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a b s t r a c t 

This paper proposes a polynomial-time algorithm to construct the monotone stepwise curve that min- 

imizes the sum of squared errors with respect to a given cloud of data points. The fitted curve is also 

constrained on the maximum number of steps it can be composed of and on the minimum step length. 

Our algorithm relies on dynamic programming and is built on the basis that said curve-fitting task can 

be tackled as a shortest-path type of problem. Numerical results on synthetic and realistic data sets re- 

veal that our algorithm is able to provide the globally optimal monotone stepwise curve fit for samples 

with thousands of data points in less than a few hours. Furthermore, the algorithm gives a certificate 

on the optimality gap of any incumbent solution it generates. From a practical standpoint, this piece of 

research is motivated by the roll-out of smart grids and the increasing role played by the small flexible 

consumption of electricity in the large-scale integration of renewable energy sources into current power 

systems. Within this context, our algorithm constitutes an useful tool to generate bidding curves for a 

pool of small flexible consumers to partake in wholesale electricity markets. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In this paper, we deal with the problem of how to fit a curve 

o a given cloud of data points under the conditions that the fit- 

ed curve must be non-increasing (or non-decreasing) and piece- 

ise constant (or, equivalently, stepwise ), with a predefined limited 

umber of pieces (also referred to as steps or blocks in what fol- 

ows). This problem is inspired by the bidding rules that large con- 

umers or a pool of small consumers must comply with when par- 

icipating in an electricity market. Their bids for purchasing elec- 

ricity in these markets must be often submitted in the form of 

 non-increasing stepwise price-consumption curve, for which the 

aximum number of bid blocks is also constrained. These curves 

eflect how consumers value electricity and therefore, their sensi- 
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ivity to its price (which is referred to as consumers’ elasticity), 

ee, for instance, Su and Kirschen [28] . Furthermore, beyond its 

se for market bidding, the consumers’ sensitivity to the electric- 

ty price constitutes essential information for the design of tar- 

ff schemes and demand response programs (Grimm et al. [10] , 

oares et al. [27] , Zugno et al. [31] ). Indeed, with the advent of

nformation and Communications Technologies and the roll-out of 

he so-called smart grids , small consumers of electricity are being 

rovided with the means to actively adjust their consumption in 

esponse to the electricity price. However, their consumption pat- 

erns are still uncertain, dynamic and affected by other factors dif- 

erent from the electricity price. The result is that estimating a bid- 

ing curve that properly reflects consumers’ price-sensitivity is a 

tatistical challenge. This paper provides an algorithm to efficiently 

ompute that curve from a set of price-consumption observations. 

Beyond the practical context that inspires this piece of research, 

ur work is closely related to various thrusts of research or the- 

atic areas that also motivate it, namely: 

Statistical regression . We desire to fit a monotonically decreas- 

ing curve to a given cloud of data points, while satisfying 

the following two extra conditions: i) The fitted curve must 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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be piecewise constant and ii) there is a maximum number 

of pieces the fitted curve can be comprised of. While the 

literature review includes a wealth of research papers ana- 

lyzing related concepts and tools such as isotonic regression 

(see, e.g., Mair et al. [17] , Tibshirani et al. [30] , and refer-

ences therein), segmented regression (Muggeo [20] ), and the 

popular multivariate adaptive regression spline (Friedman [9] ), 

these regression techniques produce fitted curves that fail to 

satisfy at least one of the conditions mentioned above. Fur- 

thermore, they are frequently based on iterative, greedy or 

heuristic algorithms. Indeed, the fitted response of the iso- 

tonic regression is a monotone piecewise constant function 

(although efficient algorithms to produce smooth continuous 

functions are also available, see, e.g., Sysoev and Burdakov 

[29] ), but is not limited in the number of pieces it may be

comprised of. For its part, segmented regression leads to 

curve fits that are not necessarily monotone. Against this 

background, we propose an exact shortest-path algorithm 

that is capable of delivering, in polynomial time, the mono- 

tone stepwise curve (with a maximum of K steps) that con- 

stitutes the globally optimal data fit according to the least- 

squares criterion. 

We remark that, as pinpointed in Lerman [16] , the stepwise 

shape of the target curve releases the fitting process from 

the continuity condition at the breakpoints that is typically 

enforced in segmented regression, thus making it computa- 

tionally easier. On the other hand, we additionally impose 

that the fitted curve be non-increasing, which adds an ex- 

tra layer of complexity to the regression problem at hand. 

Actually, to our knowledge, the works that are the closest 

to ours are those of Hawkins [14] and Dahl and Realfsen 

[5] . In the former, they describe a dynamic programming ap- 

proach to perform segmented regression over a sequence of 

observations with at most K segments and no continuity re- 

quirement at the transition points. Dahl and Realfsen [5] of- 

fer an interesting computational perspective on this same 

problem, which they pose as a cardinality-constrained short- 

est path problem over a restricted class of acyclic-directed 

graphs known as 2-graphs and for which they propose sev- 

eral solution algorithms. Our approach, in contrast, works 

with generic acyclic-directed graphs (which do not need to 

be 2-graphs), that is, we allow for arcs between any pair of 

nodes i and j, with the only condition that i > j in the topo- 

logical order induced by the acyclicity of the graph. Further- 

more, neither Hawkins [14] , nor Dahl and Realfsen [5] con- 

sider any monotonicity constraint, which is, though, critical 

to our problem (seen as an extension or generalization of 

isotonic regression) and to the practical application that mo- 

tivates it. 

Finally, we mention that Rote [24] uses dynamic program- 

ming for isotonic regression, but, again, with no constraint 

on the number of pieces the fitted curve can be made up of. 

Inverse optimization . Recently, inverse optimization has 

emerged as a promising mathematical framework to infer 

the input parameters to an optimization problem that have 

given rise to a series of optimal (or quasi-optimal) solu- 

tions (Ahuja and Orlin [1] , Chan et al. [4] , Esfahani et al.

[6] ). In the last few years, inverse optimization has been 

widely used to infer consumers’ utility from a certain prod- 

uct (Aswani et al. [2] , Keshavarz et al. [15] ), in particular, 

electricity (Saez-Gallego and Morales [25] , Saez-Gallego et al. 

