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Precise online lithium-ion battery state of health estimation is critical for the correct operation and management
of battery-based energy storage systems such as microgrids and electric vehicles. However, in such applications
it is necessary to maintain standard operation and therefore difficult to experimentally determine. Advance-
ments in machine learning techniques and capabilities allow for precise and efficient data-driven predictions.
In this paper we propose a simple, yet effective state of health estimation model based on the extraction of
features observed from patterns in the voltage, current and temperature profiles during the charging process,
which then through artificial neural networks allow for per cycle estimations. We then apply this model to
two groups of batteries from the NASA Ames PCoE Battery data set. Results show that the proposed model
is capable of estimating the state of health of batteries discharged under varied conditions with resulting
coefficients of determination between 0.896 and 0.992 while also employing significantly less input data than

other works.

1. Introduction

In today’s world lithium-ion (Li-ion) batteries play a fundamen-
tal role in decarbonizing our world economy [1] by providing the
necessary energy storage for a wide range of applications and de-
vices: from microgrids and renewable energies [2], to electric vehicles
(EVs) [3] and consumer electronics. The reasons why Li-ion technology
is considered the main form of energy storage is due to its favor-
able characteristics: high energy density, high efficiency, and long-life
cycles [4]. Because their long lives are a critical characteristic, it is
essential to know, model and prevent battery degradation.

Li-ion batteries degrade due to irreversible changes in cell chemistry
such as positive electrode oxidation and negative electrode reduction as
aresult of repeated charge and discharge cycles, overcharging and over-
heating [5]. Studies show that the discharging process tends to be more
damaging than its respective charging cycle [6]. Battery degradation is
most commonly quantified by the state of heath (SoH) parameter. SoH
represents a measurement of a battery’s current condition with respect
to their nominal or design conditions. By knowing a battery’s SoH,
we can look to improve overall battery performance and even prolong
battery life [7]. Therefore, SoH estimation is crucial for optimal battery
performance in a wide variety of applications that require long battery
lives, such as electric vehicles [8].
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There are many studies on SoH estimation and prediction. In [9] the
authors present a complete review of different battery SoH estimation
methods that can be split into three different categories: experimen-
tal and model-based methods, which represent the more traditional
approaches, and the more modern data-driven methods.

Experimental methods normally represent offline and laboratory
conducted experiments to accurately determine battery degradation
in accordance with different measurements, such as internal resis-
tance [10,11], impedance [12,13] and capacity levels [14,15]. The
main disadvantages of experimental methods are the time-consuming
nature of the necessary measurements as well as their inability to be
conducted in real-time when estimating SoH.

Model-based methods employ different indicators to construct mod-
els that can accurately describe battery SoH behavior. Commonly em-
ployed techniques include Kalman filters, observers, and equivalent
circuit models (ECM). In [16] the authors demonstrate that the dual
extended Kalman filter commonly used in state of charge (SoC) and
SoH estimation is hampered over the battery lifetime. In [17] the
authors propose a multi-time-scale observer for dual SoC and SoH
estimation. Meanwhile in [18] the authors integrate the effects of
decreasing SoH into an ECM to accurately determine Thevenin parame-
ters. Model-based SoH estimation has proven to achieve high accuracy
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and precision, yet often incurs high computational cost and may be
dependent on a large number of parameters and variables.

Data-driven SoH estimation methods, more specifically machine
learning techniques, look to combine the advantages of both the afore-
mentioned traditional methods. They are inherently dependent on these
traditional methods as they require data, obtained via measurements
or models, to accurately train the estimation models and are therefore
reliant on the quality of this data. Despite this, they have proven to
provide high estimation accuracy as well as simple implementation.
There is a wide range of machine learning techniques being used for
SoH estimation. In [9] the authors highlight support vector machines
(SVM) [19-21], fuzzy logic [22] and artificial neural networks (ANN).
Others such as the regression tree and random forest models are
implemented in [23] with varying degrees of accuracy.

