideal I of L such that [I,q] C L,
(i) [q,I] # 0 for every nonzero q € Q and every essential ideal I of L, and

(iii) for every essential ideal I of L and any derivation § : I — L there exists

q € Q such that 6(x) = [q, x| for all x € I.

2.2 The maximal graded algebra of quotients
of a graded semiprime Lie algebra

Taking into account that, for a semiprime Lie algebra L, the elements of
Qm (L), the maximal algebra of quotients of L, arise from partial derivations
defined on essential ideals, it seems natural to consider instead graded partial
derivations and graded essential ideals. With this idea in mind, we proceed
to introduce a new graded algebra. First, we recall and introduce some defi-

nitions.

Definitions 2.2.1. (See Definitions 2.1.2.) Let L be a Lie algebra graded
by an abelian group G, and [ a graded ideal of L. We say that a partial
derivation § : I — L has degree 0 € G if it satisfies 6(1,) C L., for every
7 € (G. In this case, ¢ is called a graded partial derivation of degree o.
Denote by PDerg, (I, L), the set of all graded partial derivations of degree
0. Clearly, it becomes a ®-module by defining operations in the natural way

and, consequently,

PDery, (1, L) := @yecPDerg, (I, L),
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is also a ®-module.

Example 2.2.2. If L is a G-graded Lie algebra and x € L is an homogeneous
element of degree o, then ad x is a partial derivation of degree o. In general,

for any x in the graded Lie algebra L,

adx = Z adz, € @JGGPDergr([a L)cr = PDergr(I, L)

ceG

In order to ease the notation, denote by Z,_.(L) the set of all graded

essential ideals of a graded Lie algebra L.

Construction 2.2.3. Let L = ©,c gL, be a G-graded semiprime Lie algebra

over ®. Consider the set
Dy :={(0, 1) |1 €Zy_.(L), 0 € PDery (I, L)},

and define on Dy, the following relation: (d, I) = (p, J) if and only if there
exists K € Zy_.(L) such that K C INJ and 6 |x= p |x. It is easy to see
that = is an equivalence relation.

Denote by Qgr—m (L) the quotient set D,/ = and by ¢; the equivalence
class of (6, I) in Qgr_m(L), for 6 € PDery (I, L) and I € Z,_.(L). Then

Qgr—m (L), with the following operations:
Or + gy = (0 + 1) 1ns

06(51) = (O[d)]
(07, pg] = (6p — N5)(1mJ)2

(for any 07, pt; € Qgr_m(L) = BrecQs and a € @) becomes a G-graded Lie

algebra over ®, where

Qs = {(6,)1 | 65 € PDerg(I, L)y, I € Ty_o(L)}.




MENU SALIR

2. Maximal and maximal graded algebras of quotients of Lie algebras 49

Following the proof of [79, Theorem 3.4] one can see that Qg,_,,(L) is a Lie

algebra. At this point, we remark that given a finite family

{(501)11’ SR (50'7L>[n}

of elements of Q,—,, (L), it is always possible to find a graded ideal I of L
satisfying that
(05,)1, = (00,)1, for every i =1,...,n.
Take, for example, I = N?_,I;. In the sequel, we will use this fact without an
explicit mention.
Now it is easy to see that Qg—n,(L) is indeed graded:

Consider d; in Qgr—n(L) and write 6 =) __, 0,, with 6, € PDerg, (1, L),.

oeG
As Supp(6) is finite, it is possible to write §; = Y _(0,); with (d5)1 € Qp; this
shows that 6; € > . @, and consequently that Qg —m(L) = .n Q0.

We claim that this sum is direct: suppose on the contrary that

Q-N (Z Q,) # 0 for some 7 € G,
OFT

and take 0 20#7(50)1 € (Q;; in particular, ZU# d, # 0 on I and therefore
it is nonzero on I, for some v € G. On the other hand, 6,(I,) C L,, and so

>ozr06(Ly) € (3X_52s Low) N Ly, = 0, a contradiction.

The following result shows how good is the graded Lie algebra that we
have just built. Let us point out here that it is a graded algebra of quotients

and cannot be enlarged.

Theorem 2.2.4. Let L = ®,eqls be a G-graded semiprime Lie algebra.
Then:

(1) Qg—m(L) contains L as a graded subalgebra, via the following graded

Lie monomorphism:

v: L — Qg-m(L)
r +— (adx)p
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(i) Qgr—m(L) is graded semiprime and a graded algebra of quotients of L.

(iii) Qgr—m(L) is mazimal among the graded algebras of quotients of L, in
the sense that if S is a graded algebra of quotients of L, then there exists
a graded Lie monomorphism ) : S — Qgr—m(L) which is the identity on
L. In particular, the map

p: 5 - Qgr—m(L)

= Y ee(ad o)Lz

where x =) %, is a graded Lie monomorphism which is the identity

when restricted to L.

Proof. (i). The map ¢ is well-defined: for z in L we haveadz = ) __adz, €
PDer,, (I, L), which implies (adz), =, s(adz5)r € Qgr_m(L).

The more “difficult” point in proving that ¢ is a graded Lie homomor-
phism is to see that ¢([z, y]) = [¢(x), ¢(y)] for every z, y € L. So, consider
r=)  x,and y =) _ vy, in L. Note that the homogeneous components of
[z, y] are [z, yl, = > _[%r, Yr-15), With 0 € G. Then

ez, y)) =) (ad[r, ylo)p =) (ad Y [zr, yr-10])r.

e o

and ¢([z, y])s = (ad Y__[z+, Yr-15])r. On the other hand,

[p(2), ()] = | > (adzy)r, Y (adys)s

[ g

implies

[o(x), e(Wlo = Y [(ad )z, (ady,—1,)r] = > (ad 27, Yr16])r = @([2, Y])o

T T

for every o € G and hence ¢([z, y]) = [p(z), ¢(y)] as desired.

Injectivity of ¢: suppose p(z) = (ad ), = 0 for some = € L. This means
adz(I) = 0 for some [ € Z,,_.(L), that is, z € Anny (/) = 0 (apply Lemma
1.4.10 (iii)).
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Identifying L with its image L¥ via the graded Lie monomorphism ¢, we

can regard L as a graded subalgebra of Q) (L).

In what follows, for any X C L, write X% to denote the image of X
inside Qyr—m (L) via the graded Lie monomorphism ¢ above. Let us stop, for
a moment, the proof of the theorem in order to obtain a useful tool for our

computations.

Remark 2.2.5. For every §; € Qgr—n(L) and (adx);, € I¥, with z € I, we
have:
[0, (adz)L] = (ad dx)L, € L?.
In fact, for any y € I, [6, adaly = d([z, y]) — [z, oy] = [0z, y] + [z, 0y] —
[z, dy] = [0z, y] = (ad dx)y and so [0;, (adx) | = (ad dz)p € L¥.
Keeping this remark in mind, let us continue with the proof.

(ii). Show first that Qg_., (L) is a graded algebra of quotients of L. Con-
sider 0 # (0,)1 € Q, and (u,); € Q.. Choose y, € I, satisfying d,(yq) # 0

(it is possible because [ is a graded ideal). Then (ady,)r € L, satisfies:

[(00)1, (adya)r] = (by Remark 2.2.5) (ad 6,(ya))r # 0 :

Otherwise, 0 = ad d,(ya)(J) = [05(Ya), J| for some J € Z,_.(L), that is,
0o (Yo) € Anny(J) =0 (by Lemma 1.4.10 (iii)), a contradiction.
Moreover, given (ad z1)r € L,,,...,(adx,)r € L, (forn € Nand v; € G)

we have

[(ad ya)z, ad ((adzy)r) ... ad ((ad 2,) 1) ((147)1)] € Law,..r-

Indeed, as

ad ((adzy)r) ... (ad (ad z,) ) (7)) = ad (ad 1), ... ad (ad 1)

lad x,,, p-]r = [ad xy, [ad za, ... [ad Tp, ] ... |1 € Quivy. e
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if we define v := [ad 21, [ad 29, ... [ad zp, p,]...], then

lad (ya)z, ad ((ad 21)z) . . . ad ((ad ) ) ((112)1)] = (by Remark(2.2.5))

[(ad ya)L7 7]] S Laz/11/2...1/n7~

Note that the result follows now immediately. The graded semiprimeness of

Qgr—m(L) is obtained from Proposition 1.4.18 (ii).

(iii). Suppose that S is a graded Lie algebra of quotients of L and consider
the map 1 given in the statement. It is well-defined by Lemma 1.4.20 (ii). The
more “difficult” point in proving that ¢ is a graded Lie homomorphism is to
show that v([z, ]) = [:(x), ¥(y)] for every z, y € S. Take & = ¥, 25, y =
> »Ys € S. Note that the homogeneous components of [z, y] are [z, y|, =
> xr, yr-15), with 0 € G. On the other hand, as Supp([z, y]) is a finite set,
denote its elements by o1, 09,..., 0y, then I := N (L : [z, y],,) is a graded

essential ideal of L. Then:

n n

Oz, y)) = D (adfe, yle); =D (ad Y _[or,yr10]);

i=1 i=1

- Z (Z[ad T, adyTlc,i]) = ZZ[(ade)I, (ad yr-14,)1]

=1 T
= W), ¥(y)]

To prove the injectivity, take z € S such that ¥(z) = 0. Then
(ad T4)(L: o,y = O for every o € G. This means that for every o € G there
exists a graded essential ideal I? of L, contained in (L : x,), such that
(adz,)(17) = 0. Hence x, € Anng (/) = 0 (by Lemma 1.4.10 (iii)) for every

o € G, whence z = 0 as desired. n

Definition 2.2.6. For a graded semiprime Lie algebra L, the graded algebra
Qgr—m (L) constructed in (2.2.3) will be called the maximal graded algebra
of quotients of L.
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Once we have shown the existence of a maximal graded algebra of quo-
tients for any graded semiprime Lie algebra, we proceed to its characteriza-
tion. A consequence of the result that follows is the uniqueness of the maximal

graded algebra of quotients (up to graded isomorphism).

Theorem 2.2.7. Let L be a graded semiprime Lie algebra and consider a
graded overalgebra S of L. Then S is graded isomorphic to Qgr—m(L), under
an isomorphism which is the identity on L, if and only if S satisfies the

ollowing properties:

following '
(i) Foranys, € S, (0 € G) there exists I € I,,_ (L) such that I, s,] C L.
(ii) Fors, €S, (0 €G)andI €I, _.(L), I, ss] =0 implies s, = 0.

(iii) For I € Iy _.(L) and 0 € PDerg, (I, L), (0 € G) there exists s, € S,

such that 6(x) = [s,, x| for every x € I.

Proof. Define

Qgr—m(L)
> eo(ad so)r

where s = ) _.s, and I is a graded essential ideal of L satisfying that

[I, s;] C Lforalloeg.

v S
s

—
—

The map 9 is well-defined: take s € S and denote by o4, 09, ...,0, the
elements of Supp(s). By (i) it is possible to find, for each i = 1,...,n, [; €
Zyr—e(L) such that [[;, s,,] € L. Then I =N I; € Z,,_.(L) satisfies [1, s,,] C
Lforalli=1,... n.

Moreover, 1 is a graded monomorphism: given s, t € S, apply again (i)

and a reasoning similar to the described in the paragraph above to find

I, J, K € T,,_.(L) such that [I, s,] € L, [J, t,] C L and [K, [s, t],] C L
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for all 0 € G, where s =) _s,,t =) _t,and [s, t] =) _[s, t], are the de-
compositions of s, t, [s, t], respectively, into their homogeneous components.

Take U =INJNK € Zy_.(L). Then U? € Z,,_.(L) and we have:

¢([57 t]) = Z (ad [37 t]0>U2 = Z (ad Z[Sﬂ tT‘la])UQ'

g ag
This implies

U([s, ) = (ad Y [5r, tro1]) e

On the other hand, as

[W(s), ()] = > _(ad so)uz, Y (adte)ys]

g g

[W(s), ()]s = Y l(ads)oz, (adtr-1)02] = Y (ad[sr, tr1q])e

T T

= () _ad[sr, tr1s]) e,

which shows ¥([s, t]), = [¢(s), ¥(t)], for all o € G, hence ¥([s, t]) =
[¥(s), ¥(B)].

Injectivity of 1: if 9(s) = 0 for some s € S, then ) _(ads,); = 0, where
I €7, _.(L)satisties [I, s,] C Lforallo € G, hence (ad s,); = 0. This means
0= (ad s,)(J) = [sy, J] for some graded essential ideal J (of L) contained in
I and every o € G. By (ii), s, =0 for all o € G, that is, s = 0.

Surjectivity of ¥: given Y _(6,)1 € Qgr—m(L), by (iii) there exists s, € S,

such that 0, and ad s, coincide on the graded essential ideal I of L, hence

Finally, to see that v is the identity on L, identify L with LY, where ¢ is
the map defined in Theorem 2.2.4.
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Conversely, we will show that (Qg,_.,(L) satisfies the three conditions in

the statement.

(i). For ¢, € Q, we have (L : q,) € Zy—_.(L), by Theorem 2.2.4 and
Lemma 1.4.20 (ii), and by definition [(L : ¢,), ¢,] C L.

(ii). Consider ¢, € Q, and I € Z,_.(L) such that [, ¢;] = 0. Then
¢s € Anng,, . ()({) = 0 by Theorem 2.2.4 and Lemma 1.4.21.

(iii). Given I? € T, _.(L¥) and § € PDerg(I¥, L¥),, we have to find
¢s € Qo such that 6 = adg, on I¥. Consider § : I — L defined by 6(z) =

¢ 1(6((adz)r)). Then ¢, := §; € Q, satisfies [¢,, z¥] = [0;, (adz)r] (by
Remark 2.2.5) (addx), = (62)¢ = §((ad z)) = d(x%). O

Remark 2.2.8. Conditions (i) and (ii) in the theorem above are equivalent
to the following one:

(ii)" S is a graded algebra of quotients of L.

Proof. 1f S is a graded algebra of quotients of L, condition (i) is satisfied by
Proposition 1.4.22. On the other hand, (ii) follows immediately by the graded
semiprimeness of L and Lemma 1.4.21.

Conversely, assume that S satisfies conditions (i) and (ii). We are going to
show that S is graded ideally absorbed into L, in which case (ii)" will follow
by Proposition 1.4.22. Consider 0 # s, € S,; by (i) there exists I € Z,,_.(L)
such that [I, s,] C L and [I, s,] # 0 by (ii). Note that since L is graded

semiprime, Lemma 1.4.10 (iii) implies Anny(7) = 0. O

Let us finish the section by showing that the notion of maximal graded
algebra of quotients is a good generalization of that of maximal algebra of
quotients, as the maximal graded algebra of quotients and the maximal al-
gebra of quotients of a semiprime Lie algebra coincide when considering the

trivial grading over such an algebra.




MENU SALIR

56 2.3. The maximal Lie algebra of quotients of A~ /Z

Lemma 2.2.9. Let L be a semiprime Lie algebra, then the algebras Qg (L)
and Qm(L) are isomorphic, considering L as a G-graded algebra with the

trivial G-grading.

Proof. Note that in this particular case, every ideal I of L is a graded ideal.
It easily implies (Qgr—m(L))e = Q@m(L). On the other hand, given o € G with
o # e and ¢ € PDery, (I, L), then

that is, § = 0 and hence (Qg—m (L)), = 0 for every e # ¢ € G. Taking
into account these considerations it is now clear that the algebras above are

isomorphic. 0

2.3 The maximal Lie algebra of quotients of
A~ /7

Our aim in this section is to give a description of @,,(A~/Z), where A is a
(semi)prime associative algebra. Since the elements of the maximal algebra of
quotients of a Lie algebra arise from partial derivations defined on essential
Lie ideals and our Lie algebra A~/Z comes from an associative algebra A, it
seems natural to consider instead associative derivations that are defined on
essential associative ideals. With this idea in mind we proceed to introduce a

new Lie algebra.

Construction 2.3.1. Let A be a semiprime associative algebra over ®. Con-
sider the set
D:={(6,I)| I €ZI(A), 6 € PDer(l, A)},

and define on D the following relation: (9, I) = (u, J) if and only if § and
agree on some essential ideal of A contained in I N J. One can easily show

that = is an equivalence relation.
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Denote by Der,,(A) the quotient set D/ = and by d; the equivalence class
of (6, I) in Der,(A), for § € PDer(I, A) and I € Z.(A). Then Der,,(A), with

the following operations:
Or +pg = (6 + p)1ng

Oé((S[) = (045)[

(01, p1s] = (Op — M5)(1mj)2

for any 07,y € Derp,(A) and a € ® becomes a Lie algebra over ®.

The only not entirely obvious part in proving that Dery,(A) is a Lie
algebra is to show that the Lie bracket is well defined on Der,,(A). Let
dr, py € Dery(A); for every u,v € I N J we have [0, u](uv) = op(uv) —
po(uv) = 6((pu)v + u(pv)) — p((du)v + uw(dv)), which makes sense because
(pu)v, u(pw), (du)v,u(dv) € I N J. Since 6 and p are partial derivations,

[6,u] : (INJ)* — Ais a partial derivation too.

It turns out that (under a very mild technical assumption) the algebra we
have just built coincides with @Q,,(A~/Z). Let us start by showing that this
Lie algebra is sandwiched between Der(A) and Der(Qs(A)). First, we need a

lemma.

Lemma 2.3.2. Let A be a semiprime algebra and let () be a subalgebra of
Qs(A) that contains A. If 6 : Q — Qs(A) is a derivation such that 6|4 = 0,
then § = 0.

Proof. Suppose on the contrary that 6(q) # 0 for some ¢ € Q. Since Q4(A)
is a left quotient algebra of A, there exists a € A satisfying ag € A and
ad(q) # 0. By the hypothesis, 0 = §(aq) = d(a)q + ad(q) = ad(q), which is a

contradiction. N




MENU SALIR

58 2.3. The maximal Lie algebra of quotients of A~ /Z

Lemma 2.3.3. If A is a prime algebra, then
Der(A) C Dery,(A) C Der(Qs(A)).

Proof. Define
¢: Der(A) — Dery(A)
) = (SA

It is straightforward to verify that ¢ is a well-defined Lie algebra homo-
morphism. To prove the injectivity, take § € Der(A) such that §4 = 0; this
means that (/) = 0 for some nonzero ideal I of A. Since Qs(1) = Qs(A) (see
[15, Proposition 2.1.10]) applying Lemma 2.3.2 to I C A C Q4(I) we obtain
that 0 = 0, as desired.