[26] ). Essentially, it is often assumed that the market behav- 

ior of a pool of (rational) electricity consumers is driven by 

the following maximization problem 

Maximize 
x ≥0 

∫ x 

b(s ) ds − px 

0 

2 
where px is the payment the pool of consumers has to 

make for purchasing x units of electricity in the market at 

price p, and b(·) is the so-called bidding curve expressing 

the response of the consumers to the electricity price. Many 

electricity markets around the world require that this bid- 

ding curve be non-increasing and stepwise, with a maxi- 

mum number of steps. Dealing with this problem by way 

of inverse optimization involves estimating the step function 

values of this curve and the breakpoints from a series of 

observed pairs { ( ̂  p i , ̂  x i ) } I i =1 
. As highlighted in Aswani et al. 

[2] , however, the available estimation approaches based on 

inverse optimization may result in statistically inconsistent 

estimators or require the reformulation of the problem as 

a bilevel (NP-hard) problem. In this regard, Aswani et al. 

[2] propose a statistically consistent polynomial-time semi- 

parametric algorithm to tackle a certain class of inverse op- 

timization problems. Nevertheless, the regression problem 

we address here, when seen from the lens of inverse opti- 

mization, does not comply with the conditions that ensure 

the statistical and polynomial-time performance of their al- 

gorithm, because some of the parameters to be estimated, 

specifically, the breakpoints, appear in the constraints defin- 

ing the feasible region of the forward problem. In contrast, 

we propose an algorithm that directly solves the statistically 

consistent formulation of the problem to optimality in poly- 

nomial time. 

Unsupervised learning . The problem we address in this pa- 

per can be also interpreted as a clustering problem through 

which a series of observed pairs { ( ̂  p i , ̂  x i ) } I i =1 
are grouped in

such a way that: 

(a) There is a maximum number of clusters K into which the 

data points can be grouped into. 

(b) The resulting clusters must satisfy some connectivity 

constraints. In our particular case, these connectivity 

constraints impose that only clusters with adjacent prices 

ˆ p i can be merged together (see, e.g., Guo [11] ). 

(c) If (p ∗m 

, x ∗m 

) and (p ∗n , x ∗n ) are the centroids of clusters m

and n, respectively, then x ∗m 

≥ x ∗n ⇐⇒ p ∗m 

≤ p ∗n in order 

to guarantee a non-increasing curve. 

The technical literature includes some works in which struc- 

tured clustering is used in power system applications. For 

instance, Pineda and Morales [23] propose a hierarchical 

clustering methodology to approximate time series that are 

used to determine the optimal expansion planning of the 

European electricity network. Due to the usual NP-hard na- 

ture of clustering methods, the clusters are often obtained 

through computationally efficient greedy algorithms. How- 

ever, to the best of our knowledge, the technical literature 

does not report any clustering methodology that simultane- 

ously satisfies the three conditions specified above. There- 

fore, our work also contributes to the realm of structured 

data clustering. 

he rest of this paper is organized as follows. In Section 2 , 

e formulate the curve-fitting problem that we aim to solve. 

ection 3 introduces the solution algorithm we propose to 

hat end, which is based on dynamic programming and, more 

pecifically, on the cardinality-constrained shortest path problem. 

ection 4 provides various strategies to accelerate said algorithm, 

hose performance is subsequently tested in Section 5 using syn- 

hetic data sets and a data set coming from a real-life practical ap- 

lication. Lastly, conclusions are duly drawn in Section 6 . 
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. Problem definition 

Consider a given set of pairs of points on the real plane 

 ( ̂  p i , ̂  x i ) } I i =1 
. Without loss of generality, we assume that ˆ p 1 < ˆ p 2 <

 . . < ˆ p I , while the set of indexed coordinates { ̂  x i } I i =1 
may not ex- 

ibit any particular order. Let F be the class of real functions 

f : [ ̂  p 1 , ˆ p I ] → R that are non-increasing and piecewise constants, 

ith at most K blocks or steps, K ∈ Z + . We seek to solve the fol-

owing least-square minimization problem, hereinafter referred to 

s LSP : 

LSP) min 

f∈F 

I ∑ 

i =1 

(
ˆ x i − f ( ̂  p i ) 

)2 
(1) 

 function f member of the class F can be expressed as 

f (p) = 

K ∑ 

k =1 

u k I [ p k ,p k +1 ) 
(p) (2) 

here I [ p k ,p k +1 ) 
(p) is the indicator function equal to 1 if p k ≤ p <

p k +1 , and 0 otherwise. Again without loss of generality, we set 

p 1 = ˆ p 1 and use p K+1 = ˆ p I+1 > ˆ p I as a dummy p-coordinate to 

uarantee that all ˆ p i are covered by the solution. Besides, u 1 � 

 2 � . . . � u K � 0 represent the step values of the blocks. We re-

ark that functions f ∈ F with less than K blocks can be also rep- 

esented in this way, since two consecutive blocks are allowed to 

ave the same function value. 

Using this characterization of the class of functions F and tak- 

ng p 1 = ˆ p 1 and p K+1 > ˆ p I a dummy price coordinate as mentioned 

bove, problem (1) can be recast as follows. 

in 

u , p 

I ∑ 

i =1 

( 

ˆ x i −
K ∑ 

k =1 

u k I [ p k ,p k +1 ) 
( ̂  p i ) 

) 2 

(3a) 

.t. u k � u k +1 , ∀ k � K − 1 (3b) 

p k +1 � p k , ∀ k � K (3c) 

Determining the breakpoints { p k } K k =2 
, which are needed to 

ompute the indicator functions appearing in the objective func- 

ion (3a) , constitutes the major source of complexity in prob- 

em (3). Constraint (3b) , which enforces the non-increasing char- 

cter of the fitted curve, also adds another layer of difficulty to the 

election of those breakpoints. The easiest task in problem (3) is to 

ompute the values u k that minimize the squared error (3a) for a 

iven set of intervals [ p k , p k +1 ) . In the following section, we intro-

uce a shortest path algorithm through which we can solve prob- 

em (3) in polynomial time. 

. Resource constrained shortest-path algorithm 

We begin by demonstrating that problem (3) (and hence, 

roblem LSP) can be equivalently reformulated as a cardinality- 

onstrained shortest-path problem. The equivalence stems from 

he evidence that the optimal breakpoints are within the p- 

oordinates of the cloud of points { ( ̂  p i , ̂  x i ) } I i =1 
. 

