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a b s t r a c t

Mixed Integer Linear Programs (MILP) are well known to be NP-hard (Non-deterministic Polynomial-
time hard) problems in general. Even though pure optimization-based methods, such as constraint
generation, are guaranteed to provide an optimal solution if enough time is given, their use in online
applications remains a great challenge due to their usual excessive time requirements. To alleviate their
computational burden, some machine learning techniques (ML) have been proposed in the literature,
using the information provided by previously solved MILP instances. Unfortunately, these techniques
report a non-negligible percentage of infeasible or suboptimal instances.

By linking mathematical optimization and machine learning, this paper proposes a novel approach
that speeds up the traditional constraint generation method, preserving feasibility and optimality
guarantees. In particular, we first identify offline the so-called invariant constraint set of past MILP
instances. We then train (also offline) a machine learning method to learn an invariant constraint
set as a function of the problem parameters of each instance. Next, we predict online an invariant
constraint set of the new unseen MILP application and use it to initialize the constraint generation
method. This warm-started strategy significantly reduces the number of iterations to reach optimality,
and therefore, the computational burden to solve online each MILP problem is significantly reduced.
Very importantly, all the feasibility and optimality theoretical guarantees of the traditional constraint
generation method are inherited by our proposed methodology. The computational performance of
the proposed approach is quantified through synthetic and real-life MILP applications.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent papers, e.g., [1–4], have shown the potential in com-
ining Mathematical Optimization and Machine Learning. Par-
icularly, Mixed Integer Linear Programming (MILP) is known
o be a powerful and flexible tool for modeling and solving a
ide variety of decision-making problems, as can be confirmed

rom [5,6]. However, most MILPs are known to be NP-hard (Non-
eterministic Polynomial-time hard) and therefore, using them
or online applications becomes challenging. For this reason, the
esign of novel Machine-Learning-assisted (ML) techniques that
educe the computational burden of MILPs has recently become
popular research topic. The works in [7,8] are a valid proof
f that. Although different learning strategies can be considered,
ll methods assume that a set of slight variations of the same
roblem have been previously solved, and their input data and
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0950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).
solutions are available. This is a reasonable assumption since
many optimization problems are frequently solved for a range of
input parameters in online applications.

Several works have proposed approaches that seek to pre-
serve optimality guarantees while substantially reducing the so-
lution time. For instance, the authors of [9] design a data-driven
methodology to improve the use of heuristics in branch-and-
bound. To be more precise, the authors train a machine learning
model that provides a schedule of heuristics, specifying when and
for how long each heuristic is executed. They numerically show
that this smart schedule is very likely to substantially diminish
the time to solve the mixed-integer program to optimality. Even
though the proposed method yields impressive results, collecting
data from the branch-and-bound heuristics may be a difficult and
solver-dependent task. Hence, alternative approaches that only
need and learn from the information provided by the MILP opti-
mal solution are also considered. One of the most commonly used
strategies in this line consists in building, from this information,
a simpler formulation of the original MILP that is faster to solve.

A pure optimization-based method that can be applied to
this end is constraint generation. A detailed explanation of this
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ethodology can be found in [10]. Essentially, it sequentially
dds violated constraints until the optimal solution is found, at
he expense of solving a possibly large number of MILPs. As
consequence, the computational burden associated with this

trategy may be unacceptable for online applications. One way of
lleviating such computational effort would be to provide a good
arm-start. That is, if a good initial set of constraints is given,
hen just a few iterations of the constraint generation method
re executed, reducing the computational time. In this vein, the
uthors of [11] propose a learning strategy that uses a modified
earest neighbor methodology to screen out superfluous con-
traints of the Unit Commitment (UC) problem. The reader is
eferred to [12] for further details about this problem. Similarly,
he method presented in [13] selects a subset of constraints
or the same problem. All these works execute the constraint
eneration algorithm with an initial set of constraints that is
nferred only from the constraints that appeared binding in pre-
ious instances of the problem, that is, from constraints that held
ith equality at the optimal solution. Using these binding con-
traints is not enough to recover the optimal solution in MILPs, as
hown in [11]. Indeed, when integer variables are involved in the
ptimization problem, the optimal solution must satisfy the con-
traints included in the so-called invariant constraint set defined
n [14]. Apart from the constraints that hold with equality, such
n invariant constraint set includes other non-binding constraints
hat are crucial to attaining the optimal solution.

Therefore, the contributions and objectives achieved in this
aper are:

- The authors in [11] completely ignore the critical non-
binding constraints. Hence, the learned warm-start set is
not good enough and, to attain optimality, the constraint
generation method may require a possibly large number
of iterations, thus resulting in quite modest computational
savings. In contrast, we show that effectively warm-starting
the constraint generation method is essential to reaching the
optimal solution of a MILP after just a few iterations of the
algorithm.

- To this aim, we identify offline an invariant constraint set for
each past instance. Then, we train a machine learning model
of our choice that returns the prediction of an invariant
constraint set from MILP parameters.

- Such a learned set is used to warm-start the constraint
generation method of a new MILP. This way, the optimal
solution is attained after running just a small number of iter-
ations in the constraint generation method, and the compu-
tational time of the online MILP is considerably reduced, as
empirically shown using synthetic and real-life instances’’.

The remainder of this paper is structured as follows: Section 2
resents MILP notation and discusses the difficulties of comput-
ng an invariant constraint set when integer variables appear.
ection 3 details the proposed methodology. Section 4 focuses
n the numerical experiments. Finally, Section 5 provides the
onclusions and future research lines.