Let é; be in Dery,(A), with I a nonzero ideal of A and § : I — A a

derivation. Apply Proposition 1.2.22 to extend ¢ uniquely to a derivation ¢’
of Qs(A). Consider

¢: Dery(A) — Der(Qs(A))
Or — o
If 6; = s, then there exists a nonzero ideal U of A contained in I N.J such
that 0|y = p|y. Extend § and p to derivations ¢’ and i/, respectively, of Qs(A).
Since d'|y = v = plv = p|v and Qs(A) = Qs(U) (see [15, Proposition
2.1.10]), by Lemma 2.3.2 applied to U C A C Qs(U) we obtain that ¢'|4 =
1’4, and again by Lemma 2.3.2 it follows that ¢’ = y/, which proves that ¢

is well-defined. Finally, note that ¢ is a Lie algebra monomorphism. O]

We come back to the announced problem, namely, whether one can say
that Der,(A) and @Q,,(A~/Z) are isomorphic. Let us denote by (X) the sub-

algebra of an algebra A generated by a set X.

Lemma 2.3.4. Let U be a Lie ideal of a semiprime algebra A such that U is
an essential ideal of A=/Z. Then (U) contains an essential ideal of A.
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Proof. First we show that (U) contains a nonzero ideal of A. It is clear that
[(U),U] C (U). Moreover, [(U),U] # 0; otherwise [x,U] = 0 for every x € U.
This would imply, by [42, Sublemma, p. 5], * € Z and, consequently, U C Z,
a contradiction. Therefore [43, Theorem 3] yields our claim.

Hence, let I be a nonzero ideal contained in (U). Since the sum of all
ideals contained in (U) is again an ideal contained in U, there is no loss of
generality in assuming that [ is the largest ideal contained in (U).

We will show that [ is an essential ideal of A. First, we see that Ann(/) N
U C Z. Otherwise, by [43, Theorem 3], there exists a nonzero ideal J of A
contained in (Ann(/) NU) C Ann(/) N (U). Since I N Ann(I) = 0 because A
is semiprime, I & I & J C (U), which contradicts the maximality of I. Since
U is an essential ideal of A~/Z, Anny-,z(U) = 0. Note that [Ann(I), U] C
Ann(I)NU C Z implies (Ann(I)+Z)/Z = 0, that is, Ann(/) C Z C U. Now,
I CI®Ann(l) C (U) and the maximality of / imply Ann(/) = 0, hence I is

an essential ideal of A. O]

Proposition 2.3.5. Let A be a semiprime algebra. Define

¢: Dery(4) — Qn(A™/2)
5] = 57

where

(@5
<o~

- Az
= Y

o(y)

Then ¢ s a Lie algebra homomorphism with kernel
{67 € Derp,(A) | 0(1) C Z}.

Proof. The map 6 is well-defined. Indeed, taking into account Lemma 1.1.14
we see that it is enough to show that for I an essential ideal of A, and
d € Der(1,A), y € INZ implies §(y) € Z. Note that for every x € I we have
[0(y), z]0([y, ]) — [y, 0(x)] = 0. But this yields 6(y) € Z. Namely, only central
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elements can commute with every element from an essential ideal. Indeed,
[a,u] = 0 for every u € I yields [a,z|u = [a,zu] = 0 for all z € A and u € I,
and hence [a, ] = 0 since [ is essential.

It is easy to see that ¢ is a well-defined Lie algebra homomorphism. Let
us now compute its kernel. First we show that if §; € Der,,(A) is such that
d(J) C Z for some essential ideal J of A contained in I, then 6(I) C Z.
For x € I and v € J we have zu € J, and so §(u),d(zu) € Z. Accordingly,
d(z)u = d(zu) — x0(u) commutes with z, that is, 0(z)uzr = zd(x)u. Replacing
u by uy, where u € J and y € A, it follows that §(z)uyr = xd(z)uy =
d(z)uzy. Thus, é(x)ulzx,y] = 0 for all x € I, y € A and u € J. Linearizing
this identity we get 0(z)u[z,y] +0(2)ulx,y] =0forallz,z € [,y € A, u € J.

Consequently, for u,v € J, z,z € [ and y € A we have
d(z)u(z, y|vd(z)uz, y] = —0(x)ulz, y|vd(2)u[z,y] € §(x) ][z, y] = 0.

Since J is essential, aJa = 0 with a € A implies a = 0. Therefore,
d(x)ulz,y] =0forallu € J,x,z € I,y € A. In particular, [§(x), 2] J[0(x), 2] =
0 for all z, z € I, which yields [6(x), z] = 0. Since elements commuting with
all elements from an essential ideal of A must lie in the center of A, it follows
that §(x) € Z, as desired.

Denote by T the set {d; € Der,(A) | 6(1) C Z}. Clearly, T' is contained
in the kernel of ¢. For the converse containment, suppose o7 = 0 for J; an
element in Derp, (A). Then there exists an essential ideal U of A~/Z, contained
in I, such that 6(U) = 0. Consider V := 7Y (U)N I, for 7 : A — A~/Z the
canonical projection. The ideal V is essential because U and I are. By Lemma
2.3.4, there is an essential ideal J of A such that J C (V 4+ Z) C I + (Z).
For an element z in the essential ideal I N J of A, 6(z) € 6(U) = 0, that is,
d(INJ) C Z. By what was proved in the preceding paragraph it follows that
oreT. O
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Lemma 2.3.6. Let A be a prime noncommutative algebra, I an ideal of A

and § : I — A a partial derivation. If 6(1) C Z then § = 0.

Proof. Suppose that §(I) C Z and let u € I. Then u? € I, so 6(u?) € Z, that
is, 2ud(u) € Z. Given z € A we have that 0 = [2ud(u), z] = 26(u)[u, x| and
since A is prime, this implies that v € Z or §(u) = 0. Thus, for every u € I
we have either u € Z or §(u) = 0. Taking into account Remark 1.1.15 there
exists y € I\ Z and so 6(y) = 0. Now take v € I. If v ¢ Z, then 6(v) = 0,
and if v € Z, then v +y ¢ Z whence 6(v + y) = 0. Therefore 6(v) = 0 in any

case. O

Theorem 2.3.7. Let A be a prime algebra such that either deg(A) # 3 or
char(A) # 3. Then Dery,(A) = Qn(A™/2).

Proof. Consider the map ¢ in Proposition 2.3.5. Its injectivity is proved by
Lemma 2.3.6. Let us prove the surjectivity. Let d7 be in Q,,(A~/Z), with J
a nonzero ideal of A=/Z and 0 : J — A~/Z a derivation. Let 7 : A — A~ /Z
be the canonical projection. Note that J can be represented as .J/Z where
J = m~1(J) is a noncentral Lie ideal of A. Define 6 : J — A~/Z by § = 6.
It is clear that 0 is a derivation in the sense of [14]. We are now in a position
to apply [14, Theorem 1.3]|. Picking any set-theoretic map v : J — A such
that v(z) = &(x) for every € J, it follows that there exists a derivation
d:(J) — (JU~(J))C+C, where C is the extended centroid of A, and a map
p o J — C such that d(z) = y(z) + p(x) for all € J. As above, here (S)
denotes the subalgebra generated by the set S.

For z,y € J we have d([z,y]) = [d(z),y] + [z, d(y)] = [v(z),y] + [z,7(y)]
since pu(J) € C. This shows that d([J,J]) € J, which in turn implies
d({([J,J])) € (J) € A. As [J,J] is a noncentral Lie ideal of A, there ex-

ists a nonzero ideal I of A contained in ([J, J]) (cf. the first step of the proof
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of Lemma 2.3.4). Note that d; is an element of Dery,(A), and that ¢(d;) = 7.

This concludes the proof. O
As a consequence, we have:

Corollary 2.3.8. Let A be a prime algebra such that either deg(A) # 3 or
char(A) # 3. If A = Qs(A), then

Qm(A™/Z) = Der(A).

Proof. By Lemma 2.3.3 we obtain that Der(A) = Der,,(A) and applying
Theorem 2.3.7 it follows that Der,,(A) = Q,.(A~/Z), as desired. O

In our final corollary we will extend Corollary 2.3.8 by considering prime
algebras A such that Q,(A) = AZ71 i.e., every element in Q,(A) is of the
form ¢, where a € A and A € Z. However, we have to add the assumption

that A is affine which means generated by a finite number of elements.

Corollary 2.3.9. Let A be an affine prime algebra such that Q,(A) = AZ~!
and either deg(A) # 3 or char(A) # 3. Then

Qm(A™/Z) = Der(Qs(A)).

Proof. Consider the monomorphism ¢ : Der,,(A) — Der(Qs(A)) in the proof
of Lemma 2.3.3. In order to check that ¢ is surjective it is enough to show
that given § in Der(Qs(A)) there exists a nonzero ideal I of A such that
d(I) € A. Indeed, if this were true, then we could consider §; € Dery(A)
and then applying Lemma 2.3.2 for the case I C A C Q4(A) = Qs(I) would
conclude that 6 = ¢(d;).

So pick 0 € Der(Q(A)). Let x1,...,z, be generators of A. According

Y

to our assumption, for each ¢ = 1,...,n we have §(z;) = ¥ for some y; €

AN €Z Set A=T[, N € Z. It is clear that 6(A) C > | Ad(z;)A, which
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in turn implies that A\d(A) C A. Accordingly, 6(\2x) = 2A6(\)x + A\2d(x) € A
for every x € A. That is, 6 maps the ideal I = A\?A # 0 of A into A. O

2.4 The maximal Lie algebra of quotients of
K/Zg

The purpose of the current section is to obtain results on the maximal algebra
of quotients of the skew Lie algebra K/Zj that arises from an associative
algebra with involution. Our line of argument benefits from the approach
developed in the previous sections, although the proofs do not carry over
verbatim.

In particular, we have to take into account whether the involution is of the
first kind or of the second kind (see Definition 2.4.1 below). It is also natural
to restrict our attention to the Lie algebra SDer(A) of those derivations that
commute with the involution % and to construct a Lie algebra SDer,,(A)
similar to Der,,(A) as in Section 2.3 (see Construction 2.3.1), considering
partial derivations defined on *-ideals. The main result is then parallel to

Theorem 2.3.7.

Definition 2.4.1. Let A be a semiprime algebra with involution *. Then %
induces an involution on C, the extended centroid of A. It is said that the
involution on A is of the first kind if C N K = 0; otherwise it is said to be
of the second kind, that is, CN K # 0.

The set SDer(A) := {J € Der(A) | 6(z*) = 6(x)* for all z € A} is a Lie
subalgebra of Der(A). As usual, we will denote by ad (K) the Lie algebra of

derivations adz : A — A with z in K.

Here, we collect some very useful properties of SDer(A).

Lemma 2.4.2. Let A be a semiprime algebra with involution x. Then:
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(i) ad (K) C Inn(A) N SDer(A).
(ii) 6(K) C K for every 6 € SDer(A).
(iii) ad (K) is an ideal of SDer(A).

Proof. (i). For every a € K and z € A, ((ada)z)* = [a,z]* = [z%,a*] =
la,2*] = (ad a)(z*). This implies ad a € SDer(A).

(ii). Let d be in SDer(A). For every x € K, 6(z)" = 6(z*) = §(—x) =
—0(z). This shows §(K) C K.

(iii). For a € K and 0 € SDer(A) we have [§,ada] = add(a), which,

together with condition (ii), implies (iii). O
The following result is a generalization of [16, Lemma 2.9].

Lemma 2.4.3. Let A be a prime algebra with involution % of the first kind
such that deg(A) > 2. If t € K and [t, K] =0, then t = 0.

Proof. By [60, Lemma 2|, the subalgebra generated by [K, K] contains a
nonzero ideal I of A. For ¢t € K satisfying [t, K] = 0, use induction and the
identity [a, be] = [a, blc + b[a, ¢], which holds for all a, b, ¢ € A, to show
that [t, I] = 0. Now, apply [16, Lemma 2.5] to obtain t € K N Z = 0, as
desired. O

The next result tell us what is the center Zx of K. We have to distinguish

if the involution * is of the first or second kind.
Lemma 2.4.4. Let A be a prime algebra with involution x. Then:

(1) If = is of the second kind, then Zx = ZNK and 6(Zx) C Zg for every
d € SDer(A).

(ii) If % is of the first kind and deg(A) > 2, then Zx = ZN K = 0.
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Proof. (i) follows taking into account Lemma 2.4.2 (ii) and applying [49,
Lemma 2 (ii)] and [16, Theorem 2.13]. To prove (ii) it is enough to apply
Lemma 2.4.3. [l

Lemma 2.4.5. Let A be a prime algebra with involution x with deg(A) > 2.
Then [I N K, K] # 0 for every nonzero *-ideal I of A.

Proof. Consider a nonzero #-ideal I of A and suppose INK C Zy =ZNK
by Lemma 2.4.4. From Remark 1.1.15 we have I ¢ Z. Hence, there exists
x € I such that © ¢ Z. By the hypothesis, [z, N K] C Z and taking into
account [59, Theorem 2] if * is of the second kind or [59, Theorem 3] if it is

of the first kind we obtain I C Z, which is a contradiction. O

We now turn to the question of having a good description of the Lie
algebra Q,,(K/Zf), in the case of being A prime with an involution. As
already mentioned, to this end we shall introduce a new Lie algebra whose
definition is based on partial *-preserving derivations.

Denote by Z*(A) the collection of all nonzero x-ideals of A and by
PSDer(7, A) the set of all partial derivations from I to A which commutes

with the involution x*.

Construction 2.4.6. Let A be a prime associative algebra with involution

* over ®. Consider the set
SD:={(4,1)|1€Z"(A), € PSDer(I, A},

and define on 8D the following relation: (d, 1) = (i, J) if and only if § and
1t agree on some nonzero *-ideal of A contained in I NJ. One can easily show
that = is an equivalence relation.

Denote by SDer,(A) the quotient set SD/ = and by d; the equivalence
class of (4, I) in SDery,(A), for 6 € PSDer(/, A) and I € I*(A). Then
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SDery, (A), with the following operations:
Or + pg = (6 + p)1ns
()6(51) = (CY(S)]

(07, pus] = (Op — M5)(1mj)2

for any oy, pu; € SDer,(A) and a € & becomes a Lie algebra over ®.

The following result is analogous to Lemma 2.3.3. To prove it, it is enough
to show that every § € SDer(A) can be uniquely extended to a derivation ¢’
in SDer(Qs(A)). Basically, it follows from the fact that Qs;(A) is an algebra
of left quotients of A, coupled with the fact that every derivation on A can

be extended uniquely to a derivation of Qs(A). (See Proposition 1.2.22.)

Lemma 2.4.7. If A is a prime algebra with involution, then
SDer(A) C SDer,(A) C SDer(Qs(A)).

Our aim now is to construct an isomorphism between the Lie algebra
SDery,(A) defined in Construction 2.4.6 and the maximal algebra of quotients
of the Lie algebra K/Zk.

Lemma 2.4.8. Let A be a prime algebra with involution x such that deg(A) >
4, and let U be an ideal of K such that U € Zy. Then the algebra (U) contains

a nonzero *-ideal of A.

Proof. Clearly (U)* = (U), and (U) ¢ Z since U € Zk. On the other hand,
note that [(U), K] C (U). This follows by an induction argument using the
identity [uv,z] = u[v,z] + [u,z]v, for every u,v,z € A. Next, apply [60,

Theorem 2] to obtain the desired conclusion. ]

Lemma 2.4.9. Let A be a prime algebra with involution x such that deg(A) >
2. If 61 is an element of SDery,(A) such that 6(I N K) C Zk then 6; = 0.
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Proof. 1t is well known that deg(l) = deg(A) (because A is prime, see,
e.g. [15, Theorem 6.4.1]). Therefore [61, Theorem 3| applies to show that,
since [z,d(x)] = 0 for any y € K; by our assumption and deg(/) > 2, ne-

cessarily 6; = 0. O

Theorem 2.4.10. Let A be a prime algebra with involution * such that
deg(A) > 4. Then SDer,,(A) = Qum(K/Zk).
Proof. Consider

@: SDerp(A) — Qun(K/Zk)
(5[ = 6T

where I = (I N K) + Zx)/Zx and
o

<o~

— K/Zg
= 0y
The map ¢ is well-defined. To see this, it is enough to check, by Lemma
2.4.5, that 6((I N K) N Zk) C Zk, whenever I is a nonzero *-ideal of A
and § € SDer(I,A). By Lemma 2.4.2, if y € I N Zx we have y € Z and
arguing as in the proof of Proposition 2.3.5 we obtain d(y) € Z. Consequently
y) € (K)NZ C Zg.

It is easy to see that ¢ is a well-defined Lie algebra homomorphism. We
first prove it is one-to-one. Let &; be an element in SDer,,(A) such that d7 = 0.
Then there exists a nonzero ideal J := .J /Z of K/Z contained in 1 such that
§(J) = 0. Consider J; := 7~ 1(J) N I, where 7 : K — K/Zy is the canonical
projection, and note that the ideal (J; + Zx)/Zx is nonzero because J and
I are nonzero. By Lemma 2.4.8, there is a nonzero *-ideal U of A such that
UC{Ji+Zk) C(UNK)+ (Zk). Since §(u) € 6(J) = 0 for any element u
in (UNI)N K, we see that 6((UNI)NK) C Zk and, by Lemma 2.4.9, we
conclude 6; = 0.

Now we show that ¢ is surjective. Let d5 be in Q,,(K/Zk), with J a
nonzero ideal of K/Zx and 6 : J — K/Zy a derivation. Note that J can be
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represented as J/Zy where J = 7~!(J) is a noncentral ideal of K. Define
§:J— A"/Z by § = iém, where i : K/Z — A~/Z is given by i(z) = & €
A~ /Z. Since Zx = Z N K (see Lemma 2.4.2) it is straightforward to verify
that 7 is a Lie algebra monomorphism. On the other hand, it is clear that ¢ is
a Lie derivation in the sense of [13] and that K satisfies the conditions in [13,
Theorem 3.2]. Therefore, take any set-theoretic map v : J — K such that
v(z) = &(x) for every = € J (note that we may actually choose v with image
contained in K because §(J) C K/Zk), and then it follows that there exists
a derivation d : (J) — (JU~(J))C + C, where C is the extended centroid of
A, and a map p : J — C such that d(z) = v(x) + p(z) for all z € J.

For z,y € J we have

d([z,y]) = [d(x),y] + [z, d(y)] = [v(z),y] + [z, 7(v)]

since p(J) C C. This shows that d([J, J]) C [K, J] C J, which in turn implies
d({[J, J])) C (J) C A. Apply Lemma 2.4.8 to the ideal [J, J] of K (which is
not contained in Zg) to find a nonzero *-ideal I of A contained in ([J, J]).
Note that d; is an element of SDer,,(A). Finally, since u(l/) € KNC =
KNANC=KNZ= Zk (by using [79, Lemma 1.3 (i)] and Lemma 2.4.2)
it follows that ¢(d;) = 0. This concludes the proof. O

Corollary 2.4.11. Let A be a prime algebra with involution * such that
deg(A) > 4. If A= Qs(A), then

Qm(K/Z) = SDer(A).