.1. Properties and problem reformulation 

For a function f ∈ F , the objective function value of Problem 

3) can be rewritten as: 

K 
 

k =1 

∑ 

i : p k ≤ ˆ p i <p k +1 

( ̂  x i − u k ) 
2 (4) 
o

3 
The following lemma shows that we can restrict the search of 

reakpoints to the set of p-coordinates of the data set. 

emma 1. There exists an optimal solution u 

∗, p 

∗ to Problem (3) such 

hat, for all k = 1 , . . . , K, p ∗
k 

∈ { ̂  p i : 1 ≤ i ≤ I + 1 } . 
roof. Let ˆ p i be the smallest p-coordinate of a data point larger 

han or equal to p ∗
k 
. Replacing p ∗

k 
by ˆ p i does not change the value

f the objective function. �

The following proposition shows that we can also re- 

trict the set of optimal step sizes. For a block limited by 

ˆ p i and ˆ p j such that i < j, AV ( ̂  p i , ˆ p j ) , represents the average

f the x -coordinates of the data points belonging to that 

lock, i.e., AV ( ̂  p i , ˆ p j ) = ( 
∑ 

i ≤h< j ˆ x h ) / ( j − i ) . Further, let ER ( ̂  p i , ˆ p j ) =
 

i ≤h< j ( ̂  x h − (AV ( ̂  p i , ˆ p j )) 
2 . 

roposition 1. An optimal solution to Problem (3) is constituted of at 

ost K 

′ blocks, K 

′ ≤ K, with breakpoints p ∗
k 

∈ { ̂  p i : 1 ≤ i ≤ I + 1 } and

tep values u ∗
k 

such that: 

1. u ∗
k 

> u ∗
k +1 

, for k = 1 , . . . , K 

′ − 1 , 

2. u ∗
k 

= AV (p ∗
k 
, p ∗

k +1 
) , 

3. its objective value for (4) is equal to 
∑ K ′ 

k =1 ER (p ∗
k 
, p ∗

k +1 
) . 

roof. Consider an optimal solution of problem (3) represented by 

reakpoints { p ∗
k 
} K 

k =1 
and step values { u ∗

k 
} K 

k =1 
. Each time that two

onsecutive blocks, say k ′ and k ′ + 1 , have the same function value,

.e., u ∗
k ′ = u ∗

k ′ +1 
, we can merge them and reduce the number of 

locks. Consequently, this optimal solution can be described by 

 

′ blocks, with K 

′ ≤ K, such that u ∗
k 

> u ∗
k +1 

, for k = 1 , . . . , K 

′ − 1 .

iven that this solution is globally optimal, it must be locally op- 

imal too, i.e., u ∗
k 

must minimize the contribution of block k to (4) .

n other words, 

 

∗
k ∈ arg min 

u k 
{ ∑ 

i : p ∗
k 
≤ ˆ p i <p ∗

k +1 

( ̂  x i − u k ) 
2 : u 

∗
k +1 ≤ u k ≤ u 

∗
k −1 } 

 

∗
k ∈ { AV (p ∗k , p 

∗
k +1 ) , u 

∗
k −1 , u 

∗
k +1 } , (5) 

here AV (p ∗
k 
, p ∗

k +1 
) represents the average value of the coordinates 

ˆ  i of data points such that p ∗
k 

≤ ˆ p i < p ∗
k +1 

. Given that the step val- 

es are all different, it follows that u ∗
k 

= AV (p ∗
k 
, p ∗

k +1 
) . 

Further, the contribution of block k to the total error given by 

4) is equal to 

R (p ∗k , p 
∗
k +1 ) = 

∑ 

i : p ∗
k 
≤ ˆ p i <p ∗

k +1 

( ̂  x i − (AV (p ∗k , p 
∗
k +1 )) 

2 (6) 

�

We remark that a similar reasoning applies if we consider the 

east absolute error (that is, the minimization of the sum of ab- 

olute values of errors), instead of the least squares. In that case, 

t suffices to replace the average value of the ˆ x i -coordinates of the 

ata points such that p ∗
k 

≤ ˆ p i < p ∗
k +1 

with their median . 

The above two properties allow to translate problem (3) into a 

hortest path problem with resource constraints on a particular di- 

ected graph G = (V, A ) with vertex set V = { v i : 1 ≤ i ≤ I + 1 } and

dge set A = { (v i , v j ) : 1 ≤ i < j ≤ I + 1 } . 
orollary 1. Problem (3) is equivalent to finding a minimum cost 

ath from v 1 to v I+1 in graph G with two types of resource con- 

traints: 

1. the number of arcs in the path is at most K, 

2. for any two consecutive arcs (v i , v j ) and (v j , v h ) in the path,

AV ( ̂  p i , ˆ p j ) > AV ( ̂  p j , ˆ p h ) . 

roof. Each arc (v i , v j ) corresponds to a block [ ̂  p i , ˆ p j ) with step

alue AV ( ̂  p i , ˆ p j ) and cost c(v i , v j ) = ER ( ̂  p i , ˆ p j ) . Hence, there is a

ne-to-one correspondence between the paths in G from v 1 to v I+1 
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Algorithm 1 Shortest path algorithm for LSP. 

1: Initialization: N 1 = { (0 , 0 , max i ∈ I ˆ x i + 1) } , INC = UB 

2: for i ∈ { 1 , . . . , I} do 

3: while N i � = ∅ do 

4: Select π ∗ ∈ arg min � (π ) ∈ N i { c(π ) } and remove � (π ∗) from 

N i 

5: if c(π ∗) > INC then 

6: N i = ∅ 
7: else if c(π ∗) + c(v i , v I+1 ) < INC and AV (p i , p I+1 ) < st(π ∗) 

then 

8: P RED (OP T IMAL − PAT H) = π ∗, INC = c(π ∗) + c(v i , v I+1 ) 

9: end if 

10: if k (π ∗) < K − 1 then 

11: for h ∈ i + 1 , . . . , I do 

12: if AV (p i , p h ) < st(π ∗) and c(π ∗) + c(v i , v h ) + 

LB (v h , k (π ∗) + 1 , AV (p i , p h )) < INC then 

13: new = (c(π ∗) + c(v i , v h ) , k (π ∗) + 

1 , AV (p i , p h )) , P RED (new ) = π ∗

14: if new / ∈ N h then 

15: Add label new to N h if it is not dominated. 

16: Delete all dominated labels. 