. Invariant constraint set in MILPs

A general MILP can be formulated as follows:

min
z∈Rn×Zq

c⊺z

s.t. a⊺
j z ≤ bj, ∀j ∈ J

(Pθ[J ])

here c, aj ∈ Rn+q, ∀j, bj ∈ R, ∀j, are input parameters and
= (x, y) is the decision variable vector formed by the con-

inuous variables x ∈ Rn and the integer variables y ∈ Zq. For
onvenience, we collect all those input parameters into the set
2

θ, that is, θ = {c, aj, bj, ∀j ∈ J }, so that (Pθ[J ]) denotes the
optimization problem with the set of input parameters θ and the
set of constraints J . Note that there is some abuse of notation
in (Pθ[J ]). As it is written, J and θ can change independently.
However, this is not true, since the definition of θ explicitly
depends on J . Hence, to be rigorous, we should write (PθJ [J ]).
Nevertheless, in order to make the notation clearer, we remove
the subindex J in θJ . In addition, for simplicity, we assume that
problem (Pθ[J ]) is bounded and feasible, and that its optimal
olution z∗

θ [J ] is assumed to be unique. Note, however, that if
ultiple optimal solutions appear, retaining just one of them is
nough for our proposal.
The feasible region defined by constraints in J includes the

ubset of the so-called binding constraints B. Particularly, B is
comprised of the inequality constraints that hold with equality
at the optimal solution, i.e., B = {j ∈ J : a⊺

j z
∗

θ [J ] = bj}.
esides, according to [14], a subset of constraints S ⊂ J is
efined to be an invariant constraint set, if the objective values of
roblems (Pθ[J ]) and (Pθ[S]) coincide, i.e., if c⊺z∗

θ [J ] = c⊺z∗

θ [S].
ote that, following the previous definition, a unique invariant
onstraint set may not exist. The relationship between these two
ets of constraints, B and S , depends on whether problem (Pθ[J ])
ncludes integer variables or not. Therefore, we discuss first the
ase in which all variables are continuous and then the more
eneral case with both continuous and integer variables.
Let us first assume a particular case of (Pθ[J ]) that only in-

ludes continuous variables, i.e., q = 0 and z = x ∈ Rn. Using the
ptimal solution, z∗

θ [J ], it is straightforward to determine the set
f binding constraints B. Actually, the invariant constraint sets S
f linear programming problems must contain all the constraints
n B, as the authors of [15] affirm. In other words, when the
ecision variables of the optimization problem are continuous,
ne can choose S = B. This way, instead of solving the original
ptimization problem (Pθ[J ]), which may involve a high com-
utational cost, the optimal solution is computed through the
educed problem (Pθ[S]) = (Pθ[B]). Such a reduced problem in-
ludes fewer constraints, typically implies a lower computational
ffort and is thus more appropriate for online applications.
Now take the more general case in which problem (Pθ[J ])

ncludes both continuous and integer variables. In this case, au-
hors of [11] demonstrate through an illustrative example that
n invariant constraint set S can also include constraints that
re non-binding at the optimum. These constraints play a critical
ole when solving MILPs since they cannot be removed from the
riginal feasible region without impairing the feasibility, and thus
he optimality, of the so-obtained solution. In other words, when
nteger variables are involved in the optimization problem, an
nvariant constraint set includes not only binding constraints but
lso some of the non-binding ones, i.e., it holds that S ⊃ B.
ike in the previous case, assume we have access to the optimal
olution z∗

θ [J ]. While the set of binding constraints can also be
asily determined by evaluating all constraints at the optimum,
dentifying such a subset of critical non-binding constraints is a
ore challenging task when integer variables appear. In addition,

gnoring these non-binding constraints is quite dangerous since
he optimal solution of the reduced problem may violate some of
he constraints in the set J , increasing the number of iterations
equired by the constraint generation method.

Our claim is that, if tuples (θt , St ) for previously solved in-
tances t = 1, . . . , T are used to train any machine learning
lgorithm ML(·), then the solution of the reduced formulation of
new unseen instance t̃ with the predicted invariant constraint
et, Pθt̃

[St̃ ] would more likely be feasible (and optimal) for the
riginal problem Pθt̃

[J ], than if only the tuples with the binding
onstraints (θt ,Bt ), ∀t are considered, as done in [11]. As a conse-
uence, the number of iterations to be run online in the constraint
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eneration method is decreased. Hence, it is desirable to warm-
tart the constraint generation algorithm with a constraint set
s close to an invariant constraint set of the original MILP as
ossible. This way, the number of iterations executed by the
lgorithm is reduced, and so is its running time.

. Methodology

The goal of this paper is to develop a data-driven approach
hat guarantees the optimal solution of an MILP in a reduced
omputational time. To this aim, we propose a methodology that
fficiently warm-start the constraint generation method so that
he number of iterations executed (online) is as small as possible.
he key point of our strategy is to initialize (warm-start) the con-
traint generation method using a predicted invariant constraint
et, S ⊂ J , learned from past instances.
In particular, we propose a data-driven strategy that takes ad-

antage of the information (θt , St ) provided from the previously
solved instances t = 1, . . . , T to predict an invariant constraint
set, St̃ = ML(θ t̃ ) for a new unseen problem t̃ , using a machine
learning model of our choice, ML(·). See [16] for more details
about the main machine learning tools. Then, once such a set St̃
is predicted, we only need to run a smaller number of iterations
than those required for the original constraint generation method
to converge to the optimal solution of the MILP. Indeed, if the pre-
dicted invariant constraint set exactly coincides with the actual
one, then, only one iteration of the constraint generation method
needs to be executed. In other words, when the prediction is
perfect, then it suffices to solve Pθt̃