Proof. By Lemma 2.4.7 we obtain that SDer(A) = SDer,,(A) and applying
Theorem 2.4.10 it follows that SDery,(A) = Q. (K/Zk), as desired. O




Chapter 3

Natural questions concerning
Lie algebras of quotients

Two of the most important properties of the maximal right algebra of quo-

tients of a semiprime associative algebra A, are the following:

1. The maximal right algebra of quotients of A, coincides with the maxi-

mal right algebra of quotients of any essential ideal of A, i.e., Q" . (A) =

r
max

2.1.10].)

(I) for every essential ideal I of A. (See e.g. [15, Proposition

2. If one compute the maximal right algebra of quotients of the maximal
right algebra of quotients of A the obtained result is the maximal right
algebra of quotients of A, that is, taking the maximal right algebra of
quotients is a closure operation, i.e., Q.. (Qh . (A))) = Qr,..(A). (See

e.g. [15, Theorem 2.1.1].)

The main target in this chapter will be to determine the conditions under
which the analogous results are valid in the context of maximal Lie algebras
of quotients introduced in the preceding chapters. As we will see, the answer

is not as easy as in the associative case.

69
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3.1 The maximal Lie algebra of quotients of
an essential ideal

The purpose of this section is to consider the problem of whether Q,,(I)
is isomorphic to @,,(L), for an essential ideal I of a semiprime Lie algebra
L. Of course, this question only makes sense if we assume that [ itself is a
semiprime algebra, so that Q,,,([) exists at all. Under this assumption we will

give a positive answer provided that L satisfies a certain additional condition.

Definition 3.1.1. ([64]). We say that a Lie algebra L is strongly semiprime

(respectively, strongly prime) if:
(i) L is semiprime (respectively, prime).

(ii) For each n, given 0 +# U, <...<1U; < Uy < L there exists 0 £ W < L
such that W C U,,.

We shall use SSP (or SP) as a shorthand for strong semiprimeness (re-
spectively, strong primeness). We will also say that U, as in the definition

above is an n-subideal. Of course, 1-subideals are just ideals.

The notion of strongly semiprime (respectively, strongly prime) algebras
was introduced by W. S. Martindale III and C. R. Miers in [64] for non-
associative algebras; we are interested in Lie algebras. In this context they

proved that skew Lie algebras are SSP (SP); specifically:

Example 3.1.2. (See [64, Theorems 6.1 and 6.2]). If A is a semiprime (prime)
associative algebra with involution then the Lie algebra K/Zx is SSP (SP).

Example 3.1.3. If A is a semiprime (prime) associative algebra then A~/Z
is SSP (SP).
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Proof. We have already mentioned (see Examples 1.1.10) that Inn(A) is a
semiprime (prime) Lie algebra. The example above jointly with Remark 1.1.9

yield that A=/Z = Inn(A) is an SSP (SP) Lie algebra. O

The proof of the following lemma is included in the proof of [64, Theorem
6.2].

Lemma 3.1.4. A Lie algebra L is SSP (SP) if and only if
(i) L is semiprime (prime), and
(i) given 0# Uy <Uy <L, there exists 0 £ W < L such that W C Us.

Proof. Assume that L satisfies conditions (i) and (ii) in the statement. We
proceed by induction on n; for n = 2, there is nothing to prove. Suppose the

result true for n > 2 and consider
04U, 1 <U,<...<Uy,<U; < L.

Define V,, 11 = Upy1 + [Uns1, Un—1] + [[Uns1, Un-1], Up—a] + ... < U,—1 and
note that U,,1 C V41 C U,, so, applying the induction hypothesis to the
chain 0 # V,, .1 < U, 1 <...<U; < U; < L we find a nonzero ideal V' of L
such that V' is contained in V1. We claim that [V, 41, V] is a nonzero ideal
of V' (i.e. a subideal of L) contained in U, 1; otherwise [V,;1, V] = 0 would
imply, by using the Jacobi identity, [V,,41, V] = 0, and hence [V, V] = 0,
which contradicts (i). Therefore [V,, 41, V] # 0 and applying condition (ii) to
the chain 0 # [V,,11, V] <V < L we obtain a nonzero ideal W of L satisfying
that W C [V,,41, V] C U,41. This shows that L is SSP (SP).

The converse holds trivially. ]

Another characterization of strong semiprimeness (resp. primeness) is the

following:
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Lemma 3.1.5. ([64, Remark 1.2]). A Lie algebra L is SSP (SP) if and only if
L is semiprime (prime), and for each n, given 0 # U, <...<Uy<tUy <L there

exists an ideal W of L such that W, viewed as an ideal of U, is essential.

Lemma 3.1.6. Let L be an SSP Lie algebra. Then, for any n-subideal U, of
L there exists an ideal U, of L, which s the largest ideal of L contained in
U,. If U; is essential in U;_1, 1 = 2,...,n, and Uy is essential in L, then ﬁn

15 an essential ideal of L.

Proof. The first assertion is obvious: one just defines U, as the sum of all
ideals of L contained in U,,. Assume now that U, is essential in U;_; and U,
is essential in L. This implies that I N U, # 0 for every nonzero ideal I of L.
Suppose that I N U, = 0. Since L is an SSP Lie algebra, I N U, contains a
nonzero ideal J of L. By hypothesis, J N l?n =0, and ﬁn + J is an ideal of L
bigger than ﬁn and contained in U,,, which contradicts the maximality of the

ideal ﬁn ]

We have included below a different proof of Lemma 3.1.6 which makes use

of Lemma 3.1.5 and [79, Lemma 2.11].

Proof. Define, as above, U, as the sum of all ideals of L contained in U,. Apply
Lemma 3.1.5 to find an ideal U of L such that U <. U,,. By the definition of
[7” we have U C fjn Since U, is semiprime (viewed as a Lie algebra, see [64,
Remark 1.1]) from Lemma 1.1.13 (ii) it follows Anng, (U) = 0, which implies,
by using [79, Lemma 2.11], that Anny, ,(U) = 0. Applying n — 1 times [79,
Lemma 2.11] we obtain Anny(U) = 0, that is, U is an essential ideal of L and

hence, U, is so. ]

Theorem 3.1.7. Let I be an essential ideal of an SSP Lie algebra L. Then
Qm(I) is the mazimal algebra of quotients of L, i. e. Qu(I) = Q.n(L).
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Proof. Notice that I viewed as an algebra is SSP (see [64, Remark 2.11]), so
we can consider @,,(1). Define

e Qu(l) — Qun()

5J — 5(‘]01)2

The map ¢ is well-defined: Since Ann;(JN7) C Anng(JNI) =0, we have
that J NI is an essential ideal of I. Hence (J N I)? is also an essential ideal
of I. Finally, note that 6 maps (J N 1)? into I.

It is straightforward to verify that ¢ is a Lie algebra monomorphism. To
see the surjectivity take vy € @,(I), with I’ an essential ideal of I. By
Lemma 3.1.6 there exists an essential ideal J of L contained in I’. Then, for

Y7 € Qm(L) we have ¢(vs) = Yns)2 = v and the proof is complete. O

Remark 3.1.8. Let A be a semiprime algebra. For every Lie ideal I of A,
Zr = 1N Z since [y, I] =0, with y € I, implies y € Z; indeed, this follows
from [42, Sublemma, p. 5] which states that an element y in a semiprime
algebra satisfying that [y, [y, z]] = 0 for all element x in the algebra must lie

in its center. Moreover, we have the following isomorphism
1/)Z,=1/(INZ)=(I+2)/Z.
Corollary 3.1.9. Let A be a semiprime algebra. Then:

Qm<[A7 A]/Z[A,A]) = Qm(Ai/Z)'

Proof. Applying Remark 3.1.8 we have Zj4 4y = [A, A] N Z from which it
immediately follows that the map determined by [z, y] + Zja, 4 — [z, y| + Z
is a well-defined Lie algebra monomorphism from [A, A]/Z4, 4 into A™/Z.
Identifying [A, A]/Za, 4] with its image, we can regard it as an ideal of A~/Z.
We will prove now that [A, A]/Z4, 4 is essential in A~/Z. To this end, given
a € A\ Z it is enough to show that [a, A] € Z4 41 (see Lemma 1.1.13 (ii)).
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Since a ¢ Z by [42, Sublemma, p. 5] it follows that [a, [a, A]] # 0; this means
that [a, A] € Z which implies that [a, A] € Za, 4], as desired. Keeping in
mind that A~/Z is an SSP Lie algebra, the conclusion follows directly from
Theorem 3.1.7. [

Corollary 3.1.10. Let A be a prime algebra. If Der(A) is SP then
Qm(A™/Z) = Qu(Der(A)).
Proof. The result follows from Theorem 3.1.7. [

The previous result needs the assumption that Der(A) is strongly prime.
It does not seem clear how to verify whether this condition is fulfilled. In what
follows we give a criterion based only on the ideal lattice of A. An useful tool
to obtain it is the fact of Inn(A) is strongly prime. To make use of it we pause

to reduce the study of the strong primeness of Der(A) to the case
0 # ad ([I, A]) < Inn(A) < Der(A),
where [ is an ideal of A.

Lemma 3.1.11. Let A be a semiprime algebra and let I be a nonzero ideal

of Inn(A). Then there exists an ideal U of A such that 0 # ad ([U, A]) C 1.

Proof. It is casy to sce that = {z € A|adz € I} is a noncentral Lic ideal
of A (use [42, Sublemma, p. 5]). Apply [43, Theorem 5] to find a nonzero
ideal U of A satisfying 0 # [U, A] C I, that is, U is an ideal of A such that
0 # ad ([U, A]) C I and the lemma is proved. O

Lemma 3.1.12. Let A be a prime algebra. Assume that for every nonzero
tdeal U of A there exists a nonzero ideal U of Der(A) such that U C
ad ([U, A]). Then Der(A) is an SP Lie algebra.
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Proof. Let 0 # I<aJ< Der(A). Apply [79, Lemma 2.13] to obtain that Der(A)
is an algebra of quotients of J N Inn(A). Hence, given 0 # 6 € I C Der(A)
there exists 2 € A satisfying 0 # adz € J N Inn(A) and [6,ad z] # 0. Since
I is an ideal of J, [0,adz] € I and [§,adz] = ad 6(z) € Inn(A), therefore
I'NInn(A) # 0. Consider 0 # I NInn(A) <1.J NInn(A) <t Inn(A). Since Inn(A)
is an SP Lie algebra, there exists a nonzero ideal K of Inn(A4) contained in
In Inn(A). Apply Lemma 3.1.11 to find a nonzero ideal U of A such that
0 # ad ([U, A]) C K. Now, by the hypothesis there exists a nonzero ideal U
of Der(A) satisfying U C ad ([U, A]) C I, as desired. O

With the lemma above in hand, the proof of the announced criterion is

NOW Very easy.

Theorem 3.1.13. Let A be a prime algebra. Then the following conditions

are equivalent:
(i) Der(A) is SP.

(ii) Every nonzero ideal of A contains a nonzero ideal of A invariant under

every element of Der(A).
Moreover, if these conditions hold, then
Qun(A™/Z) = Qp(Der(A4)).

Proof. Identify A~ /Z with Inn(A).

(i) = (ii). Let I be a nonzero ideal of A. By Remark 1.1.15, ad (/) is a

nonzero ideal of Inn(A). Consider
0 # ad (I) < Inn(A) < Der(A);

by the hypothesis there exists 0 # I < Der(A) contained in ad (I). It is
clear that J := ), 7 AJ(A)A is a nonzero ideal of A. Moreover, .J is indeed
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invariant under every element of Der(A). In fact, for z,y,z € A, § € 7,

p € Der(A) we have

wzd(y)z) = wu(x)d(y)z +zpd(y)z + xo(y)u(2)
= w(x)o(y)z + x[p, 0)(y)z + wop(y)z + x6(y)u(z) € J

since 6, [, 8] € I. This shows that u(J) C J for every u € Der(A). Finally,
taking into account that I C ad (I) we have J C AI(A)A C A[I, AJAC I.
(ii) = (i). To prove the strong primeness of Der(A) we will use Lemma

3.1.12. Let us therefore consider
0 # ad ([U, A]) < Inn(A) < Der(A),

for U an ideal of A. By the hypothesis, there exists a nonzero ideal J of A,
which is contained in U and is invariant under every element of Der(A). Since
ad ([J, A]) is contained in ad ([U, A]), the proof will be complete by showing
that ad ([, A]) is a nonzero ideal of Der(A). It is straightforward to verify that
ad ([J, A]) is an ideal of Der(A). The containment ad ([J, A]) C ad ([U, A]) is
obvious. The ideal [J, A] is noncentral; otherwise, apply that Z is a prime
ideal of A~ (see [49, Lemma 4]) to obtain J C Z, which is impossible by
Remark 1.1.15. Thus, [J, A] € Z and therefore ad ([J, A]) # 0.

The last assertion follows directly from Corollary 3.1.10. O

Example 3.1.14. If A is a prime algebra such that every nonzero ideal I of A
contains a nonzero idempotent ideal J, then Der(A) is SP. This follows from
Theorem 3.1.13 together with the fact that J = J? implies §(J) = 6(J%) C J
for every 0 € Der(A). In particular, this holds if A is a prime von Neumann
regular algebra or, more generally, if A is an exchange algebra with zero
Jacobson radical. (In case of rings with unit, the definition of exhange rings
can be found in [34]; the notion of exchange rings for rings without unit was

introduced by P. Ara in [6].)
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Corollary 3.1.15. Let A be a simple algebra such that either deg(A) # 3 or
char(A) # 3. Then

Qm(A™/Z) = Qu(Der(A)) = Der(A).

Proof. Apply Theorem 3.1.13 to show that @,,(Der(A)) = Q,,(A~/Z) and
Corollary 2.3.8 to have that Q,,(A~/Z) = Der(A), which completes the proof.
[l

The second part of this section is devoted to the study of similar questions

when the associative algebra A has an involution.

Remark 3.1.16. Let A be a prime algebra with involution *. The map

K — ad(K)
r — adzx

is a Lie algebra epimorphism with kernel Z; this allows to identify K/Zx
with the ideal ad (K') of SDer(A). If the involution is of the first kind and
deg(A) > 2, it is in fact an isomorphism, by Lemma 2.4.4 (ii).

On the other hand, for every ideal I of K, the restriction of the map above

to I, that is,
I — ad(K)
y — ady

is a Lie algebra homomorphism with kernel Z; = I N Zk, if the involution is
of the second kind, or zero, if it is of the first kind and deg(A) > 2. Indeed,
[y, I] = 0, with y € I, implies [y, [y, K]] = 0. Then apply [16, Theorem 2.13]

or Lemma 2.4.3 to have y € Zx or y = 0. Moreover,

1)Z;=1)(INZg) = I+ Zg)/Zx < K| Zx.

Corollary 3.1.17. Let A be a prime algebra with involution. Then:

(K, K]/Zik, K1) = Qm(K/Zk).
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Proof. Applying Remark 3.1.16 we can regard [K, K|/Zik k) as an ideal of
K/Zy. Keeping in mind that K/Z is an SP Lie algebra, the conclusion

follows directly from Theorem 3.1.7. O
The following result is a straightforward corollary to Theorem 3.1.7.

Corollary 3.1.18. Let A be a prime algebra with involution. If SDer(A) is
SP then

Qm(K/Zk) = Qun(SDer(A)).

Let A be a prime algebra with involution. From [48, Theorem 2| we obtain
that the Lie algebra SDer(A) is prime. The question of whether SDer(A) is SP
is again more delicate and is related to the ideal structure of A. Reasoning as
above, the first step is to reduce the study of the strong primeness of SDer(A)

to a particular case of chains:
0#ad([UNK,K|)<ad(K) < SDer(A),
where U is a nonzero *-ideal of A.

Lemma 3.1.19. Let A be a prime algebra with involution x with deg(A) > 4.
Then, for every nonzero ideal I of ad (K) there exists a x-ideal U of A such
that 0 # ad ([UN K, K]) C I.

Proof. Theset I :={z € K |adz € I} is an ideal of K not contained in Zx
and, therefore, it is not contained in Z. Apply [36, Theorem 1] if * is of the
second kind or [36, Theorem 5 and Lemma 7] if it is of the first kind to find a
nonzero *-ideal U of A satisfying [UNK, K] C I, that is, ad ([UNK, K]) C I.
Note that [U N K, K] ¢ Zk as otherwise, U N K C Z, which contradicts
Lemma 2.4.5. [

Lemma 3.1.20. Let A be a prime algebra with involution x and such that

deg(A) > 4. Assume that for every x-ideal U of A there erists a nonzero
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ideal U of SDer(A) such that U C ad[UN K, K]. Then SDer(A) is an SP Lie

algebra.

Proof. Let 0 # I <1.J <1SDer(A) by [79, Lemma 2.13] we obtain that SDer(A)
is an algebra of quotients of J N ad (K). Hence, given 0 # 6 € I C SDer(A)
there exists z € K satisfying 0 # adz € J Nad (K) and [6,ad z] # 0. Since
I is an ideal of J, [§,adz] € I and [6,adz] = ad §(z) € ad (K), therefore
Inad (K) # 0. Consider 0 # I Nad (K) <JNad (K) <ad (K). Since ad (K)
is an SP Lie algebra, there exists a nonzero ideal V of ad (K) contained in
INad (K). Apply Lemma 3.1.19 to find a nonzero *-ideal U of A such that
0+ ad ([UNK, K]) C V. Now, by the hypothesis there exists a nonzero ideal
U of SDer(A) satisfying U C ad ([U N K, K]) C I, as desired. O

Theorem 3.1.21. Let A be a prime algebra with involution x and such that

deg(A) > 4. Then the following conditions are equivalent:
(i) SDer(A) is SP.

(ii) Every nonzero x-ideal of A contains a nonzero x-ideal of A invariant

under every element of SDer(A).

Moreover, if the previous conditions are satisfied we have
Qm(K/Zk) = Qm(SDer(A)).

Proof. Taking into account Remark 3.1.16, the skew Lie algebra K~ /Zk can
be identified with ad (K).

(i) = (ii). Let I be a nonzero *-ideal of A. By Lemma 2.4.5, ad (I N K) is

a nonzero ideal of ad (K). Apply the hypothesis to the chain

0#ad(/NK)<ad(K) < SDer(A)
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in order to find 0 # I <1 SDer(A) contained in ad (INK). It is straightforward
to check that J := ), 7 A6(A)A is a nonzero *-ideal of SDer(A). Moreover, .J
is in fact invariant under every element of SDer(A). To prove it take x,y, z €

A e IN, i € SDer(A) and compute

w(@é(y)z) = p(x)d(y)z +zpd(y)z + z6(y)u(2)

— u(2)5(y)z + @i, O)(y)z + wdply)z + d(y)u(z) € T

since 0, [, 6] € I. This shows that u(J) C J for every u € SDer(A). Finally,
taking into account that I C ad (INK) we have J C AT(A)A C A[I, AJAC I.
(ii) = (i). To prove the strong primeness of SDer(A) we will use Lemma

3.1.20. Let us therefore consider
0+#ad([UNK, K])<ad(K) <SDer(A),

for U an *-ideal of A. By the hypothesis, there exists a nonzero *-ideal J of
A, which is contained in U and is invariant under every element of SDer(A).
Since ad ([J N K, K]) is contained in ad ([U N K, K]), the proof will be com-
plete by showing that ad ([J N K, K]) is a nonzero ideal of SDer(A). It is
straightforward to verify that ad ([J N K, K1) is an ideal of SDer(A). On the
other hand, [J N K, K] € Z; otherwise, apply Lemma 2.4.4 and the fact of
Zk is a prime ideal of K to obtain that J N K C Zk, which is impossible by
Lemma 2.4.5. Thus [J N K, K| € Z and therefore ad ([J N K, K]) # 0.