The main focus of this paper is the application of artificial neural
networks for battery state of health estimation. There is a wide variety
of ANN applied in the literature. In [24] the authors propose a dynamic
long short-term memory (D-LSTM) neural network to predict Li-ion
battery remaining useful life (RUL), the sister parameter of SoH that
considers the number of cycles remaining before crossing a certain
SoH threshold, with errors as low as two cycles. Similarly, the authors
of [25] implement a variety of neural networks to predict SoH and RUL
while varying the starting point of different predictions. Lastly in [26]
the authors implement an ANN-based capacity estimation model that
considers only the charging profiles, while also comparing the perfor-
mance of different ANN configurations such as simple feed-forward
neural networks (FNN) and LSTM. This last approach in considering
only the charging parameters serves as the basis for our proposed
model.

In [27], the authors perform a comprehensive review of SoC meth-
ods for Li-ion batteries using Neural Networks; this review is cen-
tered around the characteristics of the ANN employed in different
approaches, the authors analyze more than 100 references; one of the
conclusions drawn by the authors is that, generalizing the results ob-
tained for one type of battery to other types of battery can be achieved
through certain specific methods. Also, in [28] the authors review
a large number of papers centered in SoH modeling; although their
focus is centered on maritime applications, many of their conclusions
and studies can be generalized for other uses; the authors stress the
fact that data availability and quality is key for any machine learning
application.

In this paper we propose a simple battery state of health estimation
model with ANN based on the extraction of features observed in
the battery charging parameters. As with all machine learning-based
approaches, the utilized data performs an important role in both idea
and model conception as well as testing and results analysis. In this case
we employ the NASA Ames PCoE Battery data set [29]. Note that the
authors in [23-26] employ the same data set, which therefore allows
for potential results comparisons. We highlight our main contributions
as follows:

» Larger and more varied data set for training, validating, and
testing model performance as we incorporate a larger number of
batteries from the complete data set, which are also discharged
under different conditions.

« Exploitation of clear and observable patterns in the charging pro-
files with the use of feature extraction which therefore decreases
the amount of input data required.

» The use of smaller and simpler ANN as a result of the need for
less model input data.

This paper is structured into the following sections: Section 2 de-
scribes the problem and the available data set, Section 3 explains
the necessary data analysis and preprocessing, Section 4 presents the
proposed state of health estimation model based on ANN, Section 5
details and discusses the estimation results, and Section 6 presents the
final conclusions.
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Fig. 1. CC-CV charging protocol.

2. Problem statement

State of health represents a commonly employed measurement of
battery degradation but lacks a universally accepted definition. Some
definitions are based on different battery parameters such as internal
resistance, voltage, and self-discharge [30]. The most widely utilized
definition is based on battery capacity and in this paper we define it
as:

SoH (%) = g><100 (€8]
CD

where C, is the initial capacity of the cell and C; is the measured

capacity at cycle i. It is widely accepted that battery end of life (EoL) is

reached once the SoH drops to 70%, at which point performance and

reliability is considered to be insufficient [31].

The main idea behind machine learning-based SoH estimation meth-
ods is that through easily available real-time data we can observe
changes in measured parameters such as voltage and current, and then
accurately infer battery degradation. Specifically, we propose the use
of artificial neural networks to determine battery SoH on a per cycle
basis, which therefore means we need per cycle parameters to train
the network.

As we are proposing the use of a supervised machine learning
technique, the selected battery data set must contain the required state
of health or capacity measurements to train the estimation models.
Therefore, we employ the data set provided by the NASA PCoE [29].
This repository contains data from 34 lithium-ion 18650 cells with
a nominal capacity of 2.0 Ah cycled under varying discharging and
ambient temperature conditions. Each cycle consists of a charge and
discharge process while also including impedance measurements ob-
tained with an electrochemical impedance spectroscopy (EIS). The fixed
charging process consists of a constant current—constant voltage (CC—
CV) protocol in which the battery is charged at a fixed current of 1.5 A
until the cell voltage reaches 4.2 V, at which point it maintains constant
voltage until the cell current drops below 20 mA (Fig. 1).