17: end if 

18: end if 

19: end for 

20: end if 

21: end while 

22: end for 

o

t

F

t

t  

l

O

n

u

s  

t

4
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u

w

p

4

a

b

t

O

f

nd the set of stepwise functions with breakpoints in { ̂  p i : 1 ≤ i ≤
 + 1 } . Adding the two conditions of the corollary ensures that the

unction is decreasing and contains at most K blocks. �

.2. Dynamic programming solution approach 

As previously mentioned, to obtain feasible solutions to LSP, we 

ust impose two resource constraints. The first one consists in set- 

ing an upper bound K on the numbers of arcs of a path and the 

econd one excludes the presence of consecutive arcs with increas- 

ng step values in a path. 

The standard approach for solving such a problem consists in 

sing dymamic programming to construct the path from v 1 to v I+1 

rogressively, see e.g. Feillet et al. [7] . The procedure contains I it- 

rations and at iteration i, partial paths ending in vertex v i ∈ V ′ are

xtended by adding one arc (v i , v j ) . 
Further, a label l(π ) is associated to each feasible partial path 

from v 1 to v i ∈ V ′ specifying the consumption of the resources. 

ere the label is a triplet l(π ) = (c(π ) , k (π ) , st(π )) , where c(π )

enotes the total error of the partial path, k (π ) its number of arcs 

nd st(π ) the step value of the block corresponding to the last 

rc of the partial path. On the one hand, the label allows to check 

hether extending a path π ending in v i by an arc (v i , v j ) is fea-

ible since we need that k (π ) ≤ K and st(π ) > AV ( ̂  p i , ˆ p j ) . On the

ther hand, dominance between partial paths ending in a same ver- 

ex can be exploited. 

efinition 1. Given two partial paths π and π ′ , both ending 

n v j , π dominates π ′ if c(π ) ≤ c(π ′ ) , k (π ) ≤ k (π ′ ) and st(π ) ≥
t(π ′ ) , with at least one strict inequality. 

If path π ′ is dominated by some other path, it cannot be part 

f a feasible path from v 1 to v I+1 that has a strictly better total er-

or. In consequence, all along the execution of the algorithm, we 

nly need to consider the partial paths with different and non- 

ominated labels. This implies that LSP can be solved in polyno- 

ial time. 

roposition 2. An optimal solution to LSP can be found in O(KI 3 ) 

ime by solving it as a resource-constrained shortest path problem 

ver graph G . 

roof. Each vertex v i can be reached by a partial path with at most

arcs and the last of these arcs can be associated with at most i −
 different step values, namely, AV ( ̂  p j , ˆ p i ) , with j = 1 , 2 , . . . , i − 1 .

ence, the number of different non-dominated partial paths end- 

ng in vertex v i is in O(KI) . Besides, the number of arcs with v i as

he origin vertex is in O(I) . Consequently, the number of new can- 

idate partial paths generated at iteration i is in O(KI 2 ) and the 

verall complexity of the algorithm is thus O(KI 3 ) . �

Conveniently, we may also take advantage of upper and lower 

ounds to accelerate the search for the optimal path. Indeed, let 

NC be the value of a feasible solution to LSP obtained either in 

ome previous iteration of the algorithm or by some other means. 

onsider a partial path π ending in v i and let LB (v i , k (π ) , st(π ))

e a lower bound on the cost of a partial path from v i to v I+1 with

t most K − k (π ) arcs, non-increasing step values and smaller than 

t(π ) . If c(π ) + LB (v i , k (π ) , st(π )) ≥ INC, then the partial path π
an be directly discarded. 

A quick valid lower bound can be obtained by relaxing either 

he condition on the maximum number of arcs or the constraint 

n the monotonicity of the step values. In the former case, the 

roblem boils down to an isotonic regression problem on the data 

oints { ( ̂  p j , ̂  x j ) } I j= i . In the latter, it is a lighter shortest path prob-

em from v i to v I+1 in G with at most K − k (π ) arcs. 

The whole procedure is described in Algorithm 1 in which N i 

epresents the set of labels in the form � (π ) = (c(π ) , k (π ) , st(π ))
4 
f different and non-dominated partial paths ending in v i and UB is 

he initial upper-bound value determined as explained in Section 4 . 

urther, P RED (π ) is used to store the “predecessor” of π, which is 

he partial path, say π ′ , that has been extended by one arc to ob- 

ain π . Each time that a new path from v 1 to v I+1 with an objective

ower than that of the incumbent solution is found, the variable 

P T IMAL − PAT H is updated by storing the predecessor of the last 

ode v I+1 . Once the algorithm terminates, this information allows 

s to reconstruct the optimal path backwards from v I+1 to v 1 by 

tarting with P RED (OP T IMAL − PAT H) . This way, the optimal solu-

ion to LSP is eventually retrieved. 

. Acceleration strategies 

Despite the fact that LSP can be solved in polynomial time, 

omputing the optimal solution can be expensive for realistic in- 

tances. The overall solution time relies heavily on how tight the 

pper bound INC and the lower bounds LB (·) are. In this section 

e discuss strategies to find good bounds that are easy to com- 

ute. 

.1. Computing an upper bound: combining isotonic regression with 

djacency-constrained data clustering 

Feasible solutions for problem (1) provide us with an upper 

ound on the optimal error that can help us reduce the computa- 

ional burden of the shortest path problem presented in Section 3 . 

ne efficient procedure to compute a tight upper bound runs as 

ollows: 

1. We use isotonic regression to fit a monotone stepwise function 

to the original data set. However, one should expect the num- 

ber of blocks of this fit to be higher than K. 

2. We reduce the number of blocks of the output of the isotonic 

regression to K by grouping the consumption values of the iso- 

tonic fit into K clusters. For this purpose, we use the fast greedy 
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Fig. 1. Algorithm to compute a feasible solution and an upper bound to the minimum error. 
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algorithm proposed in Pineda and Morales [23] for adjacency- 

constrained hierarchical clustering. 

3. The step value is computed as the average consumption of the 

isotonic fit values within each of the K clusters obtained in the 

previous point. 

The procedure above yields a monotone stepwise function with 

pieces that is a feasible solution to LSP. This methodology is de- 

icted in Fig. 1 , with each subfigure representing one of the actions 

escribed above, from left to the right. We implement the calcula- 

ion of the so-obtained upper bound on Python, using the isotonic 

egression and the agglomerative clustering functions of package 

cikit-learn , see Pedregosa et al. [22] . 

.2. Computing a lower bound 

Lower bounds are useful in several ways. First, as we discussed 

n Section 3 , they prevent the shortest-path algorithm from creat- 

ng sub-optimal labels. To do so, it is necessary to compute lower 

ounds for each partial path π . Depending on the method, this can 

e computationally expensive. Second, lower bounds give a guar- 

ntee of how far any feasible solution is from the optimal one. We 

btain these lower bounds by relaxing either the constraint on the 

umber of blocks/arcs or the monotonicity constraint of the fitted 

urve. 