The last assertion follows directly from Corollary 3.1.10. O
As consequences we have:

Corollary 3.1.22. Let A be a prime algebra with involution * such that
deg(A) > 4. If A is a x-simple algebra, then:

Qm(K/Zk) = Q,,(SDer(A)).




MENU SALIR

3. Natural questions concerning Lie algebras of quotients 81

Corollary 3.1.23. Let A be a simple algebra with involution such that
deg(A) > 4. Then:

Qm(K/Zk) = Qn(SDer(A)) = SDer(A).

Proof. Apply Corollary 3.1.22 to obtain that @Q,,(SDer(A)) = Q.n.(K/Zk).
Corollary 2.4.11 implies Q,,(K/Zk) = SDer(A). O

3.2 The maximal graded algebra of quotients
of a graded essential ideal

Once we have built the maximal graded algebra of quotients, and we have
study what happens in the non-graded case, it is natural to ask whether
Qgr—m(I) will be isomorphic to Qg (L), for a graded essential ideal I of a
graded semiprime Lie algebra L. Of course, as in the non-graded setting this
question only makes sense if we assume that [ itself is a graded semiprime
Lie algebra, so that Qg—_,,(I) exists at all.

Let us start by introducing the main ingredient in Section 3.2, that is, the
notion of graded strongly semiprimeness (primeness) for graded Lie algebras.
In order to ease the notation, if L is a graded Lie algebra, we shall write

I <14, L to denote that I is a graded ideal of L.

Definition 3.2.1. We say that a graded Lie algebra L is graded strongly
semiprime (graded strongly prime) if:
(i) L is graded semiprime (graded prime).
(ii) For each n, given 0 # U, <y ... <gr Uy <4 Uy <y L there exists
0 # W Qg L such that W C U,,.

We shall use graded SSP (or graded SP) as a shorthand for graded strong
semiprimeness (primeness). We will also say that U, as in the definition above

is an n-graded subideal. Of course, 1-graded subideals are just graded ideals.
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The proof of the following result is analogous to the non-graded one which

is Lemma 3.1.4.

Lemma 3.2.2. A Lie algebra L is graded SSP (graded SP) if and only if
(i) L is graded semiprime (graded prime), and
(ii) given 0 # Uy <y Uy <y L, there exists 0 £ W <y, L such that W C Us.

Lemma 3.2.3. Let L be a graded SSP Lie algebra. Then, for any n-graded
subideal U, of L there exists a graded ideal U, of L, which is the largest graded
1deal ﬁn of L contained in U,. If U; is graded essential in U;_1, 1 = 2,...,n,

and Uy 1s graded essential in L, then U, is a graded essential ideal of L.

The proof of the previous lemma is practically the same of Lemma 3.1.6

but considering now ﬁn as the sum of all graded ideals of L contained in U,,.

Theorem 3.2.4. Let I be a graded essential ideal of a graded SSP Lie alge-

bra L. Then Qgr—m(I) is the mazimal graded algebra of quotients of L, i.e.

Proof. Notice that I viewed as a graded Lie algebra is graded SSP (see [64,
Remark 2.11]), so we can consider )y, (/). One can show as in the proof of
Theorem 3.1.7 (using now Lemma 3.2.3) that the map ¢ : @Q,,(L) — Q. (1)
defined by

p(ds) =¢ (Z((X;)J) = Z@a)(mzf = 5(Jm1)2

g g

is a graded Lie isomorphism. O]

3.3 Max-closed algebras

This final section is devoted to the problem of whether taking the maximal

algebra of quotients is a closure operation, that is, if Q,,(Qmn(L)) = Qmn(L)
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holds for every semiprime Lie algebra L. Notice that this question makes
sense since Q,,(L) is also semiprime ([79, Proposition 2.7 (ii)]). Although in
some interesting special cases the answer is positive, we will prove that the

containment @Q,,(L) C Q. (@ (L)) can be strict.

Definition 3.3.1. We say that a semiprime Lie algebra L is max-closed if

Qm(Qm(L)) = Qm(L)

In the next results we introduce various examples of max-closed Lie alge-

bras.

Corollary 3.3.2. Let A be a simple algebra such that either deg(A) # 3 or
char(A) # 3. Then A~ /Z is maz-closed.

Proof. By Corollary 3.1.15 we have Q,,(A~/Z) = Q.(Der(A)) = Der(A);

hence taking @,,(.) into the isomorphisms above, we obtain
Qm(Q@m(A™/Z)) = Qm(Der(A)) = Qn(A™/Z),
which proves that A~ /Z is max-closed. 0

Corollary 3.3.3. Let A be a simple algebra with involution x such that
deg(A) > 4. Then K/Zk is max-closed.

Proof. The following isomorphisms Q,,(K/Zk) = @Q,,(SDer(A)) = SDer(A)
hold by Corollary 3.1.23. Take Q,,(.) to obtain

Qu(K/Zi) = Qu(SDer(A)) = Qu(K/Zi).
which concludes the proof. O

Theorem 3.3.4. If L is a simple Lie algebra, then Q,,(L) = Der(L) is an

SP Lie algebra and L is mazx-closed.
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Proof. In view of the simplicity of L we clearly have @,,(L) = Der(L). Mo-
reover, these two Lie algebras are prime by [79, Proposition 2.7 (ii)].

We claim that L is isomorphic to the smallest nonzero ideal of Der(L).
Indeed, since Z;, = 0 we have L = ad(L) < Der(L). Identify L with ad(L) and
consider 0 # U< Der(L). Taking into account the simplicity of L and that
0 # UNL<Lwe obtain UNL = L, which implies L C U.

For 0 # I<J< Der(L) apply what we have proved to obtain L C J.
We claim that U = I N L is a nonzero ideal of L. In fact, [U,L] C L and
[U,L] C [U,J] C I, which implies [U, L] C TN L = U. To show that U # 0,
consider 0 # ¢ € I. Since Z;, = 0 there exists # € L such that 0 # ad d(z) € L.
Moreover, ad§(z) = [6,adz] € I; hence, 0 # add(z) € U. Thus, U is a
nonzero ideal of a simple Lie algebra L, so that L = U C I. From Lemma
3.1.4 we now see that Der(L) is an SP Lie algebra.

It remains to show that L is max-closed. We have Q,,(Qn(L)) =
Qm(Der(L)). Since L is a nonzero ideal of an SP Lie algebra Der(L), it follows
from Theorem 3.1.7 that @Q,,,(L) = Q,,(Der(L)). O

The following example was the motivation for Example 3.3.7.

Proposition 3.3.5. Let F be a field and A = My(F[z]). Then the Lie algebra
L= A"/Z is maz-closed.

Proof. We first observe that Q(Qs(A)) = Qs(A) = My(F(z)) (see, e.g. [80,
p. 61 exercise 9 (i)]). Secondly, we claim that Dery,(A) = Der(Qs(A)); the
map ¢ : Dery,(A) — Der(Qs(A)) which sends 6; € Dery,(A) into the unique
extension ¢’ € Der(Qs(A)) of the partial derivation § : I — A, is a well-defined
Lie algebra monomorphism. (See the proof of Lemma 2.3.3.) Moreover, in

our particular case, ¢ is in indeed an isomorphism. To prove that, given

0 € Der(Q4(A)) it is enough to find a nonzero ideal I of A such that §(7) C A.
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In fact, if we would have showed that we could consider é; € Dery,(A), then,
applying Lemma 2.3.2to I C A C Q4(A) = Qs(I) we would obtain § = ¢(d;),
which would complete the proof. In order to check this, let 6 € Der(Qs(A));
taking into account the form of the associative derivations of Qs(A), we obtain
that 0(a) = (adu)a + £ a’ where u € Q(A), p € Flz], % € F(z) and o’ is the
matrix whose elements are the derivative of the elements of a € A.

Denote by J the ideal of F[z] generated by ¢* (Hi7j:172 vij), where u =
<"”>, and set the ideal I := My(J) of Q,(A). We now claim that §(I) C A.

Vij

In fact, let a = (a;;) be in I; we have:

Note that ua € A because ua = ( A :j: akj> and by the definition of J the

akj
Vik

elements —*2 are in A. Analogously, we see that au € A and whence [u, a] € A.
To check that ga’ € A, write the elements of a as a product a;; = ¢° fi;(x)

where f;;(z) € F|z], and compute:

ga;j = S (244 fij(x) + ¢ f};(x)) € Fla].

Hence 2 a’ € A and therefore 6(a) € I, as wanted.

To resume, we have just proved that Dery,(A) = Der(Qs(A)); then by
Theorem 2.3.5 we have Q,,(L) = Der(Qs(A)). On the other hand the sim-
plicity of Qs(A) jointly Corollaries 3.1.15 and 3.3.2 allow us to say that
Ly = Qs(A)”/Zg,(a) is max-closed and it satisfies Qy,(Ls) = Der(Qs(A)).

Hence:

Qm(Qm(L)) = Qm(Der(Qs(A)) = Qm(Q@m(Ls)) = Qm(Ls) =
Der(Qs(A)) = Qm(L),

which concludes the proof. O
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Another class of algebras that provides examples of max-closed algebras

is that of prime affine PI algebra:

Theorem 3.3.6. Let A be a prime affine PI algebra such that either deg(A) #
3 or char(A) # 3, and let J be a noncentral Lie ideal of A. Then the Lie
algebra J/(J N Z) is maz-closed.

Proof. Recall that A~/Z = Inn(A) is an SP Lie algebra (see Exam-
ple 3.1.3). Accordingly, applying Theorems 2.3.7 and 3.1.7 it follows that
Qm(J/(JNZ)) = Qu(A~/Z) = Derp(A). It is well-known that A, as a
prime PI algebra, satisfies Q,(A) = AZ~!, and moreover, that Q,(A) is
a simple algebra (see e.g. [77, Theorem 1.7.9] or [44, Theorem 1.4.3] from
which this can be easily derived). Therefore we infer from Corollary 2.3.9
that Derp,(A) = Der(Qs(A)). On the other hand, Corollary 3.1.15 shows that
Qm(Der(Qs(A))) = Der(Qs(A)), and the proof is thereby complete. O

We will finish this chapter by finding an example of a Lie algebra which
is not max-closed. The algebra A we shall deal with is the one that Passman

used in [73] to show that Qs(.) is not a closure operation.

Example 3.3.7. (See [73, Lemma 4.1 (ii), Theorem 4.4 and Proposition 4.5].)
Let F' be a field and let

A= Flt]z,y | xy = tyx].
Then we have:
(i) Ais a domain with center Z = F[t];
(i) Qs(A) = F(t)[z,y | zy = tyz];

(i) Qs(Qs(A)) =F®)z 2,y y| 2y = tya].




MENU SALIR

3. Natural questions concerning Lie algebras of quotients 87

We shall make use of (iii) in the proof below, but not in an explicit way.

Theorem 3.3.8. Let A = F[t|[z,y | xy = tyx]. Then the Lie algebra A~/Z

18 not max-closed.

Proof. We shall write @ for Qs(A). Note that the conditions of Corollary 2.3.9
are again fulfilled. Therefore, this corollary together with Theorem 2.3.7 shows
that
Qm(A™/Z) = Derp(A) = Der(Q).

Therefore it is enough to prove that @Q,,(Der(Q)) 2 Der(Q).

Note that Qxr = x() = Qx(Q); this will be frequently used in the sequel
without mention. We also remark that () is the vector space direct sum of
Qz and Y oo F(t)y".

Let 0 be a derivation of Q). Since xy = tyz it follows that
d(x)y + x6(y) = d(t)yx + td(y)x + tyd(x),

and hence §(x)y — tyd(z) € Qx. Writing

m

d(x) = qw + Z Ni(t)y', where ¢ € Q and \(t) € F(t),
=0
it follows that
> Ny =D ity € Qo
i=0 =0

That is, > 1" o(1 — )\ (H)y"™ € Q. But then Y 7" (1 — t)\(¢)y"™! = 0 and
hence \;(t) = 0 for each i. This proves that 6(x) € Qx, which in turn implies

d(Qz) € Qx. Thus, Qz is invariant under every derivation of Q.

Let I be the linear span of all inner derivations of the form ad (d; ... d,(x)),
where n € N and 0y, . ..,d, € Der(Q). We claim that I is a nonzero Lie ideal
of Der(Q). Indeed, for every § € Der((Q)) we have

[0,ad (01 ...0,(x))] = ad (607 ...0,(x)) € 1,
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showing that [ is an ideal, and ad (ad y(z)) = ad [y, z], and so I # 0. Define
A : T — Der(Q) by A(d) = [adz~1,d] for every d € I, so that

Aad (6, ...0,(2))) = [adz ™, ad (6, ...6,(2))] = ad[z71, 6, ... 0, (2)];

this makes sense since 4y ...d,(x) € Qz by what was proved in the pre-
ceding paragraph. Clearly A is a derivation. This allows us to consider
Ar € Qum(Der(Q)). We claim that Aj is not in Der(Q). Suppose this was not
true. Then A; = ad dper(g) for some ¢ € Der(Q). This means that there exists
a nonzero ideal J of Der(Q) contained in I and such that A|; = (add)|;. It
is easy to see that derivations defined on I which agree on a nonzero ideal J

contained in I, must agree on the entire I. Thus, A = (ad d)|;. That is,
[adz™t ad (6;...6,(2))] = [0,ad (6; ... 6,(2))] = ad (661 ... 6,) ()
for all 1,...,d, € Der(Q@). In particular,
ad[o™, [y, 2]] = [adz™", ad [y, 2]] = ad (3([y, z])),

which implies [z71, [y, z]] — 0([y,z]) € Zg = F(t). Since 4, as a derivation of
Q, leaves Qx invariant, it follows that [z7!, [y, z] ]| € Qz + F(t). However,

[ [y, 2] ] =27 (yz—ay) — (yr—ay)a " =t ly—y—y+ty =t +1—2)y,

a contradiction. O




Chapter 4

Jordan systems of quotients
versus Lie algebras of quotients

In recent years, there have appeared different quotients for Jordan systems.
In [65], C. Martinez constructed an algebra of fractions for a linear Jordan
algebra. A notion of quotients for Jordan systems with respect to filters of
ideals was given by E. Garcia and M. A. Gémez Lozano in [39]. On the
other hand, a Jordan version of Utumi’s rings of quotients was obtained by
F. Montaner in [68] for non-degenerate Jordan algebras. His notion includes
that of E. Garcia and M. A. Gémez Lozano in the case of algebras.

In this chapter, we will show that graded Lie algebras of quotients are the
natural framework were to settle quotients for Jordan systems introduced by

E. Garcia and M. A. Gémez Lozano.

4.1 Maximal graded algebras of quotients of
3-graded Lie algebras

Let L be a Z-graded Lie algebra with a finite grading. Recall that we may
write L = @}__, Li and it is said that L has a (2n + 1)-grading. In what
follows, we will deal with 3-graded Lie algebras.

In this section we will show that for a 3-graded semiprime Lie algebra L,

89
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the maximal graded algebra of quotients of L is 3-graded too and coincides
with the maximal graded algebra of quotients of L, as defined in Section 2.2.

First, we need a lemma.

Lemma 4.1.1. Let L=L_1 & Ly & Ly be a 3-graded Lie algebra and I an
ideal of L. Denote by m; the canonical projection from L into L; (with i €
{—1,0, 1}) and consider I := J +n_y(J) + m (J), where J = [[I, 1], [I, I]].
Then:

(i) I is a graded ideal of L contained in I.
If moreover L is semiprime, then:
(ii) I is an essential ideal of L if and only if T is an essential ideal of L.

(iii) Suppose that I is a graded ideal. Then I is an essential ideal of L if and
only if it is a graded essential ideal of L.

Proof. (i). Note that mo(J) C [ since Ty = Id — m_; — 7. Show first that [ is
an ideal of L: take x € I and y € L and write © = u + 2_; + t1, where u and

the elements z = z2_1 + 29+ z1 and t =t_1 + to + t; are in J. We have

['177 y] = [u7 y} + [Z—la y] + [tb y] (41)

Now, since u is in J, which is an ideal of L, we obtain [u, y] € J C I. On the
other hand, writing y = y_1 + yo + y1 we have [z_1, y| = [2_1, vo] + [2—1, n1];
apply again that J is an ideal to obtain [z, y1], [z, yo] € J, which implies
that the elements [z, y1]o = [z_1, 11] and [z, yo]_1 = [2_1, yo] are in . Hence,
[2_1, y] € I. Analogously, it can be shown [t1, y] € I. Put together (4.1) and
this to obtain [z, y] € I, as desired.

We claim that 7 is in fact a graded ideal: consider x = x_1+x¢+x, € I and

write, as above, t = u+z_1+t;, withu, 2 =2_1+20+z andt =t_1+ty+1;
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elements in J. Then x 1 =u_1+ 21, xg = ug and xy = uy +t;. Thus, taking
into account the definition of I we obtain that x; € I for i € {—1,0,1}.
Finally, we prove that I is contained in I by showing that m_;(J) and
71 (J) are contained in I. Define § := m; — m_;. Then 6* = 7_; + 7 implies
2m; = 6%+ § and 27_; = 6% — §. Hence, to prove that 7_;(J) and m;(J) are
contained in I, it is enough to check that 6*(J) and §(J) are contained in
I. Take x, y € I and write x = z_1 + 29+ 21 and y = y_1 + yo + y1 wWhere

x;, y; € L; for i € {—1,0,1}. A computation gives

[z, y]-1 = [7_1, o] + [x0, y=1] = [2—1, y] — [z—1, 1] + @, y—1] = 21, y—1]
[z, yl1 = [wo, 11] + [z1, o] = [21, y] — [v1, y1] + [z, 11] — [2-1, 1)

Hence,

5([:6, y]) = [33, ?/}1 - [37, y]—l = [3:17 y] + [517, yl] - [37_1, y] - [QL“, y—l] €1,

that is, d([1, I]) C I; it can be proved analogously §(J) C [I, I] C I, therefore
62(J) Co([I, I]) C I.

(ii). Consider I as an essential ideal of L. Note that the semiprimeness of
L implies that J is also an essential ideal of L. Hence, J N K # 0 for any
nonzero ideal K of L and so INK # 0. This shows that I is an essential ideal
of L.