The main difference between discharging conditions are the varying
currents and cut-off voltages. The repository can be split into different
groups following these criteria. In this paper we propose the use of
different groups of batteries to obtain a more varied data set and thus a
more robust estimation model. Specifically, we employ eight different
batteries from two different groups, referred to in this paper as group
1, discharged at 2 A, and group 2, discharged at 4 A. Both groups are
discharged with constant current (CC) at their respective currents. In
Table 1 we include the different operating conditions for each battery
as well as the number of available cycles. Note that although group
1 provides significantly more cycles, and therefore data, group 2 is
subjected to a more aggressive discharge process at higher current and
temperature.
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Fig. 2. Battery capacities — group 1 (left) & group 2 (right).
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Table 1
Varying conditions of included batteries.
Group Battery Temperature  Available Discharge
No. O cycles Current (A) Cut-off voltage (V)
B0005 24 168 2 2.7
1 B0006 24 168 2 2.5
B0007 24 168 2 2.2
B0018 24 132 2 2.5
B0029 43 40 4 2.0
9 B0030 43 40 4 2.2
B0031 43 40 4 2.5
B0032 43 40 4 2.7

For each cycle included in the data there is a measurement of bat-
tery capacity obtained during the discharge process, which is presented
in Fig. 2. This data represents the degradation per cycle for each cell
in the data set.

3. Data analysis and preprocessing

The battery capacity degradation curves included in Fig. 2 represent
the desired outputs for our proposed estimation model. While we wish
to accurately reflect the present data, we first prepare the data by
removing significant outliers, notably the initial values of group 2.

In Fig. 3 we represent the voltage, current and temperature (V-I-
T) curves of various cycles for one of the batteries included in the
data set (battery No. B0005). Note that while the pattern in these
curves remains constant there is a clear evolution of these curves as the
battery degrades. This change reflects the battery aging process and is
therefore useful for estimating the cell’s SoH as these are measurements
easily available during battery operation. The authors in [26] demon-
strate better performance considering all three parameters versus just
the voltage, with improvements between 25%-58% depending on the
estimation model configuration.

The main advantage in considering only the charging process is that
as all batteries employ the same charging protocol we can easily iden-
tify, extract, and deploy features present in the data for all cells. Note
that the effects of the different discharging conditions are implicitly
considered as these reflect on the evolution of the battery parameters
during charging. Therefore, we propose the use of features to determine
the battery degradation. This represents a simpler and more precise
method than sampling which inevitably leads to redundant data as all
the curves are similar in form.

We initially consider six features present in the V-I-T curves but
finally settle for three features that identify significant points of interest
in the data and enable us to easily observe the variation between cycles.
In Table 2 we include the proposed features and in Fig. 4 the extracted
features are visually presented.
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Fig. 3. Evolution of cell voltage, current and temperature curves during charging
process (battery No. B0005).

Table 2
Feature description.

No. Curve Type Feature description
1 A% Voltage Initial inflection point
2 v/ Time Rise time to 4.2 V /
I Destabilization time from 1.5 A
3 T Time Time to peak value

From the voltage curve we include an initial inflection point whose
value was observed to vary significantly over cycles. Note that the
second feature selected is present both in the voltage as well as the
current curves as this represents the time in which the CC-CV charging
protocol switches from constant current to constant voltage. These
represent the only significant differences in the V-I charging curves
between cycles.

On the other hand, the temperature curves initially show more
promise for feature selection as there are various points of interest.
However, points such as the initial and peak temperatures proved to
not display significant evolution. Finally, we include the time at which
the peak temperature value is obtained.

In Fig. 5 we include the evolution of the proposed features for one
of the selected cells. We apply a light interval correction fixed at +3%
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Fig. 4. Extraction of proposed features (battery No. B0005, cycle No. 1).

to eliminate significant outliers while also maintaining the small vari-
ability in the features as this is also present in the capacity degradation
curves that we wish to accurately estimate. Finally, we normalize these
values between 0-1 to improve estimation model performance.

4. SoH model
4.1. Feedforward neural networks

Feedforward neural networks are a simple and widely used form of
machine learning that have no feedback connections in a multi-layer
structure of interconnected artificial neurons with activation functions.
Their main advantage is their ability to handle and process non-
linear data in such a way that they can easily be combined into more
advanced models [32].