[St̃ ].
As mentioned in Section 2, given an optimization problem,

inding an invariant constraint set is a challenging task when
nteger variables appear. Developing an efficient procedure to
earn an invariant constraint set in MILPs, S ⊂ J , is a relevant
esearch question that has not yet been properly answered in the
iterature. We propose in this paper a methodology that aims at
etermining, for each training instance t , an invariant constraint
et St . The proposed approach to construct St for each instance
is also based on a constraint generation procedure. To compute
n invariant constraint set St , for a previously solved instance t ,
e proceed as follows: we initialize the invariant constraint set St
ith the set of binding constraints Bt . At each iteration, a reduced
roblem Pθt [St ] is solved giving the optimal solution z∗

θt
[St ]. If all

original constraints are satisfied, i.e., a⊺
j z

∗

θt
[St ] ≤ bj, ∀j ∈ J \

St , then the algorithm terminates. Otherwise, the most violated
constraint is included in the set St , and a new iteration is run.
This algorithm is run offline for each training instance t . Hence,
adding, at each iteration, only the most violated constraint is
appropriate for our proposal since the online running time is
not affected. However, alternative strategies, such as including
in the set St all the violated constraints at each iteration, can be
considered. The pseudocode of the proposed procedure is given
in Algorithm 1.

Algorithm 1 Identifying an invariant constraint set for each
nstance t

0) Initialize St = Bt .
1) Solve Pθt [St ] with solution z∗

θt
[St ].

2) If max
j∈J \St

{
a⊺
j z

∗

θt
[St ] − bj

}
> 0, go to step 3. Otherwise, stop.

3) St := St ∪

{
arg max

j∈J \St
{a⊺

j z
∗

θt
[St ] − bj}

}
, go to step 1.

After running Algorithm 1, the information (θt , St ) is avail-
able for all the instances t = 1, . . . , T to train a machine
learning model, ML(·), of our choice. In the next step, we take
 t

3

the parameters θ t̃ of a new unseen problem instance t̃ , and
predict an invariant constraint set St̃ = ML(θ t̃ ) with the al-
ready trained model. Finally, we run just a few iterations of
the constraint generation method warm-started with the learned
invariant constraint set St̃ . The prediction of the invariant con-
straint set and the constraint generation method are executed
online. In contrast, the strategy to build St for all training in-
stances t (Algorithm 1), as well as the training of the machine
learning algorithm ML(·) are performed offline. This way, the
online computational burden is not affected. Algorithm 2 shows
a pseudocode of the main steps of our approach.

Algorithm 2 Pseudocode of the proposed methodology.

Offline phase:
Input: {(θt ,Bt )}, ∀t .

1) For each train instance t:

(a) Run Algorithm 1.
(b) Obtain an invariant constraint set, St .

2) Train ML(·) using {(θt , St )}, ∀t .

Output: Trained ML methodology.
Online phase:
Input: Trained ML strategy of previous step and θ t̃ from a test
instance t̃ .

3) Predict St̃ = ML(θ t̃ ).
4) Run CG initialized with the set St̃ .

Output: Optimal solution of the test problem instance t̃ .
The main advantages of the proposed methodology are de-

scribed below:

- Since we are running a constraint generation procedure
that is warm-started with a carefully built constraint set,
our approach retains the convergence optimality guarantees
from the standard constraint generation method.

- The procedure to build the invariant constraint sets, St , ∀t ,
of previously solved instances is also based on constraint
generation. Hence, it is guaranteed to include all the non-
binding constraints necessary to recover the optimal objec-
tive value. Therefore, all the past instances verify that the
optimal solutions of the reduced problems are feasible and
optimal for the original formulations.

- There is no condition about the machine learning algorithm
that we apply in our approach. In other words, the sets of
constraints St can be used for training any machine learning
method.

- The invariant constraint sets, St , ∀t and the machine learn-
ing algorithm, ML(·) are run offline. Therefore, the com-
putational cost executed online to determine the optimal
solution of a new unseen MILP instance is not affected.

. Computational experiments

This section is devoted to the numerical experiments carried
ut in this paper. Section 4.1 details the experimental setup,
hereas Section 4.2 explains the results derived from testing our
roposal on two case studies.

.1. Experimental setup

To show the efficiency of our approach, we compare it with
wo algorithms. The first one is the standard constraint genera-
ion algorithm, denoted as CG, which is based on pure optimiza-
ion grounds and completely ignores the information provided
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y the data. In particular, for each instance, we sequentially add
he violated constraints at each iteration. The second compara-
ive approach is based on reference [11]. The authors propose
data-driven method where the constraint generation method

s warm-started using only the information given by the bind-
ng constraint set, B. We denote this method by B-learner +
G. Finally, since we warm-start the constraint generation using
n invariant constraint set S , our methodology is denoted as

S-learner + CG.
It is well-known that machine learning performance highly

depends on the data division into training and test samples. Thus,
to get stable out-of-sample results, leave-one-out is executed in
this paper. More details about this technique can be found in [17].
In particular, we assume given a database of T previously solved
MILP instances. As mentioned in Section 2, we assume that the
optimal solution of such instances is unique. Otherwise, retaining
one of them is enough to our purposes. Note that, in the case of
multiple solutions, solvers usually retain just one of them instead
of the complete set of solutions. Hence, when multiple solutions
appear, we only collect the one provided by the solver.