To prove the converse, suppose that I is an essential ideal of L. As I C I

(by (i)), the ideal I must be essential too.

(iii). Tt is trivial that I essential as an ideal implies I essential as a graded
ideal. Suppose now that I is a graded essential ideal and let U be a nonzero
ideal of L. Being L semiprime, K := [[U, U], [U, U]] is a nonzero ideal of
L. Apply (i) to obtain that U := K 4 7_(K) + m (K) is a graded ideal of
L contained in U. As I is a graded essential ideal, ] N U # 0 and hence
INU#0. O
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Theorem 4.1.2. Let L = L_1® Lo® Ly be a 3-graded semiprime Lie algebra.
Then:

(1) Qm(L) is graded isomorphic to Qgr—m(L).

(ii) If L s strongly non-degenerate and ® is 2 and 3-torsion free, then

Qm(L) is a 3-graded strongly non-degenerate Lie algebra.

Proof. (i). Observe that L, viewed as a 3-graded Lie algebra, is graded
semiprime (since L is semiprime), so it has sense to consider (QQg,_,(L). Define

o Qm(L) — Qgr-m(L)

o1 — 07

where for an essential ideal I of L, I C T is the graded essential ideal defined
in Lemma 4.1.1.

The map ¢ is well-defined:

let J =J1& Jyg@® J; be a 3-graded ideal of L; it is easy to check, by
considering the canonical projections onto the subspaces J; (i € {—1,0,1}),
that PDer(J, L) is just @?__,PDerg(J, L);, which coincides, by definition,
with PDer,,(J, L). This fact jointly with the considerations above and the
definitions of @, (L) and Qg,_n, (L) allow us to conclude that ¢ is well-defined.

It is straightforward to verify that ¢ is a graded Lie algebra homomor-
phism. Finally, the bijectivity of ¢ is obtained from Lemma 4.1.1 (iii).

(ii). Apply (i) and [39, Proposition 1.7]. O

4.2 Quotients of Jordan systems and of
3-graded Lie algebras

Inspired by the characterization of algebras of Lie algebras of quotients in
terms of absorption by ideals given by M. Siles Molina in [79, Proposition
2.15], E. Garcfa and M. A. Gémez Lozano introduced in [39] a notion of

quotients for Jordan systems (algebra, pair or triple system).
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Our first target in this section will be to analyze the relationship between
the notion of Jordan pairs of quotients in the sense of E. Garcia and M. A.
Goémez Lozano and of (graded) Lie algebra of quotients, via the Tits-Kantor-

Koecher construction.

Definition 4.2.1. A Jordan pair over ® is a pair V = (V*, V™) of -

modules together with a pair (QF, Q) of quadratic maps
Q° :V? — Hom(V™7, V) (for o = =)
with linearizations denoted by

g,zy ={z,y, 2} = Dg,yza

where Q7 , = Q7,, — Q7 — Q7, satisfying the following identities in all the

z)

scalar extensions of ®:
(i) Dg,Q7=Q7D,¢

(ii) Db, , = D7

z,Qy
(i) @%,, =QQ, Q7
for every x € V2 and y € V7.

From now on, we shall deal with Jordan pairs V' = (V*, V™) over a ring
of scalars ® containing % In order to ease the notation, Jordan products will
be denoted by Q,y, for any z € V7, y € V7.

Notice that {z, y, 2} = {2z, z, y} and {z, y, v} = 2Q,y for every z, z €
V7 y € V™7 and 0 = +; we will be using these facts even without an explicit
reference to them.

We refer the reader to [62] for basic results, notation and terminology on

Jordan pairs. Nevertheless, we recall here some notions and basic properties.




MENU SALIR

94

4.2 Quotients of Jordan systems and of 3-graded Lie algebras

Definitions 4.2.2. Let V = (V*, V) be a Jordan pair.

1.

An element = € V7 is called an absolute zero divisor if (), = 0.

We say that V' is strongly non-degenerate (non-degenerate in the

terminology of [39]) if it has no nonzero absolute zero divisors.

A pair I = (I, I") of submodules of V' is called an ideal of V if it
satisfies Qo V77 4+ Que I77 +{V7, V=7 17} C I° or equivalently,
{17, Vo, vVoy 4+ {ve, 1-2, Vo} C I? for 0 = +.

The pair V is said semiprime if Q;+/T = 0 imply I = 0, being I an
ideal of V', and is called prime if Q;+JT =0 imply I =0 or J =0, for
I and J ideals of V. A strongly prime pair is a prime and strongly

non-degenerate pair.

For a subset X = (X*, X7) of V, the annihilator of X in V is
Anny (X) = (Anny (X)*, Anny (X)), where, for 0 = +

Anmny(X)? = {ze Vo |{z, X7, V}={2, V7 X}

= [V 2, X} =0}

One can check that Anny (/) is an ideal of V' if I is so.

Ideals of Lie algebras having zero annihilator are essentials and when the

Lie algebra where they live is semiprime, the reverse holds, i.e., every essential

ideal has zero annihilator. (See Lemma 1.1.13.) In the context of Jordan pairs,

a similar result can be shown.

Lemma 4.2.3. Let [ = (I, I7) be an ideal of a semiprime Jordan pair

V= (V*, V7). Then:

(i) I N Anny(I) = 0.

(ii) I 1s an essential ideal of V if and only if Anny (1) = 0.
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Proof. (i). If we show that the ideal K := I N Anny (/) satisfies that
QKT = 0, for K7 = I N Anny(1)?, ¢ = =, the result follows by
the semiprimeness of V. Given x € K% C Anny(I)? for 0 = + we have
{z, K77, V°} =0since K CI 7 So{K?, K°, V?} =0 for c =+ and
hence Qr+ KT = 0, as desired.

(ii). Consider an essential ideal I = (I, I7) of V; then I N Anny (/) =
0 by (i), and by the essentiality, Anny(I) = 0. Conversely, suppose that
Anny (/) = 0 and consider an ideal K = (K™, K~) of V satisfying TN K = 0.

For z € K7, with 0 = £, and taking into account that I and K are ideals

of V', we obtain
(2, 77, VY {2, VO, IV AV, 2, "} CTNK =0,
hence, K C Anny (I) = 0. This shows that I is an essential ideal of V. O

Let us recall the connection between Jordan 3-graded Lie algebras and

Jordan pairs. First we give some definitions.

Definitions 4.2.4. A 3-graded Lie algebra L = L_1 & Ly & L, is called
Jordan 3-graded if [L;, L_1] = Lo and there exists a Jordan pair structure

on (L1, L_1) whose Jordan product is related to the Lie product by

{z,y, 2} = [[z, y], 2],

for any =, z € L,,y € L_,, 0 = *. In this case, V = (L, L_1) is called the
associated Jordan pair.
Since % € @, the product on the associated Jordan pair is unique and
given by
Quy = v, 7} = 5[lr. o], o
Y = 1%, Y, =3 9 ) .
y=512,9 7 Sl Yl @
Conversely, for any 3-graded Lie algebra, the formula above defines a pair

structure on (Ly, L_1) whenever § € ® (see [72, 1.2]).
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One important example of a Jordan 3-graded Lie is the TKK-algebra of

a Jordan pair. It is built as follows:

Construction 4.2.5. Let V = (V1 VV7) be a Jordan pair; a pair (01, ™) €
Ende(V™") x Endg (V™) is a derivation of V' if it satisfies

07({z, y, 2}) = {07(x), y, 2} +{z, 07 (y), 2} + {x, y, 0°(2)}

for any x, z € V2 and y € V=7, 0 = . For (z, y) € V the map 6(z, y) :=
(Dyy, —Dy.) is a derivation of V' (by the identity (JP12) in [62]) called
inner derivation. Denote by IDer(V) the ®-module spanned by all inner

derivations of V' and define on the ®-module
TKK(V) =V @ Der(V) eV~
the following product:

Erey@r vyt op®y] = (nrt —pa) @ ([y, gl + 02, y7)

— 0y 27)) @ (vy pozT),

where 27, y7 € V7 and v = (y4, 7-), & = (4, p—) € IDer(V). Then, it
can be proved that TKK(V') becomes a Lie algebra (see e.g. [67]). As this
construction has its origin in the fundamental papers [50, 51, 52| by Kantor,
in [53, 54| by Koecher and in [81] by Tits, TKK(V) is called the Tits-Kantor-
Koecher algebra of V or the TKK-algebra for short. It is easy to check
that the following provides TKK (V') with a 3-grading:

TKK(V), = V', TKK(V)y = IDer(V), TKK(V)_; = V.

Moreover, TKK(V') is a Jordan 3-graded Lie algebra with V' as associated

Jordan pair.
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If L is a Jordan 3-graded Lie algebra with associated Jordan pair V', then
the TKK-algebra associated to V' is not in general isomorphic to L. Rather,

we have:

Lemma 4.2.6. ([71, 2.8]). Let L be a Jordan 3-graded Lie algebra with asso-
ciated Jordan pair V. Then TKK(V) = L/Cy, where Cy = {x € Ly |
[IE, Ll] =0= [l‘, L*l]} = Z(L) N Lo.

The following lemma gives us a lot of information about the relationship
between ideals of Jordan pairs and certain ideals of their respective TKK-

algebras.

Lemma 4.2.7. Let V be a semiprime Jordan pair, and I = (I, 1) an ideal
of V. Define by Idrkxov)(I) = I & ([T, V7] + [V, I7]) @ I the graded
ideal of TKK(V') generated by I. Then Annrxkv)(Idrkxy (1)) = 0 if and
only if Anny (1) = 0.

Proof. See [39, Lemma 2.9]. O
Let us recall what may be the main definition of this section.

Definition 4.2.8. (See [39, 2.5].) Let V be a semiprime Jordan pair contained
in a Jordan pair W. It is said that W is a pair of 2M-quotients of V' if for
every 0 # g € W7 (with ¢ = +£) there exists an ideal [ of V with Anny (/) =0

such that
{¢, I77, V°y+{q, V7, 1°} CV? and {I 7, ¢V} V7,
with either
e, "7 Vo +{q, V77, I} #0 or {I77,q, V 7} #0.

We are now in a position to show the equivalence between Jordan pairs

of quotients and Lie algebras of quotients of their respective TKK-algebras.
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Theorem 4.2.9. Let V' be a semiprime subpair of a Jordan pair W. Then

the following conditions are equivalent:
(i) W is a pair of M-quotients of V.
(ii) TKK(W) is an algebra of quotients of TKK(V).

Proof. (i) = (ii) is [39, Theorem 2.10].

(ii) = (i). Take 0 # ¢” € W7 (0 = %) and apply Propositions 1.4.26 and
1.4.22 to find a 3-graded ideal I of TKK(V') with Annrkkv)(I) = 0 and such
that 0 # [I, ¢°] € TKK(V). We claim that Iy := L& ([[, VT]+[VT, I4])®
I is an essential ideal of TKK(V), where I = I} & Iy & 4. Let K =
Ky @ Ky ® K_; be a nonzero 3-graded ideal of TKK(V'); the semiprimeness
of V implies that either Iy N Ky # 0 or I_1 N K_; # 0 (see the proof of
[41, Proposition 2.6]) and therefore Iy N K # 0. By Lemma and 1.4.10 (iii),
Annyggv)(lv) = 0, and by Lemma 4.2.7, Anny ((1;,1-1)) = 0.

Denote I; and I_; by I and I, respectively. Then, for 0 = & we have:

{qa’ ]’—0'7 VO'} g [[qo" [—U]’ VO'] g VO'
e, vey c i ¢, vejcves

{7, V7o, 'y € [lg", VLIl [V, I7), "] S V7

To complete the proof we have to check that either {¢°, I77, V°} +
{¢°, Vo, I°y # 0 or {I77,¢°,V?} # 0. We have just showed that
Annrgkv)(ly) = 0; using [79, Lemma 2.11] we obtain that Annrxkw)(lv) =
0 and hence 0 # [Iv, ¢°] C [I, ¢°] € TKK(V) which implies that either
[(Iv)o, ¢°] # 0 or [I77, ¢°] # 0. In the first case, we have:

07 [(Iv)o, ¢°) = [[7 V2L "1+ V7, I77], ¢°]

c {17 V77, ¢ +{V°, I"7, ¢°}.
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In the second case, apply that the representation of IDer(V) on V is

faithful to obtain

0#[[I77, ¢,V = {I74q¢°,V 7} or

0A[L L Velclive, e ¢l = V7, 177, ¢"y = {¢", 77, V°}.
O

Inspired by C. Martinez’s idea [65] of moving from a Jordan setting to
a Lie one through the TKK-construction and using the construction of the
maximal algebra of quotients of a semiprime Lie algebra given by M. Siles
Molina [79], E. Garcia and M. A. Gémez Lozano built [39] the maximal Jordan
system of quotients of a strongly non-degenerate Jordan system.

Our next objective is to examine the relationship between maximal Jordan
pairs of M-quotients (see [39, 3.1 and Theorem 3.2] for precise definition) and

maximal algebras of quotients of Jordan 3-graded Lie algebras.

Lemma 4.2.10. Let V = (V*, V™) be a strongly non-degenerate Jordan
pair. If I is an essential ideal of TKK(V), then there exists an essential ideal

I of V' such that IdTKK(V)(f) 18 contained in 1.

Proof. Consider an essential ideal I of TKK(V'), which is a strongly non-
degenerate Lie algebra (by [38, Proposition 2.6]); in particular, it is semiprime.
Therefore, we may apply Lemma 4.1.1 (i) and (ii) to find an essential graded
ideal I_ @ Iy® I, of TKK(V') contained in . It can be shown, as in the proof
of Theorem 4.2.9, that

[Afl > ( [[Ala Vﬁ] + [V+7 [Afl] ) % jl g I

is an essential ideal of TKK(V) and, by means of Lemma 4.2.7, [ := (I;,1_;)

is an essential ideal of V. O
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For a strongly non-degenerate Jordan pair V', denote its maximal Jordan

pair of M-quotients by @Q,,(V). (See [39, 3.1] for its construction.)
Theorem 4.2.11. Assume that % € .

(i) Let V' be a strongly non-degenerate Jordan pair. Then

Qn(V) = ((Qu(TKK(V)),, (Qu(TKK(V))_,)

s the maximal Jordan pair of IM-quotients of V.

(ii) If L= L_1 & Lo ® Ly is a strongly non-degenerate Jordan 3-graded Lie
algebra satisfying that Q,,(L) is Jordan 3-graded, then

Qm(L) = Qn(TKK(V)) = TKK(Qm(V)),
where V' = (Ly, L_y) is the associated Jordan pair of L.

Proof. (i). The Lie algebras Qz (TKK(V)) and @,,(TKK(V)) are iso-
morphic by Lemmas 4.2.7 and 4.2.10 (see [39] for the definition of
QFrec (TKK(V)). On the other hand, Theorem 4.1.2 (i) implies that they
are isomorphic to Qg (TKK(V)). (Note that TKK(V) is a strongly non-
degenerate Lie algebra by [39, Proposition 2.6] so, it has sense to consider its

maximal graded algebra of quotients.) Now, the result follows by [39, Theorem

3.9).

(ii). The Lie algebra L has zero center because it is strongly non-
degenerate, hence L = TKK(V) (use Lemma 4.2.6) and, obviously, Q,,(L) =
Qm(TKK(V)). This one is a strongly non-degenerate Lie algebra (by [79,
Proposition 2.7 (iii)]) and has a 3-grading (by (i)) with associated Jordan
pair @, (V). The hypothesis on @,,(L) allows us to use again Lemma 4.2.6
obtaining Q,,(L) = TKK(Q,,(V)). O




MENU SALIR

4. Jordan systems of quotients versus Lie algebras of quotients 101

The following is an example of a strongly non-degenerate Jordan 3-graded
Lie algebra L such that its maximal (graded) algebra of quotients @,,(L) is
not Jordan 3-graded. If we denote by V the associated Jordan pair of L,
we obtain that TKK(Q,,(V')) is not (graded) isomorphic to @,,(L)) (since
TKK(Qn(V)) is Jordan 3-graded) which thereby means that the condition

on L in Theorem 4.2.11 (ii) is necessary.

Example 4.2.12. Denote by M (R) = U2 M, (R) the algebra of infinite

matrices with a finite number of nonzero entries and consider
L :=5sl(R) = {z € M (R) | tr(z) = 0},

which is a simple Lie algebra of countable dimension (see [10, Theorem 1.4]).

Denote by e;; the matrix whose entries are all zero except for the one in
row ¢ and column ;7 and consider the orthogonal idempotents e := e;; and
f:=diag(0,1,1,...) (note that f ¢ M (R)); we can see L as a 3-graded Lie
algebra by doing L = L_y & Lo @ Ly, where L_; = eLf, Ly = {exe + faf |
z € L} and Ly = fLe.

Let exe + fxf be an element of Ly with x = (x;;) € M, (R) for some
n € N. Taking into account that tr(z) = 0, we obtain:

exe+ faf = ZZ [—e1j, zijen] € [L_1, L],
=2 j=2

This shows that Ly = [L_q, Lq], i.e., L is Jordan 3-graded.

In what follows, we will prove that Der(L) is not Jordan 3-graded. The
simplicity of L implies that @,,(L) = Der(L); on the other hand, the strongly
non-degeneracy of L allows us to apply [39, Proposition 1.7] obtaining that

Der(L) is 3-graded. Now, take, § := ad e; one can easily check that:

5(L_1) g L_l, (S(Lo) =0 and (S(Ll) Q L1,
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which means that 6 € Der(L),. But note that § ¢ [Der(L)_y, Der(L),]
since the elements of [Der(L)_;, Der(L);] have zero trace on every finite di-

mensional subspace of L while the trace of ¢ is always nonzero. Therefore,

[Der(L)_1, Der(L),] & Der(L)y, i.e., Der(L) is not Jordan 3-graded.

Remark 4.2.13. Note that there exist non-trivial Jordan 3-graded Lie alge-
bras such that their maximal (graded) algebra of quotients are also Jordan
3-graded Lie algebras. For example:

Let F be a field and consider the Lie algebra

L = sly(F) = {z € Muy(F) | tr(z) = 0}.

We have that L is a Jordan 3-graded Lie algebra with the grading L =
L,l D LO D L17 where

L_1 = F@Ql, LO = F(€11 — 622) and L1 = F612.

Moreover, L is a finite dimensional semisimple Lie algebra and applying [79,

Lemma 3.9] we obtain that L = Q,,(L).

We want to obtain now an analogue to Theorem 4.2.11 for Jordan triple

systems and Jordan algebras. Let us first start with Jordan triple systems.

Definition 4.2.14. A Jordan triple system over ® is a $-module T to-
gether with a quadratic map P : T — Ende(7) with linearizations denoted
by

Px,zy = {1‘7 Y, Z} = Lx,y Z,
where P, , = P,,,— P, — P,, satisfying the following identities in all the scalar

extensions of &:

(i) Lyy Py =Py Ly,
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(iii) Pp,y = P.P, Py
for every x, y € T.