Relaxing the constraint on the number of arcs in the path: the iso- 

onic fitted curve 

When the number of blocks is not limited, problem LSP is 

quivalent to the well-known isotonic fit, (Fielding [8] ). Isotonic 

egression can be solved in linear time (Best and Chakravarti [3] ). 

iven the efficiency of this method, we generate lower bounds for 

ny partial path π by computing one lower bound for each ver- 

ex v i . In other words, we calculate LB (v i , k (π ) , st(π )) as LB (v i ) for

ach partial path π . The total time to compute this lower bound 

or all v i is in O (I 2 ) . We use the isotonic regression function imple-

ented in the Python package Scikit-learn to this end (Pedregosa 

t al. [22] ). 

Relaxing the monotonicity constraint As mentioned in Section 3 , 

nother lower bound can be obtained by relaxing the monotonic- 

ty constraint on the step values. Then, for a given partial path π, 

 lower bound can be computed by solving a shortest path prob- 

em with at most K − k (π ) arcs from v i to v I+1 in G 

′ . One can de-

ermine the fitting error associated with the shortest paths from 

ll vertices v i to the sink v I+1 and containing at most k arcs, for

ll k = 1 , . . . , K, with dynamic programming. The corresponding to- 

al computing time is in O (K| A | ) = O (KI 2 ) (essentially, if we dis-

egard the monotonicity constraint, our problem translates into a 
5 
tandard cardinality-constrained shortest problem whose compu- 

ational complexity is known to be in O(K| A | ) , with | A | = O(I 2 ) in

ur case). 

In terms of implementation, to relax the monotonicity con- 

traint is equivalent to suppressing the third component st of each 

abel and the corresponding monotonicity conditions in line 7 and 

2 in Algorithm 1 . In particular, for the path that corresponds to 

he initial label (0,0) and contains the single vertex v 1 , this short- 

st path problem returns a lower bound on the minimum fitting 

rror. In that case, besides, if the resulting function turns out to be 

on-increasing, then it must be optimal to LSP. 

We end this subsection with a remark on the so modified al- 

orithm: The minimum cost computed over all the partial paths 

eaching a layer i in the modified algorithm is a lower bound 

n that very same cost in the original Algorithm 1. Consequently, 

e can get an even tighter lower bound by running Algorithm 1 

ith the monotonicity constraint dropped and with LB (v h , k (π ∗) + 

 , AV (p i , p h )) in line 12 of the pseudocode given by the isotonic

t. The total cost at termination does not necessarily correspond 

o the fitting error of the optimal, possibly non-monotone, step- 

ise curve, but it is a still valid lower bound on the cumulative 

rror of LSP. This is indeed the lower bound (obtained from drop- 

ing the monotonicity constraint on the optimal fitted curve) that 

e will consider in the numerical experiments below. 

.3. Imposing constraints on the length of steps 

In some cases, it may be interesting and practically useful to 

mpose constraints on the length of the function blocks, i.e., to re- 

trict the set of functions F to decreasing stepwise functions with 

 step length bigger than step_min . This is equivalent to adding 

he following set of constraints to model (3): 

tep _ min ≤ p k +1 − p k , ∀ k ≤ K (7) 

Moreover, Algorithm 1 can still be used after removing from the 

rc set A all (v i , v j ) for which the corresponding p-coordinates vi- 

late condition (7) . As a result, the number of operations to com- 

ute the optimal solution to LSP decreases. We show the impact of 

mposing this type of constraint experimentally in the next section. 

We remark that the upper bound described in Section 4.1 may 

o longer be feasible after enforcing the constraint on the mini- 

um step length. Nevertheless, if that is the case, we can always 

radually decrease K in the algorithm outlined in that section until 

 valid upper bound is eventually recovered. 
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Fig. 2. Synthetic data for different noise levels. 

Table 1 

Stepwise characterization of the true relationship between the response 

x and the covariate p. 

k − th block [ p ∗
k 
, p ∗

k +1 
) u ∗

k 

1 [0,12) 100 

2 [12,30) 115 

3 [30,35) 102 

4 [35,45) 93 

5 [45,50) 72 

6 [50,60] 50 
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Table 2 

Impact of data noise. 

I σ K Error T ISO (s) T RLX (s) T NOB (s) 

1000 0 6 28081 110 164 13053 

1000 1 6 27491 647 837 > 43200 

1000 2 6 30716 1296 1569 39205 

1000 3 6 35320 441 644 33675 

1000 4 6 41852 1258 1501 41128 

1000 5 6 52919 1038 1177 37186 

1000 6 6 64416 1400 1547 > 43200 

1000 7 6 67985 1222 1447 > 43200 

1000 8 6 102860 1998 2346 > 43200 

1000 9 6 113847 1570 1903 42156 

1000 10 6 123856 1162 1143 32689 

fi
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. Numerical experiments 

Next we run a series of numerical experiments to test the ef- 

ectiveness and performance of the proposed algorithm under dif- 

erent settings. To this end, we first use synthetic data sets to as- 

ess the sensitivity of the algorithm performance to the maximum 

umber of steps, the noise level in the input data and the sam- 

le size. Subsequently, we consider a realistic data set consisting 

f price-power measurements at the main substation of a distri- 

ution power grid that includes distributed energy resources. This 

ata can be download from [21] . 

All the numerical experiments have been conducted on a lap- 

op equipped with a Intel Core i5-4200 CPU processor, with 2.80 

igahertz 2-core, and 8 gigabytes of RAM memory. The operating 

ystem is 64-bit Windows 8.1. Codes were implemented in Python 

.8. 

.1. Synthetic data sets 

We first test our algorithm and the effectiveness of the acceler- 

tion strategies described above on a controlled experiment, where 

e know the true data-generating distribution. More specifically, 

he response variable x is given by 

 = f ∗(p) + ε (8) 

here ε is a Gaussian noise of zero mean and standard deviation 

and f ∗ is the stepwise function depicted in Fig. 2 , that is, 

f ∗(p) = 

6 ∑ 

k =1 

u 

∗
k I [ p 

∗
k 
,p ∗

k +1 
) (p) (9) 

ith u ∗
k 

and [ p ∗
k 
, p ∗

k +1 
) , k = 1 , . . . , 6 , provided in Table 1 . 