The leave-one-out strategy consists in running T iterations
of our approach. At each iteration, we select one MILP instance
and consider it as the test set,

{
t̃
}

to be run in the online
phase. The remaining T − 1 instances constitute the training set,
1, . . . , T }\

{
t̃
}
. Then, we run the S-learner + CG method. We first

dentify offline T − 1 invariant constraint sets St , for all training
nstance t by running Algorithm 1, and train (also offline) a
achine learning model, ML(·), that learns an invariant constraint
et in terms of the MILP parameters. The next step (to be also
erformed online) is to use the already trained model to predict
n invariant constraint set for the test instance. Finally, such a
redicted set is utilized to warm-start the constraint generation
rocedure that results in the optimal solution of the test instance.
or the sake of comparison, both data-based strategies are applied
n an equivalent way. Naturally, the B-learner + CG procedure
s trained with the series of T − 1 binding constraints sets, B ,
t

4

instead of the invariant constraint sets, St . On the other hand,
the pure optimization-based strategy CG does not need to divide
the whole database into train and test sets. CG is run T times,
one per MILP instance. Each time, an iterative algorithm that
sequentially adds the violated constraints is run. Fig. 1 shows a
scheme of our proposal (given in Algorithm 2) together with the
two comparative algorithms, emphasizing the offline and online
steps of each method.

The training of the machine learning model ML(·) and the
subsequent construction of the set St̃ (resp. Bt̃ ) is addressed as
a binary classification problem. For this purpose, we assign a
label sjt = 1 or sjt = −1 to each constraint j ∈ J of each
problem instance t with optimal solution z∗

θt
[J ], depending on

whether that constraint is in St (resp. Bt̃ ) or not, respectively.
Likewise, each constraint j ∈ J in the new problem instance t̃
will be assigned the label sjt̃ = 1 if the machine learning model
ML(·) predicts that the constraint j is in St̃ (resp. Bt̃ ), and label
sjt̃ = −1 otherwise. Accordingly, any classification algorithm can,
n principle, serve this purpose. In this paper, we select the well-
nown k nearest neighbors, knn, due to its simplicity. See Ref. [18]
or more details in this regard. Nevertheless, alternative learning
pproaches such as Support Vector Machines, Neural Networks or
ecision Trees can be applied as well. The work [17] explains the
ain properties of these methodologies.
Note that misclassifying has different consequences depending

n the type of constraint we wrongly label. Indeed, adding a
uperfluous constraint into the set St̃ is far much less damaging
han failing to include a constraint in that set. The former case
nly leads to a slight increase in the size of the reduced prob-
em, while the latter increases the risk that the solution to the
educed problem is infeasible in the original formulation, thus
otentially increasing the number of iterations to be executed in
he constraint generation method. For this reason, in this paper,
e want to be on the conservative side when choosing the knn
oting strategy. For a fixed k, we consider that a constraint j
f an unseen test instance, t̃ , belongs to an invariant constraint
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et St̃ , i.e., s
j
t̃ = 1, if and only if at least one of the k closest

training instances includes such a constraint j in the set St . To
nsure a fair comparison, we apply the same voting strategy
hen constructing Bt̃ from Bt , ∀t using the knn classification. In
ny case, a feature of the knn method is that the larger the k, the
arger the size of St̃ and Bt̃ . Thus, high values of k are expected
to result in predicted sets St̃ and Bt̃ with a larger number of
constraints. Therefore, the number of iterations in the constraint
generation method may be reduced at the expense of a potential
increase in the running time of each iteration. Then, there exists
a trade-off between the value of k and the possible increment of
he computational burden. The user should decide the value of k
epending on their preferences.
In general, any of the constraints of optimization problem

Pθ[J ]) might be superfluous and thus unnecessary in a certain
ILP instance. Nevertheless, it is often the case that, because of

he nature and structure of the MILP under consideration, there
s some group of constraints, say J̄ ⊂ J , which are more prone
o be redundant and/or whose elimination from the original MILP
rings a substantial reduction in computational time. It may be,
herefore, very useful to focus on that group of constraints only,
nd adding the set of constraints J \ J̄ into St and Bt , ∀t ,
y default. We notice that this is an issue analogous to that of
eciding which group of binary variables is better to be learned in
hose strategies that help solve MILPs very fast by predicting the
ptimal value of some of these variables, see, for instance, [19].
n the numerical experiments we present in Section 4.2, we will
pecify which constraints are considered in J̄ .
The efficiency of our proposal is measured using different

erformance metrics depending on the size of the datasets. For
he toy example of Section 4.2.1, we show the behavior of our
roposal S-learner + CG compared with the alternative machine-
earning-aided approach B-learner + CG. We compare both strate-
ies in terms of: (i) the constraints used to warm-start the CG
ethod, (ii) the number of runs of CG, and (iii) the final reduced
et of constraints needed to get the optimal solution of the MILP.
n contrast, for the large datasets of Sections 4.2.2 and 4.2.3, we
easure the benefits of our approach over the T runs in terms
f: (i) the minimum and the maximum number of constraints
onsidered in the reduced MILPs. Such a number of constraints
s denoted as Cmin, and Cmax, respectively; (ii) the minimum and
aximum number of iterations executed in the constraint gen-
ration procedure of the three methodologies averaged over all
est instances, denoted by Imin and Imax, respectively; (iii) the
ercentage, P1, of instances that require only one iteration of the
onstraint generation method; and (iv) the percentage of online
omputational burden in comparison with the original MILP for-
ulation, defined as ∆ =

1
T

∑T
t=1 δt , where δt = 100 τ

pred
t +τCGt
τMILP
t

.

For each instance t , τMILP
t denotes the time needed to solve the

original MILP with the whole set of constraints J . In addition,
τ
pred
t is the time employed in predicting sets Bt̃ or St̃ by the
knn strategy. Finally, the notation τ CG

t indicates the computational
time employed in all the iterations of the constraint generation
method.

Apart from providing values that summarize the good per-
formance of our approach, we have included three figures to
illustrate the distribution of the performance measures. In partic-
ular, we provide the boxplots of the performance values obtained
after running T iterations for the different methodologies in terms
of: (i) the number of constraints considered in the reduced MILPs,
(ii) the number of iterations executed by the constraint genera-
tion strategy, and (iii) the percentage of the computational time
spent online compared to the original MILP formulation, δt .

