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a b s t r a c t

Complex network analysis has an increasing relevance in the study of neurological disorders, enhancing
the knowledge of brain’s structural and functional organization. Network structure and efficiency
reveal different brain states along with different ways of processing the information. This work is
structured around the exploratory analysis of the brain processes involved in low-level auditory
processing. A complex network analysis was performed on the basis of brain coupling obtained from
electroencephalography (EEG) data, while different auditory stimuli were presented to the subjects.
This coupling is inferred from the Phase-Amplitude coupling (PAC) from different EEG electrodes to
explore differences between control and dyslexic subjects. Coupling data allows the construction of a
graph, and then, graph theory is used to study the characteristics of the complex networks throughout
time for control and dyslexic subjects. This results in a set of metrics including clustering coefficient,
path length and small-worldness. From this, different characteristics linked to the temporal evolution
of networks and coupling are pointed out for dyslexics. Our study revealed patterns related to Dyslexia
as losing the small-world topology. Finally, these graph-based features are used to classify between
control and dyslexic subjects by means of a Support Vector Machine (SVM).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The analysis of complex networks has been used in many
ields related to social sciences, physics and information tech-
ology. It is based on graph theory, and provides meaningful
nd easily computable measures to explore connectivity between
odes. Since networks are commonplace in the brain, the appli-
ation of these advances to neuroscience was just a matter of
ime.

Complex network analysis provides meaningful ways of quan-
ifying the structural and functional brain systems [1], making
asier to explore structural–functional connectivity relationships
f the brain processes. It is, therefore, a promising technique to
eveal connectivity abnormalities in neurological and psychiatric
onditions [2]. There are many examples in the literature of
he use of complex network analysis to investigate brain net-
orks. For example, many studies analyze complex networks of
hysiological and pathological brain aging such as Alzheimer’s
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ttps://doi.org/10.1016/j.knosys.2021.108098
950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
disease [3–6]. Other works employ functional connectivity and
complex network analysis in epilepsy such as [7], where elec-
troencephalography (EEG)-based functional connectivity of six
pediatric patients were analyzed to detect patterns related to
childhood absence epilepsy. Or the case of [8], where researchers
applied graph theoretical analysis to magnetoencephalography
(MEG) functional connectivity networks to study schizophrenia.

Such a success makes it an optimal choice for studying the
brain connectivity underlying some other conditions. This is the
case of Developmental Dyslexia (DD), a condition causing learning
disability which affects between 5% and 13% of the population [9].
DD is characterized by poor phonemic awareness and phonolog-
ical processing [10]. It manifests with symptoms such as slow
and inaccurate reading (poor word decoding, low fluency, diffi-
culties in rhyming, frequent misspellings), illegible handwriting,
and letter migration or inversion. DD is not related to mental age
or inadequate schooling. However, it can be a significant factor
in school failure and have an important impact on children’s
self-esteem [10]. Early diagnosis is essential to help dyslexic chil-
dren develop intellectually and personally, applying preventive
strategies to improve oral language [11].
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Early DD diagnosis is a relevant area of study that may ben-
fit from applying complex network analysis of the brain. In
his regard, many studies have performed functional connectivity
nalyses of functional Magnetic Resonance Imaging (fMRI) data
12–15]. Despite methodological heterogeneities, the analysis of
rain networks reveals a general trend towards highly clustered
nd highly integrated structures, consistent with a small-world
etwork topology across studies [16].
fMRI is by far the most extended technique in brain connectiv-

ty. However, it is slow, has a coarse temporal resolution, and it is
airly expensive. Moreover, it would be very difficult to apply to
hildren, the target population for early DD diagnosis. On the con-
rary, EEG is a suitable candidate. EEG is a fast, cost-efficient and
on-invasive technique, with high temporal resolution, that could
e easily applied to pre-readers. The usage of EEG is common in
leep and epilepsy studies. In [17] and [18] EEG is used to study
leep stage and perform a classification with a Support Vector
achine (SVM) classifier. Sharma et al.[19] employs features ex-

racted from single-channel EEG to the identification of insomnia.
pilepsy studies work with EEG to diagnose epileptic seizures.
hey extract features from the EEG signals and classify them. In
20] a SVM is trained with spectral–temporal features for EEG
eizure onset detection, and Darjani and Omranpour [21] extract
eatures from the phase space of the EEG signals for epileptic
eizure classification.
EEG has also been successfully applied to DD. In [22] and [23],