Notice that f ∗ is a stepwise function made up of six blocks of 

ifferent sizes. Furthermore, f ∗ is neither increasing, nor decreas- 

ng in its entire domain. For illustration purposes, Fig. 2 a and b 

lot 10 0 0 data points { ( ̂  p i , ̂  x i ) } I i =1 
randomly generated for two dif-

erent noise levels, namely, σ = 5 and σ = 10 , respectively. Both 
6 
gures also include the true function (9) to compute the response 

ariable x . 

Next, we run our shortest path algorithm using datasets of 10 0 0 

oints that are randomly generated from (8) for a noise level σ
aking the values of the natural numbers between zero and ten. 

esides, the number of arcs K is set to six, which is the true num- 

er of blocks of the function that relates the response variable x to 

he covariate p. Results for all these cases are collated in Table 2 

nd include the aggregated square error (Error) and three different 

omputational times (with a maximum value of 12 h): 

- T ISO : Computational time of the proposed shortest path algo- 

rithm including the upper bound discussed in Section 4.1 and 

the lower bound per layer provided by the isotonic fit. 

- T RLX : This computational time is obtained as follows. Let T W / O 

denote the time needed to run the proposed shortest path algo- 

rithm without the monotonicity constraint , but including the up- 

per bound discussed in Section 4.1 and the lower bounds (one 

per layer) provided by the isotonic regression fits. As mentioned 

in Section 4.2 , the cost of this shortest path constitutes a valid 

lower bound on the cumulative fitting error associated with the 

optimal monotone curve. Actually, if this shortest path leads to 

a nonincreasing curve, then this is the optimal one. In this case, 

we set T RLX = T W / O (because the optimal fit has been found). 

Otherwise, we need to rerun our algorithm with the monotonic- 

ity constraint back in force, and therefore, we set T RLX = T W / O + 

T ISO . 

- T NOB : Computational time of the proposed shortest path algo- 

rithm if no acceleration strategies are employed. 

By comparing the computational times T NOB and T ISO of Table 2 , 

e can conclude that the use of the proposed upper and lower 

ounds has a tremendous impact on the ability of the algorithm 

o quickly identify the globally optimal curve to be fitted. Besides, 

hese results also reveal that our algorithm is robust to the level of 
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Fig. 3. Illustration of the various bounds and the optimal solution for the synthetic data with noise σ = 10 and K = 6 . 
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oise, since the computational time T ISO is relatively stable as noise 

ncreases. Finally, the lower bound provided by the relaxation of 

he monotonicity constraint is, nevertheless, of little value for this 

nstance, in which T RLX is higher than T ISO for most noise levels. 

e will see, however, that this lower bound can be useful when 

he data features a sufficiently marked monotonic layout. 

In order to better understand the intuition behind the ac- 

eleration strategies described in Section 3 and their impact on 

he computational time of the shortest path problem proposed in 

ection 4, Fig. 3 displays the following: 

- Top left plot: The curve provided by the isotonic regression. As 

observed, the isotonic fit is non-increasing, but the number of 

steps is higher than K = 6 . Therefore, the aggregated squared 

error associated with this curve can be used to lower-bound 

the optimal solution. 

- Bottom left plot: The curve obtained through the adjacency- 

constrained hierarchical clustering technique using the isotonic 

fit as input. The number of blocks is equal to six and the mono- 

tonic condition is also satisfied. Therefore, this curve represents 

a feasible solution in LSP and its accrued squared error is a 

valid upper bound of the optimal objective function value. 

- Top right plot: The curve computed by the relaxed shortest 

path algorithm without the monotonicity constraint. The num- 

ber of blocks is also equal to six, but the curve is not mono- 

tone. Therefore, the corresponding aggregate squared error can 

also be used as a lower bound. 

- Bottom right plot: The global optimal solution obtained by the 

proposed shortest path algorithm. 

Interestingly, the optimal solution of this particular instance co- 

ncides with that resulting from the combination of the isotonic 

egression and the structured hierarchical clustering. Furthermore, 

he lower bound provided by the isotonic fit is notoriously tight, 

hich is, most likely, the reason behind the good performance ex- 

ibited by our algorithm. Notice that the lower bound achieved by 

elaxing the monotonicity constraint is significantly less tight than 

he one given by the isotonic regression fit. 
7 
To further illustrate how the proposed bounds can accelerate 

he solution of the shortest path algorithm, Fig. 4 shows the time 

pent per iteration by our algorithm for noise levels σ = 0 , 5 and 

0. In this figure, the dashed plots refer to the raw implementa- 

ion of the algorithm, i.e., with no bounds; the dotted lines cor- 

espond to the version of the algorithm where only the proposed 

pper bound is used; finally, the solid plots provide the time our 

lgorithm spends per iteration when both the lower and the upper 

ounds are exploited. 

It is apparent that using bounds in the proposed methodology 

as a remarkable beneficial effect on the algorithm performance, 

o such an extent that the joint use of both bounds manages to 

mmunize the algorithm against the noise. Indeed, our upper and 

ower bounds noticeably reduce the number of labels that Algo- 

ithm 1 generates in the intermediate layers of the graph. In the 

imiting case where there is no noise, both the upper and the 

ower bounds coincide with the optimal fit and no intermediate la- 

el is generated at all, thus taking a marginal amount of time per 

teration. As the noise level is increased, more and more intermedi- 

te labels are to be handled, which essentially tells us that the op- 

imization underlying the regression problem becomes harder and 

arder to perform. Furthermore, as can be inferred from the plots 

f Fig. 4 , the inclusion of the upper bound only is not enough to

eep the computational burden of our algorithm per iteration low, 

ecause of the high amount of labels that are produced in the first 

ayers of the graph. It is the synergistic effect of the lower and up- 

er bounds which prevents the number of labels in the early stages 

f our algorithm from exploding. 

In what follows, we omit computational time T NOB , since it has 

ecome clear that our algorithm runs much faster when combined 

ith the proposed acceleration strategies. 

Now we fix the noise level σ to five and change the sample size 

nstead. Still we have K = 6 . The comparison results of T ISO and

 

RLX for this new experiment are collated in Table 3 . Naturally, the 

ggregate squared error and the solution times increase with the 

ample size I. However, our algorithm appears to scale relatively 

ell, given its theoretical complexity. 
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Fig. 4. Effect of bounds on computational burden per iteration. Example with 100 data points and K = 6 . 

Table 3 

Impact of sample size. 