All the experiments have been carried out on a cluster with 21
Tb RAM, running Suse Leap 42 Linux distribution. MILP problems
5

are coded in Python 3.8 and Pyomo 6.1.2 and solved using
Cplex 20.1.0. All the solver tuning parameters have been set
to their default value except the mixed integer optimality gap
tolerance (mipgap) that has been fixed to 1e−10. Finally, in order
to make our approach transparent, we have saved the data and
the code of our proposal in [20].

4.2. Case studies

The proposed methodology has been tested on three case
studies: A toy example (Section 4.2.1), a synthetic MILP (Sec-
tion 4.2.2) and a real-world application, the Unit Commitment
Problem (Section 4.2.3).

4.2.1. Toy example
This section presents a toy example to illustrate how our pro-

posal works. To this aim, we formulate the optimization problem
in (2) with two decision variables, namely, x ∈ R and y ∈ Z,
nd the feasible region given by the six constraints defined in
2b)–(2g).

min
x∈R,
y∈Z

x − y (2a)

s.t. x ≤ 1.5 (2b)

y ≤ 1.75 (2c)

x ≥ 0.5 (2d)

x + y ≥ b (2e)

y ≥ 0 (2f)

y ≤ 2.25 (2g)

Note that problem (2) depends on the parameter b ∈ R that
ppears in the right-hand side of constraint (2e). Hence, in this
oy example, we have θ = b. We assume given a database
ontaining the results of three optimization problems solved for
he values b ∈ {1, 1.25, 1.5}. Fig. 2 shows the feasible region
f the problem for the three different values of b. An arrow at
he bottom right corner indicating the direction of improvement
f the objective function is also depicted. It is easy to see that
he optimal solution for these three problems is the point A =

0.5, 1).
Now, let us assume that we have a new unobserved problem

nstance given by the value btest = 1.3. The objective of this
ection is to learn a reduced set of constraints that will be used to
nitialize the constraint generation method and solve the problem
or btest . This way, the number of iterations needed to find the
ptimal solution of the MILP is reduced, and so does the associ-
ted computational burden. In this toy example, we illustrate that
t is not enough to learn such a reduced set of constraints with
he information given by the binding constraints set, B. We have
o take into account also some crucial non-binding constraints
ncluded in the invariant constraint set S obtained after running
lgorithm 1. Table 1 shows which are the constraints that belong
o both sets B and S for the three training instances given by
alues b ∈ {1, 1.25, 1.5}. Note that, as stated in Section 4.1, the
onstraints belonging to the set B (resp. S) are labeled with 1. On
he other hand, the constraints that do not belong to B (resp. S)
re denoted with −1.
The main difference between sets B and S is the constraint

2c), which is included in the invariant constraint set S for the
hree values of b, but not in B. Importantly, constraint (2c) is
he unique non-binding constraint needed to recover the opti-
al solution given by the point A. In effect, if this constraint is



A. Jiménez-Cordero, J.M. Morales and S. Pineda Knowledge-Based Systems 253 (2022) 109570

b

t

B

p
c
I
b
b
W
t
i
t
D
o
h

i

Fig. 2. Feasible region, direction of improvement of the objective function and optimal solution (point A) of the three instances obtained with the values
∈ {1, 1.25, 1.5} in Problem (2)..
Table 1
Constraints included in the sets B and S for the values b ∈ {1, 1.25, 1.5} of the
hree training instances.

b (2b) (2c) (2d) (2e) (2f) (2g)

B
1 −1 −1 1 −1 −1 −1

1.25 −1 −1 1 −1 −1 −1
1.5 −1 −1 1 1 −1 −1

S
1 −1 1 1 −1 −1 −1

1.25 −1 1 1 −1 −1 −1
1.5 −1 1 1 1 −1 −1

Table 2
Performance results: Toy example.

k Warm-start constraint set Iterations CG Final set of constraints

B
-l
ea

rn
er
+C

G

1 (2d) 2 (2c), (2d)

2 (2d), (2e) 2 (2c), (2d), (2e)

3 (2d), (2e)e 2 (2c), (2d), (2e)

S
-l
ea

rn
er
+C

G

1 (2c), (2d) 1 (2c), (2d)

2 (2c), (2d), (2e) 1 (2c), (2d), (2e)

3 (2c), (2d), (2e)e 1 (2c), (2d), (2e)

removed, then the optimal solution moves from point A to point
= (0.5, 2).
To find the initial set of constraints warm-starting the con-

straint generation method for the test problem instance given by
btest = 1.3, we train knn for k ∈ {1, 2, 3} using the information
rovided by sets B and S in Table 1. Note that for k = 1, the
losest problem instance to btest is the one associated to b = 1.25.
n addition, for k = 2, the closest neighbors are the MILPs given
y b = 1.25 and b = 1.5. Finally, when k = 3, the three values of
∈ {1, 1.25, 1.5} are considered as the nearest neighbors of btest .
e collect in Table 2 the results obtained for both approaches in

erms of: (i) the constraints initially selected, (ii) the number of
terations executed by the constraint generation strategy, and (iii)
he constraints employed to solve the reduced test MILP instance.
ue to the small size of the problem, the computational burden
f both approaches is negligible. Consequently, this information
as been omitted.
Several conclusions can be derived from the results shown