As in case of Jordan pairs, we shall deal with Jordan triple systems T
over a ring of scalars ® containing % Notice that {z, y, 2} = {z, z, y} and
{z,y, x} = 2P,y for every z, y, z € T.

We refer the reader to [62, 70, 67] for basic results, notation and termi-
nology on Jordan triple systems. Again, we give here some definitions and

properties.
Definitions 4.2.15. Let T" be a Jordan triple system.
1. An element z € T is called an absolute zero divisor if P, = 0.

2. We say that 7' is strongly non-degenerate (non-degenerate in the

terminology of [39]) if it has no nonzero absolute zero divisors.

3. A submodule I of T is called an ideal of T if it satisfies Py T + Pr I +
{T, T, I} C I or equivalently, {I, T, T} +{T, I, T} C I.

4. The triple T is said semiprime if P;/ = 0 imply I = 0, being I an
ideal of T, and is called prime if P;J = 0 imply I = 0 or J = 0, for
I and J ideals of T'. A strongly prime triple is a prime and strongly

non-degenerate triple.

5. For a subset X of T', the annihilator of X in V is
Annp(X) ={z€T |{2, X, T} ={z T, X} ={T, z, X} =0}.

One can check that Anny(7) is an ideal of T if I is so.
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The following remark describe the connection between Jordan pairs and

Jordan triple systems; it will be a useful tool for our purpose.

Remark 4.2.16. ([62, 1.13]). Every Jordan triple system 7" gives rise to a
Jordan pair (7, T') with quadratic maps @, = P, for every x € T It is called
the double Jordan pair associated to 7' and denoted by V(7).

From the definitions, it is obvious that a Jordan triple system 7T is strongly

non-degenerate if and only if its double Jordan pair V(T') is so.

After the definition of the double Jordan pair V(7T') of a Jordan triple
system T, a natural question rises: is there any relationship between ideals
of T'" and ideals of V(T")7 In the subsequent lemma we answer easily this

question. We will use it without further mention.

Lemma 4.2.17. Let T be a Jordan triple system and V(T') its double Jordan

pair. Then
(i) If I is an ideal of T' the pair V(I) = (I, I) is an ideal of V(T).

(i) If I = (I, I7) is an ideal of V(T) the components IT and I~ of I are
ideals of T

(iti) Bwvery ideal I = (I, I7) of V(T) contains an ideal of the form V(I)
for some ideal I of T'.

Proof. Keeping in mind the definition of ideals for Jordan pairs and the defi-
nition of ideals for Jordan triples (i) and (ii) follow directly from the cons-
truction of the double Jordan pair of a Jordan triple system.

If [ = (I, I7) is an ideal of V(T), (iii) follows from (ii) taking the ideal
I=1*NIofT. O

We now examine the behavior of essentiality and annihilators of ideals of

a Jordan triple system with respect to ideals of its double Jordan pair.
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Lemma 4.2.18. Let T be a Jordan triple system, I an ideal of T and V(T)

the double Jordan pair associated to T'. Then:
(i) I is essential in T if and only if V(I) is so in V(T).
(i) Annyry(V(1)) = (Anngp(1), Annp(1)).

(i) If I = (I, I7) is an ideal of V(T) having zero annihilator, then the
ideal I =17+ I~ of T has zero annihilator.

Proof. (i). Suppose first that I is an essential ideal of 7" and take a nonzero
ideal | = (f+, f‘) of V(T); so either It 4 0or I~ # 0 and applying the
essentiality of I we obtain that either 7N I+ £ 0 or IN I~ % 0. In any case,
V(I) NI # 0 which means that V(I) is an essential ideal of V(7).

To prove the converse, consider a nonzero ideal U of T'. Since we are
assuming V(1) essential in V(T') we obtain V(1) N V(U) # 0 and hence
I NU # 0 which concludes the proof.

(ii). By definition Anny ) (V (1)) = (Anny ) (V(1))*, Annyry(V(1))7),

where for 0 = 4, we have

Amny (V1)) = {z e V(T) [{z, V)7, V(T)7} =
{I7 V(T>_U7 V<])a} = {V(T)_U’ Z, V<I)_U} = 0} =
{eeT |{x, ,T}={2, T, I} ={T, 2, I} =0} =

Annyp (7).

(iti). Given [ = (I*, I7) an ideal of V(T) with Annyry(I) = 0. Consider
the ideal I = I* + I~ of T; then V(I) = (I, I) is an ideal of V(T') contained
on I and, hence satisfying that Anny ) (V(I)) = 0. Thus, by (ii) it follows
Anny(I) = 0. O
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As it happened in the Lie and Jordan pair contexts, one can identify the
essential ideals of a Jordan triple system 7' with the ideals of T" having zero

annihilator, provided 7' is semiprime.

Lemma 4.2.19. Let I be an ideal of a semiprime Jordan triple system T

Then:
(i) INAnng(I) =0.
(ii) I is an essential ideal of T if and only if Annp(I) = 0.

Proof. (i). If we show that the ideal K := INAnny (/) satisfies that Px K = 0,
the conclusion holds by the semiprimeness of T'. Given z € K C Anny (/) we
have {z, K, T} =0 since K C I. So {K, K, T} =0 and hence Pk K =0, as
desired.

(ii). Let I be an essential ideal of T'; then I N Anny(I) = 0 by (i), and
by the essentiality, Anny(I) = 0. Conversely, suppose that Anny (/) = 0 and
take an ideal K of T satisfying I N K = 0. Taking into account that I and K

are ideals of T', we obtain for x € K that
{z, I, T}, {x, T, I},{T, z, [} CINK =0,
hence, K C Anny () = 0. This shows that I is an essential ideal of 7. O

Definition 4.2.20. (See [39, 4.1]). Let T be a semiprime Jordan triple system
contained in a Jordan triple system (). We say that @) is a triple system of
M-quotients of T if for each 0 # ¢ € @ there exists an ideal [ of T" with
Anny(I) = 0 such that

0#4{q, I, TY+{q, T, I} +{I,q, T}CT.

Theorem 4.2.21. Let T be a strongly non-degenerate subtriple system of a

Jordan triple system Q). Then the following conditions are equivalent:
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(i) @ is a triple system of M-quotients of T
(i) V(Q) is a pair of M-quotients of V(T).
(iii) TKK(V(Q)) is an algebra of quotients of TKK(V(T)).

Proof. Note that V(T) is a strongly non-degenerate Jordan pair by the
strongly non-degeneracy of T'. So V(T') is semiprime and it has sense to speak

about Jordan pairs of 9-quotients of it.

(ii) < (iii) follows from Theorem 4.2.9.

(i) = (ii). Take 0 # ¢ € V(Q)? = Q (¢ = £) from (i) we find an ideal ]
of T with Anny(/) = 0 satisfying that

0#{¢. I, Ty +{q, T, I} +{1,q, T} CT.

The conclusion follows now by applying Lemma 4.2.18 (ii) to the ideal V(1) =
(I, I)of V(T).

(ii) = (i). Taking into account that V(1) = (17, T'), given 0 # q € Q =
V(Q)?, by (ii) we can find an ideal I = (I, I7) of V(T) with AnnV(T)(_f) =0
such that 0 # {q, I°, T} +{q, T, I} + {I~°, ¢, T} C T. By Lemma 4.2.18
(iii) the ideal I = I + I~ of T satisfies Anny(I) = 0 and

0#{q, I, T} +{q, T, I} +{I,¢q, T} C T,
which concludes the proof. O

For a strongly non-degenerate Jordan triple system 7', denote its max-
imal Jordan triple system of 9-quotients by Q,,(T'). (See [39, 4.5] for its

construction.)

Theorem 4.2.22. Let T' be a strongly non-degenerate Jordan triple system

over a ring of scalars ® containing %. Then the mazimal Jordan triple system
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of M-quotients of T is the first component of the maximal algebra of quotients
of the TKK-algebra of the double Jordan pair V(T) = (T, T) associated to T,
1.e.,

Qm(T) = (Qum(TKK(V(T))))1.

Proof. The Jordan pair V(T') = (T, T') is strongly non-degenerate since T is
so. By Theorem 4.2.11 (i) we have

Qu(V(T)) = ((@u(TKK(V(T))),, (Qu(TKK(V(T)),),

The conclusion follows now from Lemma 4.2.18 (i) and (iii), Lemma 4.2.19

(ii) and from [39, 4.5 and Theorem 4.6]. O

We will finish the chapter with an analogue to Theorem 4.2.11 for Jordan

algebras. We first recall some definitions.

Definition 4.2.23. ([62]). A Jordan algebra over @ is a ®-module J to-

gether with quadratic maps
U:J—Endg(J) and ?:.J — J (square)

with linearizations denoted by zoy, U, .y = {x, y, 2} = V,, 2z, where U, , =
Upi.—U,—U, and zoy = (x+y)? — 2% —y? satisfying the following identities

in all the scalar extensions of ®:
(1) ‘/x,xy = x2 cy

(ii) Uy(zoy)=x0Uy
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(vi) Uy,y = U, U,U,

for every x, y € J.
Since we will assume that % € ®, it is enough to consider the lineariza-
tion of the square, o, because it is related with the linear triple product by

20w, y, 2} =(woy)oz—(zoz)oy+(yoz)ou.

Definition 4.2.24. An element of a Jordan algebra .J is said to be an ab-
solute zero divisor if U, = 0. The algebra J is called strongly non-
degenerate (non-degenerate in the terminology of [39]) if it has no nonzero

absolute zero divisors.

Definition 4.2.25. ([39, 5.1]). A Jordan overalgebra () of a Jordan algebra J
is said to be a Jordan algebra of 9)i-quotients of J if for every 0 # g € )

there exists an ideal I of J having zero annihilator such that 0 # qo I C J.

Remark 4.2.26. ([62, 1.13]). Note that a Jordan algebra J gives rise to a
Jordan triple system Jr by simply forgetting the squaring and taking P = U.
From definitions, it is clear that J is non-degenerate if and only if Jr is so.

We call Jr the Jordan triple system associated to J.

Denoting by @,,(J) the maximal Jordan algebra of 9-quotients of a
strongly non-degenerate Jordan algebra J (see [39, 5.4] for its construction),

the announced result is the following;:

Theorem 4.2.27. Let J be a strongly non-degenerate Jordan algebra over a

ring of scalars ® containing é. Then

Qm(J) = Qm(Jr) = (Qum(TKK(V (J7))))1,

18 the maximal Jordan algebra of quotients of J, where Jr denotes the Jordan
triple system associated to J and V (Jr) = (Jp, Jr) is the double Jordan pair

associated to Jr.
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Proof. Note that Jr is a strongly non-degenerate Jordan triple system by the
strongly non-degeneracy of the Jordan algebra J. From [39, 5.4 and Theorem
5.5] it follows that the maximal Jordan algebra of quotients @, (/) is Qu,(Jr).

Finally apply Theorem 4.2.22 to reach the conclusion. O]




Chapter 5

Zero product determined
matrix algebras

The bulk of this chapter is devoted to the problem of whether the algebra
M, (B) of n x n matrices over a unital algebra B is zero (Lie, Jordan) product
determined. In Section 4.2 we prove that for the ordinary product the answer
is “yes” for every algebra B and every n > 2, and in Section 4.3 we show the
same for the Jordan product - however, for n > 3 and additionally assuming
that B contains the element 3 (i.e., 2 is invertible in B). The Lie product
case, treated in Section 4.4, is more entangled. We will see that M, (B) is not
zero Lie product for all unital algebras B. However, if B is zero Lie product

determined, then M, (B) is so.

5.1 Introduction and definitions

Throughout the chapter we shall consider algebras over a fixed commutative
unital ring C.
Let us start by introducing the basic definitions and results related with

the problems that we will study in this chapter.

Definition 5.1.1. Let A be an algebra over C. By A? we will denote the

C-linear span of all elements of the form zy where z,y € A. Let X be a

111
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C-module and let {.,.} : A x A — X be a C-bilinear map. Consider the

following conditions:

(a) for all z,y € A such that xy = 0 we have {x, y} = 0;

(b) there exists a C-linear map T : A*> — X such that {z, y} = T(zy) for
all z,y € A.

Trivially, (b) implies (a). We shall say that A is a zero product determined
algebra if for every C-module X and every C-bilinear map {.,.}: Ax A —
X, (a) implies (b).

So far A could be any nonassociative algebra. Assume now that A is
associative. Recall that A becomes a Lie algebra, usually denoted by A~ if
we replace the original product by the so-called Lie product given by [z, y] =
xy — yx. Similarly, A becomes a Jordan algebra, denoted by A, by replacing
the original product by the Jordan product given by z oy = zy + yz.

Definition 5.1.2. We say that A is a zero Lie product determined al-
gebra if A is a zero product determined algebra. That is to say, for every
C-bilinear map {.,.} : A x A — X, where X is any C-module, we have
that {.,.} must be of the form {z,y} = T([z,y]) for some C-linear map
T :[A, A] — X provided that [z,y] = 0 implies {z,y} = 0.

Definition 5.1.3. The algebra A is said to be a zero Jordan product
determined algebra if A" is a zero product determined algebra, that is,
{.,.} must be of the form {z,y} = T(x oy) for some C-linear map T :
Ao A — X provided that z o y = 0 implies {z,y} = 0.

There are various reasons for introducing these concepts. Let us mention
one important motivation which can most be easily explained. This is the
connection to the thoroughly studied problems of describing zero

(associative, Lie, Jordan) product preserving linear maps.
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Motivation 5.1.4. We say that a linear map S from an algebra A into an
algebra B preserves zero products if for all x,y € A, zy = 0 implies
S(x)S(y) = 0.

The standard goal is to show that, roughly speaking, S is “close” to a

homomorphism. Defining
{,.}:AxA—=B by {z,y} = 5(x)S(y)

we see that {.,.} satisfies (a); now if A is zero product determined, then it
follows that
S(x)S(y) =T (zy) forall x,y € A,
for some linear map T which brings us quite close to our goal. For example,
if we further assume that A and B are unital and S(1) = 1, then it follows
that
T(x)=T(xz-1)=S5(x)S(1) = S(x) for every z € A.

Hence S = T is a homomorphism; let us point out that without this assump-

tion the problem remains nontrivial.

Similar remarks can be stated for zero Lie product preserving maps (also
known as commutativity preserving maps) and zero Jordan product preser-
ving maps. The approach that we have just outlined was used in recent papers
[2] (for zero product preservers) and [18] (for zero Lie product preservers).

We point out now two general facts about the problem of showing that a

bilinear map {.,.} : A x A — X satisfies the condition (b).

Remarks 5.1.5. It is clear that the only possible way of defining T : A? — X
is given by T'(>_, xy) = Y, {xs, v }. The problem, however, is to show that
T is well-defined. Accordingly, (b) is equivalent to the condition

(b)) if € At = 1,...,m, are such that > " a;y; = 0, then

Z;L‘[xnyt} = 0.
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Secondly, if A is a unital algebra, then (b) is equivalent to
(b”) if x1, xa, Y1, y2 € A, are such that thzl 2y, = 0, then th:l{xt, Y} = 0.

Indeed, if (b”) is fulfilled, then we infer from z -y — zy - 1 = 0 that {z,y} —
{zy,1} = 0. Thus {z,y} = T(xy) where T : A> — X is defined by T'(z) =
{z,1}.

Incidentally, Lemma 5.4.6 below shows that the assumption that A is
unital cannot be omitted. This lemma actually considers the case when A
is a Lie algebra. Let us say that the two remarks above hold for algebras
that may be nonassociative. In what follows, however, by an algebra we will

always mean an associative algebra.

5.2 Zero (associative) product determined
matrix algebras

In what follows, we will consider the matrix algebra M, (B) where B is a
unital algebra (associative, but not necessarily commutative). As usual, a
matrix unit will be denoted by e;;. By be;;, where b € B, we denote the

matrix whose (7, j) entry is b and all other entries are 0.

Theorem 5.2.1. If B is a unital algebra, then M, (B) is a zero product

determined algebra for every n > 2.

Proof. Set A = M,,(B). Let X be a C-module and let {.,.} : AxA — X bea
bilinear map such that for all x,y € A, xy = 0 implies {x, y} = 0. Throughout
the proof, a and b will denote arbitrary elements in B and i, j, k, [ will denote
arbitrary indices.

We begin by noticing that

{ae;j, bew} =0 if j # kK, (5.1)
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since ae;j beyy = 0. Further, we claim that
{ae;j,be;} = {abeiy, en} if j # k. (5.2)

Indeed, as k # j we have (ae;; + abe;)(beji — eg) = 0, which implies {ae;; +
abe;, bej; — e} = 0. Apply (5.1) and (5.2) follows.

Replacing a by ab and b by 1 in (5.2) we get
{abeij, e} = {abey, ep}. (5.3)
Together with (5.2) this yields
{ae;j, bej } = {abe;;, e} (5.4)

Let x;, y; € A be such that Z:il xiyy = 0, and let us show that
Yo {ze, i} = 0 (as pointed out above, we could assume that m = 2, but
this does not simplify our proof). Writing

S ) S TIN5 S
i=1 j=1 k=1 1=1
it follows, by examining the (i,[) entry of z;y,, that for all i and [ we have
S0 59
t=1 j=1

Note that

n n n n

Z{xta yt} Z Z{aw €ijs bkl le}
=1

t=1 i=1 j=1 k=1

By (5.1) this summation reduces to

Z{xt’yt} ZZZZ{%%’ Vent-

t=1 i=1 j=1 [=1

Using first (5.4) and then (5.3) we see that

{afj €ijs b§z eji} = {agjbz‘l Cij, Ejl} = {aﬁjbﬁl €1, €1}
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Therefore

m n n n

Z{xtuyt} = ZZZZM%%@LQZ}Z

t=1 i=1 j=1 I=1

i i { (i i aﬁjbﬁ-l)eu, 611} =0 by (5.5).

i=1 =1 t=1 j=1

]

5.3 Zero Jordan product determined matrix
algebras

In the recent paper [33] M. A. Chebotar, W.-F. Ke, P.-H. Lee and R.-B. Zhang
have considered zero Jordan product preserving maps on matrix algebras.
Fortunately, some arguments from this paper are almost directly applicable
to the more general situation treated here. There is one problem, however,
which we have to face: unlike in [33], where the map {z,y} = S(z) o S(y) is
studied, we cannot assume in advance that our map {.,.} treated below is

symmetric (in the sense that {x,y} = {y,z} for all x and y).

Theorem 5.3.1. If B is a unital algebra containing the element %, then

M., (B) is a zero Jordan product determined algebra for every n > 3.