EG resting state networks are analyzed to study differences in
he topological properties. The functional connectivity of reading
eural network in DD was studied in [24] to assess differences
n the topological properties between groups before and after a
isual training. A graph theory analysis was performed in [25]
o compare EEG functional connectivity networks in typical and
yslexic readers during an audiovisual task, and in [26] to study
he effect of training with visual tasks in the functional con-
ectivity in DD. In the same line, [27] applied a graph-based
pproach to evaluate functional connectivity in DD. Also, EEG
onnectivity analysis was used in [28] to investigate the rela-
ion between reading dysfluency and dysfunctional connectivity
n the brain’s networks. Even deep learning strategies, such as
enoising Autoencoders, have been applied to extract composite
easures from connectivity of EEG signals in DD [29]. Last, but
ot least, [30] used Phase–Amplitude Coupling (PAC) techniques
o evaluate the neural quality of speech encoding.

In the present work, we used complex network analysis to
xamine the differences between dyslexics and controls using
etwork characteristics. This analysis relies on Phase–Amplitude
oupling measures and is focused on the exploratory analysis of
he brain processes. With that in mind, the relations described
ith PAC between frequency bands are used to construct the net-
orks including information of the intra-electrode PAC through
ime for every subject. To this end, PAC measured and graph
heory provide a basis to analyze and quantify the differences.
inally, these network characteristics are used as features to train
SVM classifier.
The main contributions of this paper are threefold. Firstly,

he methodology is based on the use of novel non-speech and
on-interactive stimuli. These low-level auditory stimuli were
rovided by the psychologists within the Leeduca Project. The
ataset that has a similar sample size to previous studies such
s [31–33], includes typically developing and dyslexic children.
he stimuli seek to exhibit the atypical oscillatory sampling at
emporal rates of amplitude modulation in children with dyslexia,
ased on the Temporal Sampling Framework (TSF) proposed by
oswami [34] that states that the phonological difficulties could
e caused by abnormal oscillatory entrainment. Secondly, this

bnormal entrainment is studied by measuring PAC in the EEG s

2

signals. PAC has become very prevalent in the analysis of time-
series data from the brain (EEG and MEG). Although the PAC
has been widely used, existing methods have some limitations
such as limited frequency resolution and sensitivity to noise
and data length. We use the modulation index (MI) defined by
Tort et al.[35], which is considered one of the best performing
methods. Thirdly, the PAC is the basis for the exploratory anal-
ysis of developmental dyslexia carried out by complex network
analysis. As aforementioned, complex network analysis is playing
an increasingly important role in the study of brain’s structural
and functional systems [1]. Here, we introduce the use of EEG
frequency band coupling to create the graphs. This way of con-
structing the graphs has never been used to study DD, to the best
of our knowledge. Thus, the PAC coupling information is treated
as a graph in which the different nodes are the EEG bands (Delta,
Theta, Alpha, Beta, Gamma) and the edges correspond to the PAC
coupling between frequency bands.

The rest of this paper is developed as follows. In Section 2,
database and methods used are described. Then, Sections 3 and 4
state and discuss the results of PAC analysis, complex network
analysis and classification. Lastly, main conclusions and future
works are given in Section 5.

2. Materials and methods

In this work, graph analysis is the principal tool to study the
temporal evolution of the DD complex systems. This analysis is
based on the EEG data obtained by the Leeduca research group
at the University of Málaga [36]. Forty-eight participants took
part in the study by the Leeduca Study Group. These subjects
were matched in age (t(1) = −1.4, p > 0.05, age range: 88–100
onths). The participants were 32 skilled readers of which 17
ere males and 16 dyslexic readers (7 males). The control group
ad a mean age of 94.1 ± 3.3 months, and the dyslexic group
5.6 ± 2.9 months. The experiment was conducted in the pres-
nce of each child’s legal guardians and with their understanding
nd written consent.
EEG signals were recorded using the Brainvision actiCHamp

lus with actiCAP (Brain Products GmbH, Germany). It had 32
ctive electrodes and was set at a sampling rate of 500 Hz.
hese electrodes were located in the 10–20 standardized system.
articipants underwent 15-minute sessions in which they were
resented white noise auditory stimuli modulated at 4.8, 16, and
0 Hz sequentially in ascending and descending order, for 2.5 min
ach. Participants were right-handed, native Spanish speakers.
hey had normal or corrected-to-normal vision and no hearing
mpairments. All dyslexic children in this study had received a
ormal diagnosis of dyslexia at school. None of the skilled readers
eported having reading or spelling difficulties or have received a
rior formal diagnosis of dyslexia.