n Table 2. Since we are executing a modified version of the
6

constraint generation method, it is guaranteed that the optimal
solution of the problem instance given by btest is reached using
both data-driven approaches. Indeed, such an optimal solution
is also attained at point A using a reduced set of two or three
constraints (see the last column of Table 2). This means that we
have managed to decrease between 50%–66% the cardinality of
the original set of constraints, depending on the value of kwe use.
However, the number of iterations that the CG method needs to
perform to get this optimum varies depending on which of the
two data-driven approaches is employed. Indeed, the number of
CG iterations executed by the approach S-learner + CG is smaller
than those employed in B-learner + CG for all values of k (1 versus
2 iterations). This is due to the fact that the latter is trained
just using the information taken from the binding constraints,
which is not enough when there exist integer decision variables
in the optimization problem. It is important to highlight that the
approach B-learner + CG is not able to find the optimal solution
executing just one iteration of the CG method even if all the
available training instances are used, that is, even running the knn
method with k = 3. In contrast, our proposal S-learner + CG
always finds the optimal solution of the problem by only run-
ning the CG strategy once. This occurs because the non-binding
constraint (2c) is included in the initial set of constraints used to
warm-start the constraint generation method. Finally, as it was
explained in Section 4.1, we want to be on the conservative side
when choosing the knn voting choice. This is the reason why
constraint (2e) is included in the initial set of constraints of both
approaches for k = 2 and k = 3, even if such a constraint is
not necessary to reach the optimal solution of the test problem
instance. However, including such a small number of non-critical
constraints have minor consequences in terms of computational
times, as will be observed in the larger datasets of Sections 4.2.2
and 4.2.3.

4.2.2. Synthetic setup
In this section, we restrict ourselves to the MILP problem of

the form (3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈Rn, y∈{0, 1}n

n∑
i=1

cixi (3a)

s.t.
n∑

i=1

aijxi ≤ bj, j = 1, . . . ,m (3b)
liyi ≤ xi ≤ uiyi, i = 1, . . . , n (3c)
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Table 3
Performance results: Synthetic MILP.

k [Cmin, Cmax] [Imin, Imax] P1(%) ∆(%)

CG – [119, 132] [120, 133] 0.0 1956.20

B
-l
ea

rn
er
+C

G

1 [118, 129] [12, 26] 0.0 1050.89
5 [120, 130] [1, 14] 2.8 366.71
10 [122, 131] [1, 9] 20.2 204.87
50 [125, 132] [1, 5] 58.4 119.76
100 [127, 134] [1, 4] 66.4 112.33
500 [130, 135] [1, 3] 83.8 87.90
999 [134, 136] [1, 3] 85.6 87.55

S
-l
ea

rn
er
+C

G

1 [120, 130] [1, 8] 25.0 195.67
5 [124, 134] [1, 4] 77.7 95.25
10 [126, 134] [1, 3] 90.6 81.06
50 [131, 138] [1, 3] 98.3 73.25
100 [132, 139] [1, 2] 99.3 74.47
500 [137, 139] [1, 1] 100.0 72.22
999 [138, 139] [1, 1] 100.0 74.38

where ai = (ai1, . . . , aim)⊺, ∀i ≤ n, and b = (b1, . . . , bm)⊺ are
column vectors in Rm, and c = (c1, . . . , cn)⊺, l = (l1, . . . , ln)⊺ and
u = (u1, . . . , un)⊺ are column vectors in Rn.

MILPs like (3) can be interpreted as linear programs where
some of the continuous variables xi have a forbidden zone within
the range (0, li). Consequently, problems like (3) contain the so-
called logical constraints, where a continuous variable vanishes if
the associated binary variable is zero. This type of problems, with
a logical relationship between continuous and binary variables,
has a wide variety of applications, as the authors of [21] explain.
For a real-life example, one can think in a nuclear energy context.
For instance, a nuclear unit whose maximum power is 1000 MW
cannot generate energy within the range [0, 500] due to the
nuclear reactor stability.

As mentioned in Section 4.1, it may be computationally pro-
ductive to screen out only a subset of constraints J̄ ⊂ J . In the
case of Problem (3), for example, most of the constraints (3c)
are expected to be binding at the optimal solution. Therefore,
we consider in this example that J̄ is solely formed by the m
constraints in (3b). Consequently, the n constraints in (3c) are
included by default into St and Bt , ∀t .

We assume given a database with T = 1000 optimization
problems of the type of (3). Each optimization problem t com-
prises m = 250 constraints, n = 500 continuous variables, and
n = 500 binaries. We assume that the problems just depend on
the parameter θ = b, i.e., ai, ∀i, c , l, and u remain fixed for the
1000 optimization problems.

To synthetically generate the database, the values for the
parameters ai, ∀i, c , l, and u (which the 1000 MILPs share) have
been randomly selected according to a normal distribution with
mean 0 and standard deviation 10, i.e., N (0, 10). Note that we
assure that lower bounds li take on smaller values than the upper
bounds ui, i.e., li < ui, i = 1, . . . , n. Then, 1000 parameter vectors
b have been generated again according to the same distribution
N (0, 10). The entire database can be downloaded from [20].

Fig. 3 and Table 3 shows the performance metrics for the
three methodologies. The data-driven strategies B-learner + CG
and S-learner + CG include output results after running the knn
algorithm for different values of k ∈ {1, 5, 10, 50, 100, 500, 999}.
Training the knn algorithm with k = 999 is equivalent to running
a naive method that includes a constraint j in the set St̃ (resp.
Bt̃ ) if that constraint is contained in at least one of the training
sets St , ∀t (resp. Bt , ∀t). Note also that due to their nature, it is
obvious that the three algorithms recover the optimal solution of
the original MILP instances.