The selection of an appropriate network structure and parameters is
part of the design process for FNN. In this paper we identify potential
configurations via an experimental process of varying different param-
eters and noting the corresponding results. We observe that there is not
an objectively perfect configuration and therefore a criterion based on
simplicity and precision is proposed. The main parameters varied are
as follows:

» Number of layers and neurons. We vary the number of hidden
layers between one and three as well as the number of neurons
per layer between one and nine. Results show little influence in
the parameters, with slightly better results observed for one or
two hidden layers and three to six neurons.

Activation functions. Varying the activation functions of both the
hidden and output layers varied the results more significantly.
While functions such as Tanh and Swish presented unreliable
performance, others such as ReLU (Rectified Linear Unit), Linear
and Sigmoid presented good performance.

We split the available data into training, validation, and test sets.
For training we employ 4 of the available batteries (BO005, B0O006,
B0029, B0030), 2 for validation (B0007, B0031) and finally 2 for test-
ing (B0018, B0032). Note that although we split the data by batteries
to designate the different sets, the respective training and validation
data is shuffled and combined to eliminate any bias from individual
batteries and potential correlations in consecutive cycles. This allows

Journal of Energy Storage 50 (2022) 104584

Table 3
Expert ANN configurations.

Network  No. hidden No. neurons Activation Epochs
layers (HL) per HL functions
No. 1 1 3 Sigmoid 500
Linear
No. 2 1 3 ReLU 500
ReLU
No. 3 2 6/3 ReLU - ReLU 750

Linear

the estimation model to base its predictions solely on the available cycle
data.

To evaluate the training process, we designate a specific metric. In
this study we vary this parameter and find that the best results are
obtained for the mean square error (MSE) metric, defined as:

I gy
MSE = ;w,- ) @)

where y; and y; represent the actual state of health and the estimated
value, respectively, for cycle i out of a total of n cycles. MSE focuses
on larger errors as they are more pronounced due to the square oper-
ation. We also calculate other widely used metrics such as root mean
square error (RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE(%)) [33,34].

For the selection of different configurations, we focus mainly on
the MSE and MAPE(%) results for the validation process while also
considering the average coefficient of determination (R?) for both the
whole set as well as the test set. Unlike metrics, which are measure-
ments of error with an objective to minimize these, the coefficient of
determination represents a measurement of the quality of estimation
models in regression problems. Therefore, the objective is to reach the
maximum value of R?> which is 1. It can be defined as:

RI=1_ Z?:l(J’i - fi)z (3)
Z:lzl(yi - i Z?:l Vi)

In [35] the authors state that the coefficient of determination repre-
sents a more reliable and informative measurement than other widely
used metrics such as MSE and MAPE(%) as it does not present the same
interpretability issues.

4.2. Neural network consensus-based model

In this paper we propose an estimation model based on combining
multiple FNN into a multi-network consensus model. Multiple network
models [36] opt for a combination of simpler neural networks versus
a more complete neural network to handle complex tasks. In this case
the use of a multiple network model can potentially solve erroneous
estimations in single problematic cycles.

In Table 3 we present three different network configurations for
our consensus model. These networks are selected for their varied
configurations as well as their good results during the network design
process. Note the different number of hidden layers and activation
functions.

The proposed framework is presented in Fig. 6. First, we prepro-
cess the available battery data to prepare for feature extraction and
normalization. Then we split the available data into three sets: with
the training data we train the three networks that form our consensus
model and employ more data to validate the model. Finally, we employ
the test data to obtain state of health estimations and evaluate model
performance. Implementation of the framework is done in Python with
the TensorFlow and Keras libraries.
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5. Results and discussion

We compare the performance of our proposed model with a sample-
based approach as presented in [26], in which the authors uniformly
sample the V-I-T charging curves with 10 data points per curve. They
then compare the performance of different artificial neural networks
such as FNN and LSTM. In this case we consider both decreasing and
increasing the number of data points sampled per curve to 5 and 15,
respectively. However, just 5 data points prove to be insufficient while
the performance difference between 10 and 15 points is negligible. The
implementation process is the same as our proposed model, considering
the different network size due to the change in data. After varying
different network parameters and configurations we opt for a FNN with
2 hidden layers with 30 and 15 neurons respectively, as well as Sigmoid
and Tanh activation functions.