I σ K Error T ISO (s) T RLX (s) 

100 5 6 5074 0 0 

200 5 6 11176 2 3 

500 5 6 28810 73 99 

1000 5 6 52919 1038 1177 

2000 5 6 112410 9092 10726 

Table 4 

Impact of the maximum number of arcs K. 

I σ K Error T ISO (s) T RLX (s) 

1000 5 2 118510 0 0 

1000 5 3 81549 42 26 

1000 5 4 55242 585 52 

1000 5 5 53275 744 884 

1000 5 10 52528 1799 1821 

1000 5 12 52493 1622 1798 

1000 5 14 52479 1817 2058 

1000 5 16 52471 1951 2361 

1000 5 18 52466 2234 2791 

1000 5 20 52465 2734 3637 
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Finally, we fix the sample size to 10 0 0 and the noise level of

he data to five, and change the maximum number of arcs K our 

lgorithm may use to reduce the error. The so obtained results 

re compiled in Table 4 . As expected, by increasing the maximum 

umber of arcs K (also referred to as number of blocks ), we en- 

ich the family F of non-increasing stepwise functions we consider 

nd thus, the error of the data fitting is reduced. If the number 

f blocks K is lower than or equal to four, the solution obtained 

y the relaxed shortest path without the monotonicity constraint 

appens to be non-incresing and thus, optimal. This explains why 

 

RLX is significantly lower than T ISO if K ≤ 4 . On the contrary, if

is higher or equal to five, relaxing the monotonicity constraint 

eads to non-monotone solutions in order to adapt as much as pos- 

ible to the original function, which is also non-monotone. In such 

ases, the time required to compute the lower bound through the 

elaxed shortest path problem is significantly higher than the time 

avings originated by such lower bound and consequently, T ISO is 

ower than T RLX for K ≥ 5 . 

.2. Realistic application: estimating the bidding curve of a pool of 

exible consumers 

Here we consider the problem of estimating the price-response 

f a cluster of flexible consumers of electricity, that is, how much 
8 
nergy the cluster consumes as a function of the electricity price. 

imilar instances of this problem has been considered, for example, 

n Aswani et al. [2] , Saez-Gallego and Morales [25] , Saez-Gallego 

t al. [26] . In our particular case, these consumers are located 

ithin the 33-bus radial distribution grid described in Hassan and 

vorkin [12] . The distribution network includes 8 solar generat- 

ng units whose power output varies through time according to 

eather conditions, and 32 flexible consumers able to adapt their 

onsumption to electricity prices as modeled in Mieth and Dvorkin 

19] . As proposed in [18] , a LinDistFlow modeling approach is used 

o account for both voltage and line capacity limits. Detailed data 

bout all parameters of the distribution network is available at 

21] . The distribution grid receives a nodal price at the main sub- 

tation, to which the consumers react according to their energy 

eeds, generation assets, and sensitivity to the electricity cost. The 

ggregate amount of energy demanded by the pool, paired with 

he nodal price (at the main substation) that induced such a de- 

and, constitutes an observation and form a data point on the 

lane. The collection of the 2400 observations at our disposal are 

lotted in Fig. 5 and can be downloaded from [21] . Besides the 

lectricity price, the operation of the distribution network is also 

ffected by other factors such as the varying solar power genera- 

ion and therefore, similar price signals may yield quite different 

onsumption levels. 

According to current rules in many day-ahead electricity mar- 

ets worldwide, consumers must submit a stepwise and nonin- 

reasing bidding curve indicating their demand levels as a func- 

ion of the electricity price. Besides, deviations with respect to 

he declared consumption quantities are to be penalized in the 

eal-time/balancing market. In most electricity markets, over- and 

nder-consumption are equally penalized according to a single- 

rice settlement. Under these conditions, the cluster of consumers 

s interested in finding the stepwise nonincreasing function that 

inimizes the mean squared error with respect to the data pro- 

ided in Fig. 5 . If positive and negative energy deviations are priced 

ifferently according to a two-price balancing settlement, the pro- 

osed procedure can also be used by replacing AV (p ∗
k 
, p ∗

k +1 
) in

5) with the appropriate empirical quantile. For all these reasons, 

his problem represents a natural practical application of the math- 

matical problem described in Section 2 . 

The cumulative squared error of the curve fit provided by our 

lgorithm for a different number of arcs (or steps) is compiled 

n Table 5 . This table also shows the solution times T ISO and 

 

RLX defined in the previous example, the initial upper bound and 

he lower bound obtained by relaxing the monotonicity constraint 

rom which our algorithm starts to iterate. From these bounds, we 

an compute the optimality gap GAP 0 = 

UB −LB 
LB 100% at the begin- 
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Fig. 5. Price-consumption data from realistic application. 

Table 5 

Realistic application: Cumulative squared error, solution times, bounds and optimality 

gaps. 

K Error T ISO (s) T RLX (s) LB UB GAP 0 (%) 

1 14901 1.1 1.1 14901 14901 0 

2 9201 2.5 2.2 9201 9201 0 

3 8213 731.4 581.3 8213 8222 0.11 

4 7726 30602 1077.2 7726 7732 0.08 

5 7596 65995 1881.3 7596 7602 0.08 

6 7502 > 86400 (2.71%) 2477.3 7502 7519 0.23 

7 7442 > 86400 (1.88%) 2895.8 7442 7448 0.08 

8 - > 86400 (1.31%) > 86400 (0.14%) 7392 7402 0.14 
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ing of the algorithm, which we include in such a table too. We 

mit time T NOB , as the raw algorithm is unable to deliver the op- 

imal solution within a day in most cases, which proves the com- 

utational efficiency of the proposed acceleration strategies for our 

hortest path algorithm. As a matter of fact, the initial optimality 

ap that our algorithm needs to close is always below 0.25%, which 

eveals that the heuristic procedures we have devised to construct 

 (feasible) upper bound and a tight lower bound are remarkably 

ood. Consequently, if the bidding curve is to be determined very 

requently to participate in intra-day trading floors, then using the 

olution provided by the proposed heuristic procedures may be a 

ood compromise between accuracy and computational time. Con- 

ersely, using the proposed exact procedure is justified to obtain 

he bidding curve to be submitted to a day-ahead electricity mar- 

et once every 24 h. 