Proof. Let A =M, (B), let X be a C-module, and let {.,.}: Ax A — X be
a bilinear map such that for all z,y € A, x oy = 0 implies {z, y} = 0. Let
a and b denote arbitrary elements from B and let ¢, 7, k,[ denote arbitrary
indices.
First, since ae;j o bey; = 0 if @ # [ and j # k, it is clear that
{aeij,bep} =0if i # 1 and j # k. (5.6)

Let i # k. Then aey, o (exr — €;;) = 0 and so

{aeir, exr} = {aew, €i}. (5.7)
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Similarly,
{ekkaaeik} = {eu‘,a@ik}- (5-8)

From (ae;r —e€;;) o (aeix +exr) = 0, 1 # k, we derive {ae;, — e, ae + e} = 0.
Since {aeg, aey} = 0 and {e;;, exr} = 0 by (5.6), it follows that {ae, exr} =
{eii, ae; }. This identity together with (5.7) and (5.8) yields

{aei, e} = {aeir, exr} = {€i, aei} = {exr, aeir}. (5.9)

Now let i # k and j # k. Then (ae;; + abe;i) o (bejr, — exr) = 0, and
hence {ae;; + abe, beji, — ex} = 0. By (5.6) this reduces to {ae;;, bejr} =
{abe;i, exr }. On the other hand, we also have (be;; — exx) © (ae;; + abe;,) = 0,
and so {be;i, — eg, ae;; + abe;} = 0. By (5.6) this reduces to {be;i, ae;;} =
{exk, abey }. Since {ab ey, exr} = {exk, abey} by (5.9), it follows that

{ae;;, bejr} = {abe, ex} = {bej, ae;;} if i # k and j # k. (5.10)

If i # k, then (ae;—e;;) o (abey+begy) = 0 and (abey +beyy) o (aey —ey) =

0. By a similar argument as before this yields
{aeir, bepr} = {abey, ex} = {ber, aey} if i # k. (5.11)
Setting ¢ = j in (5.10) we get
{aei;, bey} = {abei, exr} = {beix, aey} if i # k.
Further, {abeik, exr} = {abe, e;;} by (5.9), and so we have
{aei;, bei } = {abei, e} = {bex, aey }.

For our purposes it is more convenient to rewrite this identity so that the

roles of ¢ and k, and the roles of a and b are replaced. Hence we have

{bekk, aki} = {bae;ﬂ-, ekk} = {ae;ﬂ-, bekk} if ¢ 7§ k. (5.12)
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Further, we claim that
{ae;j, beji} = % ({abe;;, e;i} + {baej;,e;}) - (5.13)
If ¢ # j, then (%aben- + ae;; — %bae]-j) o (bej; — e;; + €j;) = 0 and consequently
1 1
{iab €i; + ae;; — §ba ejj, beji — e + ejj} =0.
Using (5.6), (5.9), (5.10), (5.11

and (5.12) this yields

{aeij, be;i} = = ({abes;, eii} + {baej;, ej5}) -

M| = —

We still have to prove (5.13) for ¢ = j.

Let i # k. Then (ae;; — beg + bey; — aeg) o (bey; — aey, + aeg; — begg) = 0
and this gives {ae;; — beji, + beg; — aeyy, bey — aey + aey; — begr } = 0. By (5.6),
(5.9), (5.10) and (5.11) this can be reduced to

1

{aeii, beii } + {aej;, bej;t = 5 ({(aob)ei, i} +{(aob)ejjej)).  (5.14)

Since n > 3, we can choose [ such that [ ¢ {i,k}. Applying (5.14) we get
({aes, beii} + {aewk, bewr}) + ({aei, beii} + {aey, ben}) =

({(a0b)eis, eis}) + {(a o b)er, e }) +

({(aob)eii, eii} +{(aocbley en}) =

{(aob)ei e} + % ({(aob)err, exx} + {(aob)ey,en}) =

{(a @) b)eii, en-} + {aekk, bekk} + {aeu, bell}.

1
2
1
2

Consequently, {ae;;, be;;} = %{(a o b)ey;, e+ which proves the i = j case of

(5.13).

Let x,y: € A be such that Y /", z; oy, = 0. We have to prove that
2111{957:,%} = 0. Writing

n n n n
t t
Ty = Z Z Q;; €ij and y; = Z Z by €k

i=1 j=1 k=1 I=1
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it follows that for all 7 and | we have

>N (aldly + bjal,) = 0. (5.15)

First notice that

Z{‘rt? yt} Z {aw €ijs bkl ek’l}

t=1 i=1 j=1 k=1 I=1

and by (5.6) this summation reduces to

m n n n m n n n
t ¢ ¢ ¢
D D DD {alj e ey +> Y {al;eij, Uy eni} +
t=1 i=1 j=1 é;ﬂl t=1 i=1 j=1 /I:;éjl
E : E : § :{am el]’ e]z

t=1 =1 j=1

Using (5.10) and (5.11) in the first two summations and (5.13) in the third

summation, we see that this is further equal to

m n n m m n n
§ E § § :{awb]l €il; 6”} + § : E {bkzaw €kj> ij} +
t=1 i=1 j=1 %;511 t=1 i=1 j=1 ﬁ;ﬁ]l
m n n
§ E ( ’Lj jZ Cii; 6“} + {b]z i 6]], e]J})>
t=1 =1 j=1

Rewriting the second summation as

m

Z Z Z Z{bgjaz'l eisent,

=1
t111j1l¢2

and the third summation as

9 Z Z Z {aw ji Cii €ii} + {bw ji Gt €ii}),

tlZl]l
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it follows that

m n n n

Z{xtv wt = Z Z Z Z{(afjbél +b;a5,) e ent +
=1

= = =1 I=1
t=1 =1 j=1 1Zi

n n

L Sl e} =

t=1 i=1 j=1

Z Z { Z(aﬁjbﬁl + bj;a)) ea, €u} +
= t

= =1 = =

=1 iZi 1 j=1

1 n m n
§ E E t gt t t .
i=1 =1 j=1

cach of these two summations is 0 by (5.15). [

We were unable to find out whether or not Theorem 5.3.1 also holds for

n = 2; therefore we leave this as an open problem.

5.4 Zero Lie product determined matrix
algebras

In the preceding sections, we have shown that (square) matrix algebras (over
unital algebras) are always zero product determined, and under some techni-
cal restrictions they are also zero Jordan product determined. At this point,
natural questions arise:

What can we say about the Lie product? Are M, (B) zero Lie product
determined?

We will show that this does not hold true for every unital algebra B.
However, we will prove that M,,(B) is zero Lie product determined provided

B is so.

Theorem 5.4.1. If B is a zero Lie product determined unital algebra, then

M., (B) is a zero Lie product determined algebra for every n > 2.
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Proof. Let A =M, (B), let X a C-module, and let {.,.}: Ax A — X bea
bilinear map such that {z, y} = 0 whenever x, y € A are such that [z, y] = 0.
First notice that {z, z} = 0 for all z € A, and hence {z, y} = —{y, z}
for all z, y € A. Further, the equality {22, z} = 0 holds for all z € A, and
linearizing it we get
{roy, 2} +{zo0m y}+{yoz 2} =0
for all z, y, 2 € A. We shall use these identities without mention.

Our first goal is to derive various identities involving elements of the form
ae;;. In what follows a and b will be arbitrary elements in B and ¢, j, k, [ will
be arbitrary indices.

First, it is clear that

{aeij, bey} =0 if j#kandi#1 (5.16)

since [ae;;, bey| = 0. Similarly,
{aei;, e} = 0. (5.17)
Also, if 7 # j, then [ae;; + aej;, e + ej] = 0, and so
{ae;j+aej, e;j+ej} =0.

As {ae;j, e;;} =0 and {aej;, e;;} =0 by (5.16), it follows that

{ae, e;i} = —{aej, e;}  ifi# 7. (5.18)

Next, we claim that

{aeij, beji} = {abey, ex} = —{abey, e;} if i # k. (5.19)
Indeed, since [abe;, e; + exx] = 0 we have {abej, e; + exr} = 0, and so
{abeix, exr} = —{abei, e;;}. We now consider two cases, when j # k and

when j = k. In the first case we have, since also i # k,

[aei; + abeig, beji, — egr] =0, and hence {ae;; + abe;, beji, — exr} = 0.
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From (5.16) it follows that {ae;;, exr} = 0 and {abey, bejr} = 0, and so the

identity above reduces to
{aei;, bejr} = {abei, ep}-

In the second case, when j = k, we have [ae;, — e, abey, + begx] = 0, which
implies {ae;x — e, abey, +begr} = 0. Since {aej, abe;r} = 0 and {e;;, begr} =

0 by (5.16), it follows that
{ae, berr} = {ei, abey} = —{abe, e},

and (5.19) is thereby proved.

Let us prove that
{ae;;, bej;} = {abe;j, e} + {ae;j, bejj;}. (5.20)
In view of (5.17) we may assume that i # j. Then we have
{ae;;,bej;} = {eij o aej;, beji} = —{bej; o e;5, aej;} —{aej; obej;, e;;}.

Since {be;;, ae;;} = 0 by (5.16) and {abe;;, e;i} = —{abeji, e;;} by (5.18),
(5.20) follows.

Finally, we claim that
{ae;j, bej;} = {abe, eri} — {baejk, e} + {aew, bexy}. (5.21)

Assume first that ¢ # j. Taking into account (5.17) and (5.20) we see that
(5.21) holds if k =i or k = j. If k # i and k # j, then

{aeij, beji} = {aey oex;, beji} = —{baejy, ex;} + {aei, beg},
and so applying (5.20) we get (5.21). Now suppose that i = j. Then

{ae;, be;i} ={aepoey, bei} = —{baey, eri} +{aeu, bek}.
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From (5.20) it follows that
{aei, bei} = {abe, erit — {baei, exi} + {aerr, bewt,
and so (5.21) holds is this case as well.

Now pick z¢, y; € A such that > ;" [x;, »] = 0. The theorem will be
proved by showing that > )" {z;, y;} = 0. Write

= Z Z agjeij and y; = Z Z b};z@m

i=1 j=1 k=1 I=1

where a;, b, € B. Computing the (4,1) entry of [z, y;] we see that

157

ZZ ag;b%y — bisa%) = 0 for all i, 1. (5.22)
t=1 j=1

By (5.16) we have

D fwnwd = D > D > ) faijen baew) =

t=1 t=1 i=1 j=1 k=1 I=1

n n n

Z Z Z Z{azjeiﬁ b§l€jl} + Z Z{azjeija b.ieri}

=1 k=1
t1Z1jll¢z tlzljlk?ﬁ]

D)) NI
t=1

i=1 j=1

Rewriting the second summation as

n n n

Z Zz{a]leﬂ? bUel]} = Z

t=1 i=1 j=1 I=1 t=1 i=
(%

n n n

Zz{b2]62]7 z’lejl}7
1 j=1

=1
1#4
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and using (5.19) we see that the sum of the first and the second summation

is equal to

ZZZZ {awbﬂelh eut — {bz]a]lella en}) =

tlll]l;l

ZZZZ{ l] ]l)eih ent =

t=1 i=1 j=1 I=1

l#1
>34 (zz ) ) e} =0
=1 % 1 t=1 j=1
by (5.22). Hence
Z{l’ta Yi} = Z {awew, bﬂe]z
t=1 =1 j=1

We claim that this sum is equal to zero. Applying (5.21) we have that

{a;?jeiﬁ eﬂ} = {az] 3iCil) 61,} {bj’L ij €Il 613} + {a’z] €11, b]z 611}

Therefore

m n n n n

Z{xt7 yt Z Zz{az] ]16217 611} Z Z{b§1a1]€]17 61]} +
t=1

t=1 i=1 j=1 t=1 i=1 j=1
n n

m
t t
E {aij €11, bji 611}.
t=1

i=1 j=1

Rewriting the second summation as

Z Z Z{bw alien, ev}

t=1 i=1 j=1

and applying (5.22), we obtain

m n n

Z{mt’ wt = ZZZ{ awbéz - bf] Jz)elh e}t +
t=1

t=1 i=1 j=1
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Z Z Z{afj €11, b;z 611} =

t=1 i=1 j=1
n m n
(ab;bt, — b.at) | e, e p +
ij Vg4 ij ﬂ ily C13
t=1 j=1
m n n m n n
E § {ajen, ben}y = > {al;enr, by ent.
t=1 i=1 j=1 t=1 i=1 j=1

Thus, the proof will be complete by showing that

> > > Aajen byen} =0. (5.23)
t=1

i=1 j=1

Consider the map (.,.) : Bx B — X defined by (a, b) = {aey, bey; } for
all a,b € B. It is clear that (. ,.) is bilinear and has the property that [a,b] = 0
implies (a,b) = 0. Since B is a zero Lie product determined algebra, (.,.)
also satisfies the condition that )" [as, b;] = 0 implies Y ;" (as, b;) = 0.

Taking [ = ¢ in (5.22) we have that

m n
D> (aigby = Vyaz) =0
t=1 j=1
for every 7, and hence
m n n
Z %J’ JZ -
t=1 i=1 j:l
This implies
m n n
Z azj Vi) =
t=1 i=1 j:l
which is of course equivalent to (5.23). O

As consequence, we have

Corollary 5.4.2. If B is a commutative unital algebra, then M, (B) is a zero

Lie product determined algebra for every n > 2.
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Proof. Note that commutative algebras are trivially zero Lie product deter-

mined. Thus the conclusion follows from Theorem 5.4.1. O

Remark 5.4.3. In the simplest case where B = C this corollary was proved in
[18]. In fact, for this case [18, Theorem 2.1] tells us more than Corollary 5.4.2.
In particular it states that for a C-bilinear map {.,.} : A x A — X, where

A= M,(C) and X is a C-module, the following conditions are equivalent:
(a) if x,y € A are such that [z,y] = 0, then {z, y} = 0;

(b) there is a C-linear map T': [A, A] — X such that {z, y} = T'([z,y]) for

all x,y € A;
(c) {z,z} = {2z} =0 for all z € A;

(d) {z,x2} = {2y, z} + {zx,y} + {yz,2} =0 for all z,y,z € A.

The condition (c) has proved to be important because of the applications to
the commutativity preserving map problem. So it is tempting to try to show
that these conditions are equivalent in some more general algebras A.

We remark that trivially (b) implies (¢) and (d), (a) implies (c), and also
(d) implies (c) as long as A is 3-torsion-free (just set x = y = z in (d)). In
the next example we show that in the algebra My (C|z, y]) neither (c) nor (d)
implies (a), and so [18, Theorem 2.1] cannot be generalized to matrix algebras

over commutative algebras.

Example 5.4.4. Let A = My(C|[z,y]). We define a C-bilinear map
{,.}: AxA—=C

as follows:

{33611,9611} = {15622,9622} =1, {y€11>$€11} = {y62279€€22} = -1,

{$€12, yezl} = {3762179612} =1, {y€21, 55612} = {9612,$€21} = -1,
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and
{ue;j,ver } =0

in all other cases, that is, for all remaining choices of monomials u and v and
i,j,k,l € {1,2}. Since [ze11,yer1] = 0 and {zej1,yer1} = 1, {.,.} does not
satisfy (a) (or (b)). However, as we check below the map {.,.} satisfies (c)
and (d).

Proof. In order to show (c); take X = aeqy + bejs + ceaq + degs be in A and
notice that the only coefficients of a, b, ¢ and d involved in our computations

are the respective ones to 1, x and y so let us write
a=ag+oxr+oay+...

b= 050+ bz + By + ...
C="Y+7MT+ Yy +...
d=50+(51x+52y+...

where «;, 5;, Vi, 0; € C for i =0, 1, 2. Then we compute:

{X, X} = ajao{zen, yeir} + avar{yenr, zen} + Siya{rers, year } +
Boy1 {yeia, wear} + 102 {wear, yera} + y201{year, xen} +
5152{$622, ?/622} + 5251{y€227 1’622} = Q10 — a0 + @}172 -

Bay1 + 7102 — 281 + 0102 — 9207 = 0.

Since X% = (a® +bc)er; + (ab+bd)ers + (ac+ cd)ea + (be+ d?)ess we may

write

a®> +bec = af + Boyo + 2apar + Bovi + Bivo) T +
(2a0a2 + Boyz + Bovo) y + - -

ab+bd = by + Bodo + (w1 + a1y + oo + Bido) x +
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(o2 + a2fo + Boda + Babo) y + - ..

ac+cd = agy + Y000 + (v + aryo + 7001 +71d0) T +
(02 + @20 + Y002 + Y200) Y + - ..

be+d® = Boyo+ 05 + (B + Biyo + 20001) = +

(Boya + Bayo + 20002) y + . ..

So, we have

{X? X} = (20100 + fonian + Bryocs){zerr, yen} +
(201002 + a1 5oz + a1 Boyo){yenr, ven} +
(172 + a1Boy2 + Bodiyz + Bidore){Ters, year} +
(072081 + aav0B1 + 700201 + 120001){year, rern} +
(o1 B2 + 17082 + 700182 + 11doB2){zenr, yer} +
(f2y1 + azfBom + Bodayr + Badoyi){yerz, zear} +
(Boy162 + Biyoda + 2600102){weas, yes} +
(Bov201 + Bayodr + 2000201 ){yeaz, wea} = 2apa1ag + Boyraz +
By — 2a1apae — a1 o2 — @B + aofiye + a1foy2 +
Bod1y2 + B10072 — ap¥2B1 — a2v0f1 — V00281 — V20001 +
Y102 + c1yof2 + Y0182 + 11002 — ey — a2 —
Bod2y1 — B20071 + Boy1dz + 517002 + 2000102 — Boy201 —
Bay001 — 2000201 = 0.

Hence, (c) is satisfied. O

We will finish this chapter by finding an example of a unital algebra B

such that M, (B) is not a zero Lie product determined algebra, which thereby

shows that indeed one has to impose some condition on B in Theorem 5.4.1.
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For this we need two preliminary results which are of independent interest.
The first one, however, is not really surprising, and possibly it is already
known. Anyway, the following proof, which was suggested to us by M. A.

Chebotar, is very short.

Until the end of this section we are going to assume that C'is a field. Let

us denote it by F.

Lemma 5.4.5. Let A = F(x1,x9,...,%9,) be a free algebra in 2n non-
commuting indeterminates. Then [xy, xo| + [x3, x4 + ... + [Ton—1, T2n] cannot

be written as a sum of less than n commutators of elements in A.
Proof. Let a;,b; € A, i=1,...,m, be such that
[al, bl] + [ag, bg] + ...+ [am, bm} = [ZL‘l, ZEQ] + [1'3, ZL'4] +...+ [Ign_l, ZEQn]. (524)

We have to show that m > n. We proceed by induction on n. The case
when n = 1 is trivial, so we may assume that n > 1. Considering the degrees
of monomials appearing in (5.24) we see that we may assume that all a;’s and
b;’s are linear combinations of the z;’s. In particular, b,, = 2321 [;x; with
p; € F. Without loss of generality we may assume that p, # 0. Of course,
we may replace any indeterminate x; by any element in A in the identity

(5.24). So, let us substitute 0 for zo, 1 and — Z?Zz fign 155 for @9, Then

we get

ler, di] + .o (e, A1 = (21, 2] + .-+ [Ton—3, Top—2)]
where all ¢;’s and d;’s are linear combinations of x1, ..., z9, . By induction
assumption we thus have m — 1 > n — 1, and so m > n. O

For any n > 2, let B, denote the unital F-algebra generated by

L,uy, ..., ug, with the relation [uy, us] 4 [ug, ug] + . .. 4 [ton_1, u2,] = 0. That
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is,
Bn = F<fL’1,£L’2,. . 7172n>/j

where [ is the ideal of F(xq,xs, ..., Ts,) generated by
[1'1,1:2] + [l‘g,ﬂfd + ...+ [$2n—1a xQnL
and u; = x; + 1.