It can be observed that the number of iterations that need to
be executed by the optimization-based method CG is significantly
 t

7

Fig. 3. Performance results: Synthetic MILP.

larger than those required by the data-driven methods B-learner
CG and S-learner + CG. Indeed, the y-axis of Fig. 3(b) has been
ivided into two different parts. This way, the large number of
terations needed in the pure optimization-based method CG does
ot affect the visualization of the number of CG iterations in
he data-aided approaches. In addition, such a difference in the
umber of iterations clearly shows the benefits of using machine
earning tools to alleviate the online computational burden in
ontrast with the use of pure optimization-assisted strategies.
Moreover, if we compare the number of CG iterations in both

ata-driven methods, B-learner + CG and S-learner + CG, we can
ee that the number of iterations to be run in the former approach
s larger than in the latter, for all the values of k. Particularly,
f we focus on the value k = 1 of Fig. 3(b), we observe that
he minimum number of iterations that the method B-learner +
G executed is larger than the maximum number of iterations of
he strategy S-learner + CG. Indeed, we can affirm that in order
o reduce the number of iterations of the constraint generation
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ethod, it is important to find a good initial set of constraints for
he warm-start. Actually, if such an initial set is not good enough,
olving the original MILP to optimality with the whole set of con-
traints, J , could be better in terms of the computational burden
than running a few iterations of the reduced MILP instances. For
example, observe the output results of Table 3 of k = 100 for
oth approaches B-learner + CG and S-learner + CG. It can be
een that, in the first case, the computational load is increased
round 12% on average, whereas in the second case, a reduction
f approximately 25 percentage points is attained. In this regard,
e should also highlight from Table 3 that running B-learner +
G with values k ∈ {1, 5, 10, 50, 100} provides no online running

time benefits. In contrast, online computational savings can be
observed from k = 5 if S-learner + CG is performed. That is, the
use of the sets St , ∀t which are built offline, is advantageous from
a computational point of view.

In addition, we emphasize the results from Table 3 of k = 500
and k = 999 for the S-learner + CG. Note that the number
of CG iterations in both cases is exactly one. That means that
the prediction of the invariant constraints sets includes all the
binding and non-binding constraints necessary to recover the
optimal solution of the original MILP formulation. It is important
to remark that the B-learner + CG is unable to reproduce these
results even for k = 999, i.e., even using a naive method with all
the available data. The reason for this issue is that the strategy
B-learner + CG is only based on the binding constraints sets,
Bt , ∀t , which are not sufficient to recover the optimal solution.
Therefore, the risk of generating reduced MILPs, which are not
equivalent to the original ones, increases.

Regarding the number of constraints of the reduced MILP
formulations, it can be observed in Table 3 and Fig. 3(a) that the
number of constraints necessary for solving the unseen instances
includes around 50% − 55% of the total number of constraints,
independently of which of the three algorithms is run. This means
that the size of the original optimization problem is consid-
erably reduced with any of the methodologies. Regarding the
data-driven methods, the number of retained constraints in the
S-based methods is, as expected, slightly greater than in the B-
based ones. The difference boils down to a few extra constraints,
which, thus, barely increases the size of the reduced MILPs. Very
importantly, however, leaving these few constraints in the re-
duced MILPs has a major impact on the number of CG iterations,
and thus in the online computational load, as Table 3 and Fig. 3(c)
show.

In this vein, it is essential to remark that the simple fact of
including any type of constraint in the set St is not enough to
recover the optimal solution in a shorter computational time.
For instance, notice in Fig. 3(a) that the distribution of retained
constraints after training the B-learner + CG with k = 100, on
the one hand, and the S-learner + CG with k = 10, on the other,
is very similar. However, looking at Table 3 we can see that there
is no online time reduction in the first case, whereas around 80%
of the computational load is employed in the second case. This is
because more critical non-binding constraints are retained in the
reduced MILPs in the latter case.

To sum up, our strategy is able to attain the optimal solution
of an MILP, thanks to the efficient warm-start of the constraint
generation method. Actually, we are able to correctly identify
offline an invariant constraint set of an MILP, St , ∀t . In doing
so, the performance of the machine learning tool (knn in our
case) that is used to initialize the constraint generation method is
improved. This improvement substantially decreases the number
of iterations performed at the expense of a slight increment in
the cardinality of the set of retained constraints. This increment,
however, does not involve an increase in the online solution time.
In addition, the resulting reduced problems are easier to solve
than the original MILPs.
8

4.2.3. Real-world application: Unit Commitment problem
The Unit Commitment problem (UC) is one of the most im-

portant problems in power systems, as the authors in [12] affirm.
The goal of UC is to determine, at minimum cost, the on/off status
and the power to be dispatched by each generation unit in order
to satisfy the electric demand. Mathematically, the (DC version of
the) UC problem can be formulated as the following MILP:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈Rn, y∈{0, 1}n

n∑
i=1

cixi (4a)

s.t.
n∑

i=1

xi =

n∑
i=1

di, (4b)

− fj ≤

n∑
i=1

aij(xi − di) ≤ fj, j = 1, . . . ,m (4c)

liyi ≤ xi ≤ uiyi, i = 1, . . . , n (4d)
where xi is the power dispatched of generator i and yi is a

binary variable indicating whether the generator is turned on
or turned off. In addition, ci is the marginal cost of generator i,
di is the electric demand at node i, aij are the so-called Power
Transfer Distribution Factors (PTDF) in [12], and fj, li and ui are,
respectively, flow and power generation limits. The objective
function (4a) aims to minimize the total cost. Constraint (4b) is
the power balance equation, enforcing the supply of the total
demand in the power network. Constraints (4c) limit the flow of
line j, given by

∑n
i=1 aij(xi − di), within the range [−fj, fj]. Finally,

constraints (4d) ensures that the power dispatched xi be within
li and ui if and only if generator i is turned on, i.e. if and only if
yi = 1. We remark that, for simplicity, formulation (4) considers
that there is at most one generator connected to each network
node.