We perform SoH estimation for both groups with the same trained
models by combining the data. In Table 4 we present the results for
both the proposed feature-based model and our implementation of the
sampling model presented in [26]. The MSE and MAPE(%) metrics are
calculated from the test set results. We can clearly see that the feature-
based model provides lower estimation errors and higher coefficients
of determination, while the sample-based model results are heavily
worsened by the estimation errors for batteries from group 2. This is
reflected in the estimations for the test batteries B0O018 (group 1) and
B0032 (group 2) in Figs. 7 and 8, respectively.
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Fig. 8. Estimation — test battery B0032 (group 2).

In Fig. 7 the sampling method is capable of identifying the general
trend of the battery’s degradation; however, the estimation presents
high levels of oscillation. On the other hand, the feature-based method
provides a significantly improved estimation that both follows the
general trend and identifies small jumps in the SoH values.

In Fig. 8 the feature-based method again follows the actual SoH
curve closely, identifying all significant variations. However, the sam-
pling method proves to be inadequate for this representative battery
from the second group. This is due to a series of differences between the
groups that simply sampling the data does not distinguish. The reason
that the second group of estimations is more heavily punished than
for the first group is due to the lower number of available cycles with
which to train the models.

In Fig. 9 we present the resulting coefficients of determination for
every battery using the feature-based model. Here we wish to note two
observations. Firstly, note that there is no significant difference in the
results obtained between batteries from group 1 and group 2, meaning
that the proposed feature-based model is capable of generalizing for
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Table 4
SoH estimation results.
Model MSE MAPE (%) R? R? R? R?
(average) (Test) (Group 1 average) (Group 2 average)
Feature 1.9e-4 1.39 0.948 0.946 0.973 0.923
Sampling 0.003 3.565 0.473 0.400 0.858 0.088
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Fig. 9. Estimation results per battery (feature model).

different discharging conditions unlike the sampling method. Secondly,
note that the results from the training, validation and test sets are
comparable and so in this case the model has avoided overfitting,
which is again a sign of good generalization. This is notable despite
the difference in available data: 636 charge-discharge cycles for group
1 versus 160 cycles for group 2.

The use of different metrics and scales in individual publications
makes direct comparison between these difficult. However, one metric
that is not subject to this problem is MAPE(%), which is considered in
this work as well as in [26], where the authors obtain MAPE(%) results
between 1.0321% and 2.8961% depending on the type of ANN used.
Our best result of 1.39% falls within the range of results from [26]. We
consider this to be an excellent result as it is worth noting that firstly we
are employing a much simpler and smaller ANN configuration, owing
to our previous feature extraction, and secondly, we are considering a
wider variety of data as we include two groups of batteries from [29]
discharged under different conditions and not just one single group as
is custom.

6. Conclusion

This paper presents an effective artificial neural network state of
health estimation model based on lithium-ion battery data available
from [29]. In the data preprocessing stage, we identified features
observed from varying patterns in the voltage, current and temperature
profiles during the charging process, which then through artificial
neural networks allow for per cycle estimations. This approach then
allowed us to enlarge the number of batteries, and therefore data,
with which to train our estimation model to eight batteries from two
different sets of discharging conditions as well as allowing us to employ
significantly simpler artificial neural network configurations such as
feedforward neural networks with only one or two layers. We then
compared the performance of our proposed feature-based model with
a similar artificial neural network configuration based on sampling the
same available data. Our approach proved to be both more accurate for
each individual group of batteries as well as being capable of accurately
performing state of health estimation for both groups simultaneously
with a mean absolute percentage error of 1.39% and a coefficient of
determination of 0.946 for the test set. In future work, the proposed
feature-based extraction method could be employed on a larger and

more varied data set as well as allowing for further study into the use
of different supervised learning techniques.

In the work presented here we detail a method that allows us to
estimate the state of health of a battery, provided that we have access
to data regarding charge/discharge measurements of the same type of
battery, we do not claim that our methods are immediately valid for any
other possible chemical composition of the battery. We have presented
results that allow us to conclude that our method is correct, within
these limitations.
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