For those cases in which Algorithm 1 reaches the maximum 

ime limit and thus, is terminated without having certified that 

he optimal curve fit has been found, we include, within paren- 

heses, the optimality gap at termination. This optimality gap is 

alculated from the best upper and lower bounds on the optimal 

olution that are available after the time limit has expired. In the 

ase of the experiment associated with time T ISO , which only con- 

iders the lower bounds given by the isotonic fit, the best lower 

ound at termination is computed as follows: 

1. Let i ′ be the layer being processed by the loop for in line 2 in

the pseudocode of Algorithm 1 at termination. Consider each 
9 
feasible path reaching layer i ′ − 1 and the cost accrued by this 

path until that layer. Increase this cost by the error of the iso- 

tonic fit from layer i ′ − 1 to the last one I + 1 . Denote the result

as the extended cost of a feasible path at layer i ′ − 1 . 

2. Compute the minimum extended cost for each layer i ∈ 

{ 1 , 2 , . . . , i ′ − 1 } . 
3. The best lower bound is then given by the maximum over lay- 

ers { 1 , 2 , . . . , i ′ − 1 } of their associated minimum extended cost.

Once again, the optimality gaps provided within parentheses 

onfirm that the feasible solution we construct at the beginning 

f the algorithm, by modifying the isotonic fit through adjacency- 

onstrained data clustering, is nearly optimal and that the lower 

ound given by relaxing the monotonicity constraint is hard to 

eat for this data set. 

Results in Table 5 also show that the accrued fitting error de- 

reases with the number of blocks, since the family F of non- 

ncreasing stepwise functions becomes larger as K is augmented. 

onetheless, the reduction in the fitting error we get by increasing 

rapidly plateaus after K > 4 . In practice, the number of pieces K

hould be treated as a hyperparemeter determining the complex- 

ty of our statistical model. As such, we can use standard strate- 

ies available in the machine-learning literature for hyperparam- 

ter tuning to properly set K. For instance, we can borrow the 

opular elbow criterion from the realm of data clustering for this 

urpose. According to this criterion, the explained variation as a 

unction of K is plotted, and the elbow of the curve is taken as a 
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Fig. 6. Lower and upper bound solutions for K = 7 and K = 8 . Notice the tiny step that appears in the fit provided by the lower bound for K = 8 . 

Fig. 7. Objective function and solution times for different values of K and step_min . 
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ood value for K. In the present case, the elbow is clearly placed on 

he value K = 4 . Alternatively, we can also use more sophisticated 

ross-validation procedures to this very same aim [13, Ch. 7] . In 

rinciple, low values of K should be preferred to favor model sim- 

licity and avoid overfitting. 

On a different front, the solutions times T ISO and T RLX feature 

 steady increase as K grows. This is consistent with the compu- 

ational complexity of our algorithm, which depends linearly on K. 

nterestingly, T RLX is substantially smaller than T ISO for K < 8 . The 

eason for this is that the lower bound we compute by relaxing 

he monotonicity constraint of the fitted curve naturally produces, 

owever, a fit that is non-increasing and thus, globally optimal. In 

ontrast, when K ≥ 8 , such a lower bound does no longer coincide 

ith the globally optimal solution and as a result, T RLX ends up 

urpassing the time limit set to one day (which is also exceeded 

y T ISO ). To support this argument, Figure 6 shows the fitted curves 

rovided by the monotonicity-relaxed lower bound for K = 7 and 

 = 8 . Notice that, if K = 7 , the fitted curve associated with this

ower bound is non-increasing, which allows our algorithm to cer- 

ificate that this curve is, in fact, the optimal one in around 2900 s 

with essentially all that time devoted to computing such a lower 

ound, logically). In contrast, when K = 8 , the curve delivered by 

he monotonicity-relaxed lower bound features a tiny step that de- 

troys its otherwise non-increasing appearance. It is clear that this 

iny step can only be attributed to the random nature of the data 

nd not to the price-sensitivity of the pool of flexible consumers. 

ndeed, it is not reasonable to expect that a price variation lower 

han € 0.1/MWh has such an impact on the consumption of the 

ool. In order to discard these implausible non-monotone step- 

t

10 
ise functions from the family F , our algorithm also includes the 

ossibility to enforce a minimum arc length, that is, a minimum 

tep size. Very conveniently, besides, this constraint helps reduce 

he solution time of our algorithm by pruning some paths in the 

raph that become thus infeasible and by increasing the chances 

hat the monotonicity-relaxed lower bound corresponds to the op- 

imal curve fitting. To illustrate the impact of the constraint on the 

inimum arc length on the computational performance of the pro- 

osed algorithm, we provide Fig. 7 , which shows the solution time 

or various step sizes and number K of arcs. It can be seen that, 

hile the case K = 8 cannot be solved to optimality within a day 

ime, if no constraint on the minimum arc length is enforced, the 

olution time is drastically reduced below 30 0 0 s when a (very 

mall) minimum block size of € 0.5/MWh is imposed. 

. Conclusions 

In this paper, we have developed an algorithm to compute the 

urve that best fits to a certain cloud of data points in the sense of

he least square error, under the conditions that said curve must 

e monotone and stepwise with a maximum number of steps. The 

roposed algorithm has been shown to run in polynomial time and 

s based on the finding that the curve-fitting problem can be ad- 

ressed as a shortest-path type of problem. We have also proposed 

everal strategies to cut down the execution time of the algorithm, 

ll of which are based on computing upper and lower bounds that 

educe the number of paths that the algorithm needs to explore. 

ore specifically, the upper bound is given by a feasible solution 

hat is swiftly built by combining the isotonic fit with clustering. 
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he relaxation of either the constraint on the maximum number of 

teps or the monotonicity condition provides two different lower 

ounds, with the former being computationally much cheaper than 

he latter and not always necessarily looser. Our algorithm also al- 

ows for setting a minimum step length. This constraint notoriously 

peeds up the algorithm by pruning infeasible paths, while avoid- 

ng curve fits with implausible spurious tiny steps. 

Through a series of numerical experiments built on both syn- 

hetic and realistic data sets, we have demonstrated that our algo- 

ithm, in conjunction with the proposed acceleration strategies, is 

obust to the level of noise in the data and able to certificate the 

lobally optimal curve in less than a few hours for sample sizes in 

he order of the thousands of data points. Furthermore, through a 

ata set comprising power-price measurements at the main sub- 

tation of a distribution power grid, we have shown that our al- 

orithm serves as an useful tool to estimate the bidding curve 

hereby the distributed energy sources in the grid can trade in 

holesale energy markets. The extension of our algorithm to a 

ultivariate setup is clearly an avenue of potentially fruitful re- 

earch. 
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