The Unit Commitment problem is a suitable application to
test the performance of our method for three reasons. First, the
increasing integration of renewable sources in current power
systems requires that the unit commitment problem be solved
multiple times within short-time windows so that commitment
decisions can be adapted to rapid changes in operating condi-
tions. In practice, this means that this problem must be solved
as fast as possible. Second, the unit commitment problem is
solved several times per day with only minor changes in the
input data. Therefore, historical data of previous instances are
usually available to be used in learning tasks. Third, implementing
commitment decisions that violate some of the security con-
straints of the UC may lead to catastrophic events such as power
blackouts. Therefore, attaining optimal (and feasible) solutions is
also a requirement for this practical application.

While the marginal cost and production limits of power plants
and network topology do not typically change over a year, the
electric demand suffers from daily and weekly fluctuations. Hence,
we decide to fix parameters aij, li, ui, fj and ci, ∀i, j, and just vary
the input parameter θ = d. Moreover, it is known that, in
practice, just a small percentage of the power flow constraints
(4c) are binding at the optimum for typical power systems. See
Ref. [22] for further details. Hence, we consider in this example
that J̄ is made up of the 2m constraints in (4c). The entire dataset
consists of n = 96 continuous and n = 96 binary variables and
m = 120, leading to a total of 240 constraints (4c). The number
of problem instances is T = 8640, corresponding to 360 days of
data measured every hour. More details about this data can be
found in [20].

The performance metrics of our methodology are collated in
Table 4 and Fig. 4 for k ∈ {5, 10, 20, 50, 100}.

We can see from Fig. 4(a) that the reduced problems generated
from the three algorithms have up to 85% fewer constraints than
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Table 4
Performance results: Unit commitment.

k [Cmin, Cmax] [Imin, Imax] P1(%) ∆(%)

CG – [0, 22] [1, 23] 9.16 188.38

B
-l
ea

rn
er
+C

G 5 [0, 23] [1, 8] 54.40 74.09
10 [0, 25] [1, 6] 62.01 63.19
20 [0, 26] [1, 5] 68.28 62.35
50 [0, 27] [1, 5] 76.90 54.56
100 [0, 29] [1, 5] 83.70 54.62

S
-l
ea

rn
er
+C

G 5 [0, 26] [1, 5] 92.66 44.84
10 [0, 28] [1, 5] 97.21 40.57
20 [0, 29] [1, 4] 98.81 42.83
50 [0, 30] [1, 3] 99.45 40.57
100 [0, 32] [1, 3] 99.71 44.41

Fig. 4. Performance results: Unit Commitment.
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the original MILPs. However, such a reduction results in modest
online computational savings when the B-learner + CG is used
to train the knn classification model. In contrast, using the S-
learner + CG manages to substantially improve the performance
of the knn in terms of the online solution time. For instance,
we can observe in Table 4 that the B-learner + CG with k = 5
mploys around 75% of the time required to solve the original
ILP formulation, whereas just 45% of the time is used if the knn

s run on the S-learner + CG. This is of particular relevance in real-
ife applications, such as the UC problem, where the optimality
uarantee in a short computational time is a priority.
Indeed, due to the good initialization of the constraint genera-

ion method, based on the invariant constraint set, our approach
s able to get (almost always) a perfect prediction of the con-
traints needed to recover the optimal solution of the original
ILP formulation, as the third column of Table 4 shows. Con-
equently, the number of iterations of the constraint generation
ethod is 1 in most of the test instances, and the solution

imes are reduced, as Figs. 4(b) and 4(c) present. For instance,
able 4 states that our method found the optimal solution in
pproximately 93% of the instances if k = 5 is chosen. Moreover,
f we observe the results for k = 100, nearly 100% of the problems
ttain the optimal MILP solution in one iteration of the constraint
eneration method.
To summarize, solving to optimality real-world optimization

roblems, such as the UC problem, may become a challenge. The
resented results have shown that the warm-started constraint
eneration procedure proposed in this paper, which is based on
he invariant constraint set, significantly reduces the computa-
ional burden and gets reduced MILPs that are equivalent to the
riginal ones in terms of the optimal solution. Consequently, our
pproach strengthens and supports the use of machine-learning-
ided optimization tools for online applications.

. Conclusions and future work

Solving MILPs to optimality for online applications using tradi-
ional algorithms is not always possible due to their high compu-
ational burden. While the literature includes speed-up methods
o solve MILP based on machine learning techniques, the obtained
olutions may be suboptimal (or even infeasible in certain cases)
or the original formulation. In this paper, we propose a machine-
earning-aided warm-start constraint generation algorithm that
ttains the optimal solution of an MILP in a shorter computational
ime. The proposed approach is based on the offline identification
f the invariant constraint sets of previous instances of the target
ILP. In doing so, we significantly improve the prediction of in-
ariant constraint sets for unseen instances. Thus, a much smaller
umber of iterations are needed to run the constraint generation
lgorithm, and the online computational burden is significantly
iminished.
We compare our approach in a synthetic MILP and the unit

ommitment problem with the traditional constraint generation
ethod and with a warm-started methodology that ignores the

nformation given by the critical non-binding constraints. In both
xamples, the online computational time is significantly reduced
ith respect to the comparative strategies. For instance, in our
xperiments with the unit commitment application, the opti-
al solution is attained using around 40% of the time needed

n the original MILP. This shows the advantage of using our
ethodology for solving MILP in online applications.
In our study, the MILP instances in the training set only differ

n the right-hand side of their constraints. While our method-
logy can also be used with MILPs that are parameterized by the
oefficient matrix, further investigation is required to evaluate its
erformance for this case. Another promising research line is the
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esign of methods for integrating information or expert knowl-
dge on the MILP to be solved into the learning process in order
o increase the predictive power of the machine learning engine
n the MILP solution. Finally, our approach implies the training
f an independent machine learning model for each constraint. In
rder to improve the performance metrics, a future research line
ould be to take advantage of the possible relationships among
he constraints to train a unique machine learning algorithm.
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