Lemma 5.4.6. There exists a bilinear map (.,.) : B, x B, — F such
that for all vy, w, € B,, Z;:ll[vt,wt] = 0 tmplies Z?;l(vt,wt} = 0, but
(uy, us) + (ug,uq) + ... 4+ (Uan_1, u2,) # 0. Moreover, there is no linear map

T :[Bn, B, — F such that (x,y) = T([z,y]).

Proof. The set S consisting of 1 and all possible products u;, ... u;, of the u;’s
spans the linear space B,,, and the elements u;, uy are linearly independent.
Therefore we can define a bilinear map (.,.) : B, x B, — F such that
(ur,us) = —(ug,uy) = 1 and (s,t) = 0 for all other possible choices of s,t € S.

In particular, (uq,ug) + (us, usg) + ... + (Ugp_1, u2,) = 1.

Assume now that vy, w; € B,, are such that Z;:ll [v, w;] = 0. We can write
v = Mg + ppuz +peand wy = apug + Grug + g,

where Ay, puy, i, ; € F and py, q; lie in the linear span of S\ {uy,us}. Note
that

[y

n n—

-1
<Ut7 wt> = (Atﬁt - MtOét)-
t=1 1

o~
Il

Thus, the lemma will be proved by showing that Zf;ll(/\tﬁt — o) = 0.

Let us write

V= Mx1 A e + 1+ f + 1 and wy = ogy + Brxe 1y 4+ g0 + 1
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where A\, py, a, 3y € F, l;,m; are linear combinations of xj,...,xs, and

f+, g+ are linear combinations of monomials of degrees 0 or at least 2. Since

oy, wy] = 0, it follows that
n—1
[)\txl + JYH ) + lt + ft, oy + ﬁtl'z + my + gt] cl.
t=1
Therefore,
n—1

(]

Aez1 + e + U+ fir, cuxy + Brwg +my + g1 =
¢

wl [z1, 2] + [x3,24] + ... + [Izn_l,LL’Qn]) + h,

Il
—_

where w € F'and h € [ is a linear combination of monomials of degree at least
3. Considering the degrees of monomials involved in this identity it clearly

follows that
n—1

> i pema s, 0nws + Brra+my) = w([:fl, Lo+ [s, 4]+ . A [Ton1, x%])-
t=1

We may now apply Lemma 5.4.5 and conclude that w = 0. Thus,

n—1 n—1

0= Zp\tﬂfl + o + by, g + Brry + my| = (Z()\tﬁt — #t%)) (21, 22] + f,

t=1 t=1

where f is a linear combination of monomials different from xix, and zoz;.
Consequently, -1 (A, — pay) = 0.
Finally, if T": [B,, B,] — F'is a linear map satisfying that
(,y) = T([z,y])
for every x, y € B,,, we would have
0 = T([u1,us] + [us, ua] + ... + [ton_1,u2,]) =

T([ul, UQ]) + T([U3,U4D + ...+ T([“Qn—l;“QnD =

(ug, ug) + (us, ug) + ... + (Ugn_1, u2,), a contradiction.
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Remarks 5.4.7. Note that Lemma 5.4.6 in particular shows that B, is not

a zero Lie product determined algebra for every n > 2.

We remark in this context that it is very easy to find examples of algebras
that are not zero product determined or zero Jordan product determined,
simply because there are algebras without nonzero zero divisors (domains),
as well as such that the Jordan product of any of their two nonzero elements
is always nonzero. On the contrary, finding algebras that are not zero Lie
product determined is more difficult since in every algebra we have plenty of

elements commuting with each other.

We are now in a position to show that matrix algebras are not always zero

Lie product determined.

Theorem 5.4.8. For every n > 1, the algebra M, (B,2,1) is not zero Lie

product determined.

Proof. By Lemma 5.4.6 there exists a bilinear map (.,.) : By2i1 X Bp2ip — F
such that Zil[vt, wy] = 0 implies Zil(vt, wy) = 0, but there are u; € B2, 1,

t=1,...,2n% + 2, such that

n?+41 n2+1

Z[Umfl,uzt] =0 while Z<u2tflau2t> # 0.

t=1 t=1

Set A = M, (Bp241), and define {.,.} : A x A — F according to

{v,wh = (v, wy),

i=1 j=1
where v;; and w;; are entries of the matrices v and w, respectively. We claim

that {.,.} satisfies the condition
“lv,w] =0 = {v,w} =07,

but does not satisfy the condition

“Z[vt,wt] =0= Z{Ut7wt} =0".
t

t
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The latter is obvious, since we may take v, = wug_1e11 and w; = wugeqq,
t=1,...,n*+ 1. Now pick v and w in A such that [v,w] = 0, i.e. vw = wv.
Considering just the diagonal entries of matrices on both sides of this identity

we see that

n n
E VW) = E | WijVji
j=1 j=1

for every i = 1,...,n. Accordingly,
n n n n
E E vijwji = E E wijvji~
i=1 j=1 i=1 j=1

Rewriting > 0%, >0 wijus as oL >0 wyvy;  we thus see  that
> im1 2y [Vij, wyi] = 0. However, this implies D 77, > 7 (vy, wj;) = 0, that
is, {v,w} =0. O







Conclusiones

Cerramos la tesis analizando los objetivos que hemos alcanzando.

En el Capitulo 1 nos planteabamos esencialmente dos metas, a saber: dar
una nocion de algebra de cocientes para dlgebras de Lie graduadas que gene-
ralizara la dada en [79] por Siles Molina para dlgebras de Lie no graduadas
y extender a algebras de Lie de tipo “skew” uno de los principales resultados
que Perera y Siles Molina probaron en [75] acerca de la relacién que hay entre

las algebras de cocientes de algebras asociativas y de Lie.

La primera de ellas fue alcanzada en la Seccion 1.4 en la que introdujimos
este nuevo concepto (ver Definiciones 1.4.12); seguidamente nos cercioramos
de que efectivamente ésta era una buena generalizacion del caso no graduado
(ver Observacién 1.4.13). Hecho esto y siguiendo el modelo de [79] para el
caso no graduado, estudiamos las principales propiedades (ver Proposiciones
1.4.18, 1.4.22) asi como la relacién con el caso no graduado (ver Lema 1.4.24
y Proposicién 1.4.26).

Nuestro segundo objetivo en el Capitulo 1 surgié a raiz de la reflexion
que Perera y Siles Molina hacian en [75] acerca de que los resultados [75,
Teorema 2.12 y Proposicién 3.5] deberian tenerse también para élgebras de
Lie de tipo “skew”; efectivamente, como probamos en Teorema 1.5.19, estaban

en lo cierto.

En el Capitulo 2, continuando con la idea de extender las nociones de

algebras de cocientes de algebras de Lie a algebras de Lie graduadas cons-
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truimos en la Seccién 2.2, tras un breve repaso a la construccion de [79] (ver
Construccién 2.1.6) para el caso no graduado, el dlgebra graduada de cocientes
maximal de un dlgebra de Lie graduada semiprima (ver Construccién 2.2.3 y
Teorema 2.2.4).

El objetivo del resto del Capitulo 2 fue calcular @,,(L) para ciertas
algebras de Lie. Concretamente, en la Seccién 2.3 calculamos Q,,(A~/Z) para
un algebra asociativa prima A con centro Z; teniendo en cuenta que los ele-
mentos del dlgebra de cocientes maximal de un algebra de Lie son clases de
derivaciones parciales definidas en ideales esenciales y que nuestra algebra de
Lie A~ /Z proviene de un élgebra asociativa, construimos (ver Construccién
2.3.1) una nueva élgebra de Lie que denotamos por Der,,(A) y probamos que,
bajo ciertas hipdtesis técnicas, Q,,(A~/Z) coincide con Dery,(A) (ver Teo-
rema 2.3.7). En la Seccién 2.4 obtuvimos resultados similares (ver Teorema
2.4.10) para el célculo de @,,,(K/Zk), donde K era el dlgebra de los elemen-
tos skew de un algebra asociativa prima con involucién, considerando ahora
en la construcciéon de SDer,(A) las derivaciones de A que conmutan con la
involucion.

En el Capitulo 3 estudiamos si dos de las méas importantes propiedades de
las algebras de cocientes asociativas continuaban siendo ciertas en el contexto

de algebras de Lie; concretamente:

1. Si el dlgebra de cocientes maximal @,,(L) de un &lgebra de Lie
semiprima L, coincide con el dlgebra de cocientes maximal @), () para

todo ideal esencial I de L.
2. Si tomar @,,(.) era una operacién cerrada, esto es, si Q,,(Qm(L)) =
Q. (L) para toda dlgebra de Lie semiprima L.

Como vimos en la Seccion 3.1, la respuesta a la primera pregunta era afir-

mativa suponiendo que nuestra algebra de Lie L fuese fuertemente semiprima
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(ver Definicién 3.1.1 y Teorema 3.1.7). En la Seccién 3.2 estudiamos la misma
cuestién para algebras de Lie graduadas haciendo uso del algebra graduada de
cocientes maximal construida en el capitulo anterior. En cuanto a la segunda
pregunta, introdujimos en la Seccién 3.3 la nocion de algebra de Lie maximal-
cerrada que es aquélla para la que Q,(Qn (L)) = Qn(L); dimos ejemplos de
algebras de Lie maximal-cerradas (ver Corolarios 3.3.2 , 3.3.3, Proposicién
3.3.5 y Teorema 3.3.6) y haciendo uso del ejemplo dado por Passman (ver
Ejemplo 3.3.7) probamos (ver Teorema 3.3.8) que hay algebras de Lie que
no son maximal-cerradas, o sea, que la respuesta a la segunda pregunta es

negativa en general.

En el Capitulo 4 probamos que las dlgebras graduadas de cocientes de
algebras de Lie graduadas constituyen el marco perfecto para situar los co-
cientes de sistemas de Jordan introducidos por Garcia y Gémez Lozano en
[39]. Comenzamos probando (ver Teorema 4.1.2) en la Seccién 4.1 que el
algebra de cocientes maximal de un algebra de Lie 3-graduada semiprima es
de nuevo 3-graduada y ademas coincide con el algebra graduada de cocientes
maximal. Tras esto y haciendo uso de la construccién de Tits-Kantor-Koecher
obtuvimos relaciones, en la Seccion 4.2, entre los sistemas de cocientes maxi-
males de sistemas de Jordan y las dlgebras de Lie de cocientes maximales (ver

Teoremas 4.2.11, 4.2.22 y 4.2.27).

En el Capitulo 5 tratamos el problema de averiguar cudndo las ma-
trices M, (B) quedan determinadas por un producto nulo; en la Seccién
5.2 probamos (Teorema 5.2.1) que, para el producto ordinario, las matri-
ces M,,(B) quedan determinadas por el producto nulo para cualquier algebra
unitaria B y todo n > 2; en la Seccién 5.3 demostramos (Teorema 5.3.1)
lo mismo para el producto Jordan pero suponiendo que n > 3 y que 2 es

inversible en B. Vimos en la Seccion 5.4 que el caso del producto de Lie
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requiere la hipotesis adicional de que el algebra B quede determinada por
el producto de Lie nulo (Teorema 5.4.1). Concluimos la seccién mostrando

(Teorema 5.4.8) que esta hipétesis es necesaria.
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Notation

<
U
N
C
G

<

N

A
Q
3

e

Ie( )

Zar(R)

Supp(X)

Ann(X) Anny(X)
QAnn(X) QAnny (X)
Z Za
char(A)

empty set

positive integers

integers

rational numbers

algebra of polynomials

field of fractions of polynomials
set of regular elements

matrix ring

matrix algebra

matrix whose entries all are zero except for the one in
row i and column j

trace of a matrix

involution

isomorphism

substructure

union

intersection

subset

proper subset

ideals

graded ideals

essential ideals

family of essential ideals

family of dense right ideals
support of a subset of a graded algebra
annihilator of X in Y
quadratic annihilator of X in Y
center of an algebra

characteristic of an algebra
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deg(A) degree of an algebra
A° opposite algebra
M(A) multiplication algebra
L Lie algebra
A” Lie algebra that arises from an associative algebra
K Ky skew elements of an algebra with *
K/Zk [K, K|/Zk K skew Lie algebras
Der(A) Lie algebra of derivations
Inn(A) Lie algebra of inner derivations
SDer(A) Lie algebra of derivations that commute with *
rax(R) maximal right ring of quotients
Q- (R) two-sided right ring of quotients
Qs(R) symmetric Martindale ring of quotients
Qm(L) maximal Lie algebra of quotients
Qgr—m (L) maximal Lie graded algebra of quotients
V=WV"V) Jordan pair
T Jordan triple system
J Jordan algebra
TKK(V) TKK algebra of Jordan pair of V'
V(T) double Jordan pair of a Jordan triple system 7'
Jr Jordan triple system associated to a Jordan algebra J
Qm(V) maximal Jordan pair of 9Mi-quotients
Qm(T) maximal Jordan triple system of 91-quotients
Qm(J) maximal Jordan algebra of 9-quotients
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2n+1-grading, 16, 89
3-graded Lie algebra, 89, 90, 92, 95

absolute zero divisor, 19, 94, 101, 102,
108

affine algebra, 62, 86

annihilator, 2, 6, 15, 19, 24, 25, 33, 35,
94, 102-105, 108

center, 2, 3, 19-21, 45, 100

degree of an

algebra, 45, 61, 62, 6468, 77-81, 83,

86

element, 45
dense

extension, VI, 30, 33—-35

right ideal, 8, 9

subalgebra, VI, VII, 32-35, 37, 40
derivation, 4, 44-48, 56, 63, 65, 96

essential
associative ideal, 56
ideal of a
Jordan pair, 94, 99
Jordan triple system, 103, 104
Lie algebra, 5, 6, 9, 46, 47, 56, 72,
90, 94, 99
Lie ideal, VIII
right ideal, 8, 9
extended centroid, 13, 14, 45, 63

field of fractions, 7, 9

generalized polynomial identity, 30
with involution, 14
graded
associative algebra, 16, 40, 41
essential ideal, 17-19, 25, 27, 47, 48,
81, 82, 90

homomorphism, 17
ideal, VIII, 17-19, 23-26, 47, 81, 82,
90, 97
ideally absorbed, 24, 25, 27, 55
Lie algebra, V, VI, 1, 16-20, 40, 48,
81
of quotients, V, VI, 20-22, 24, 25,
27-29, 41, 50, 55
partial derivation, see derivation
prime Lie algebra, 19, 23, 81, 82
semiprime
associative algebra, 40, 41
Lie algebra, 18, 19, 23, 27-29, 43,
48-50, 52, 53, 81, 82, 89, 92
semiprime Lie algebra, VIII
strongly
non-degenerate Lie algebra, 19
prime Lie algebra SP, 81, 82
semiprime Lie algebra SSP, 81, 82
subalgebra, V, 17, 23, 41, 49
weak Lie algebra of quotients, 20—
24, 26, 28

homogeneous
absolute zero divisor, 19
component, 18, 19, 25, 26, 29, 50, 52,
54
element, 16, 19, 48
total zero divisor, 20, 21

ideally absorbed, 15, 30

inner derivation, see derivation

integral domain, 7, 9

involution, VI, 3, 5, 14, 30, 32, 37, 40,
63-68, 77-81, 83

Jordan
3-graded Lie algebra, 95-97, 99, 100
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algebra, 107, 108 regular element, 7, 8
of quotients, 108 right
derivation, see derivation order, 7
pair, 29, 93-97, 102 quotient ring, 8, 11
of quotients, 97, 98
triple system, 101, 102, 108 semiprime
of quotients, 105 associative algebra, 31-33, 40, 56,
59, 73

left faithful ring, 8, 9
Lie algebra, 2, 3, 5, 46, 56, 57, 63, 66, 86
of derivations, 4, 59, 74, 75
of quotients, VI, VII, 1, 14-16, 29,
37, 40, 97, 98, 105

Lie derivation, see derivation

max-closed Lie algebra, 83, 84, 86, 87
maximal
graded Lie algebra of quotients, 47,
52, 53, 56, 90, 92
Jordan algebra of quotients, 108
Jordan pair of quotients, 100
Jordan triple system of quotients,
106
left ring of quotients, 10
Lie algebra of quotients, VIII, 43,
44, 46, 47, 56, 72, 83, 90, 92
right algebra of quotients, 33
right ring of quotients, 9
multiplication
algebra, 31, 34, 35
operator, 31, 33, 34
multiplicative
prime algebra, 31, 32
semiprime algebra, 30-33

opposite algebra, 5, 40, 41

partial derivation, see derivation
PI algebra, 86
prime
associative algebra, 32, 61, 86
with involution, 64-68, 77-80
Jordan pair, 94
Jordan triple system, 102
Lie algebra, VIII, 4, 70-72

quadratic annihilator, 22, 23

with involution, VI, 14, 37, 63
Jordan pair, 94, 97, 98
Jordan triple system, 102, 104, 105
Lie algebra, VIII, 4, 6, 19, 70-72, 83,
90
ring, 9
simple
associative algebra, 77, 83
with involution, 81, 83
Lie algebra, 83
skew
element, 3
Lie algebra, VII, 3, 5, 30, 32, 37, 63
strongly
non-degenerate
alternative algebra, 32
Jordan algebra, 32, 108
Jordan pair, 94, 99, 100, 102, 105,
106
Jordan triple system, 102, 105,
106, 108
Lie algebra, 19, 92, 99, 100
nondegenerate
Jordan algebra, X
Jordan pair, IX
Lie algebra, IX, X
prime Jordan pair, 94
prime Jordan triple system, 102
prime Lie algebra SP, VIII, 70-72,
74, 75, 79, 83
semiprime Lie algebra SSP, VIII,
70-72
support, 16
symmetric Martindale quotients, VI, 14,
37, 40, 41, 57, 62, 66, 68

TKK algebra, 29, 96, 97, 105, 106
total zero divisor, 20, 21
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trivial grading, 16, 21, 55
weak Lie algebra of quotients, 15, 20, 28

zero Jordan product determined, see
zero product determined

zero Lie product determined, see
zero product determined

zero product determined, X, XII, 109,
110, 112, 114, 118, 123, 126, 130
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