.1. Signal preprocessing

EEG signal preprocessing constitutes an important stage, due
o the low signal-to-noise ratio of EEG signals and the number of
rtifacts presents in the signals. The preprocessing stage includes
he following steps: first, artifacts corresponding to eye blinking
ere removed using blind source separation with Independent
omponent Analysis (ICA). The signal from each channel was
ndependently normalized to zero mean and unit variance. Then
t was referenced to the Cz electrode. Baseline correction was also
pplied. Finally, 15.02 s long windows were defined to segment
he processed signals. The segmentation is done to correctly
nalyze the PAC temporal patterns [37]. We have chosen this
indow length as it is the optimum for our dataset. Thus, a

ufficient number of slow oscillation cycles are taken into the
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Fig. 1. Synthetic signals containing PAC between the phase of the band Theta (4 Hz) and the amplitude of the band Gamma (60 Hz). (a) Strong coupling. (b) Weak
and noisy coupling.
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temporal segment. Shorter windows result in overestimation of
coupling and lower significance. According to [37], the length of
the temporal segment is one of the most important requirements
for robust PAC estimation. Moreover, it is a key concept for
the statistical validation of the results by employing surrogate
tests [37].

2.2. Phase–amplitude coupling

The representation of a complex system as a network re-
quires the definitions of the nodes and edges that form the
graphs. In this work, the edges correspond to the PAC mea-
sured between a pair of frequency bands. It is a key concept to
understand the mechanism of coordination in neural dynamics
across spatial and temporal scales [38]. According to Canolty
et al. [39] Cross-Frequency Coupling (CFC) have a functional role
representing the interaction between different brain rhythms.
This forms a complex structure where information transfer oc-
curs from large scale brain networks (where low-frequency brain
rhythms are dynamically entrained) to local cortical processing
reflected by high-frequency brain activity. CFC is potentially es-
sential for understanding healthy and pathological brain function
and the diagnosis of neural disorders [38]. The Phase–Amplitude
CFC is a neural mechanism to study brain functions, that has
received significant attention revealing its potential and limita-
tions [37,40]. It is considered to have an important functional
role [39]. The PAC CFC builds a framework for neural computation
by regulating the frequency coupling in local and between differ-
ent brain areas communication in large-scale brain networks [39].
This type of CFC is defined as the modulation of the amplitude of
the high frequency oscillation by the phase of the low frequency
component. Fig. 1 represents an example of two synthetic signals
that contain PAC between the phase of the Theta band (4 Hz) and
the amplitude of the Gamma band (60 Hz). The signal on the right
shows a weaker and nosier coupling.

As we mentioned above, we measured the PAC as the coupling
between the phase of a slow signal and the amplitude of a fast
signal. In particular, the coupling between Delta, Theta, and Alpha
(0.5–4, 4–8 and 8–12 Hz respectively) frequency bands providing
the phase and Gamma (30–100 Hz) and Beta (12–30 Hz) fre-
quency bands providing the amplitude. The phase of the Beta
band is also included for measuring the coupling with the am-
plitude of the Gamma band. There are different PAC descriptors

as presented in [41]: Phase-Locking Value, Mean Vector Length
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(MVL), Modulation Index (MI), and Generalized-Linear-Modeling-
Cross-Frequency-Coupling. In this way, there is still no agreement
on how to calculate the PAC. Here, the modulation index (MI) is
used, as defined by Tort et al. [35,42]. It is considered in [35] as
one of the best performance methods for assessing the intensity
of the PAC and it is well suited for the characteristics and length
of the data used in the present work.

In order to calculate MI [35], it is necessary to extract the
‘‘phase-modulating’’ frequency band, fp and the ‘‘amplitude-
modulated’’ frequency band, fA, from the raw signal, xraw(t). After
filtering xraw(t) at the frequency ranges of fp and fA, the resulting
ignals are denoted as xfp (t) and xfA (t) respectively. Then, the
ime series of the phases of xfp (t) and the time series of the
mplitude envelope of xfA (t) are obtained, named as Φfp (t) and
fA (t). Afterwards, all the phases Φfp (t) are binned into eighteen
0 degrees intervals. The mean of AfA (t) over each phase bin is
omputed as

(j) =

¯a(j)∑N
k=1 ā(k)

(1)

where ¯a(j) is the mean AfA (t) value of the j phase bin. N = 18
s the total number of bins, and P is referred to as the ‘‘ampli-
ude distribution’’. Fig. 2 shows the amplitude distribution over
hase bins from the synthetic signals of Fig. 1. It is important
o note that this amplitude distribution is not normalized as the
efined mean amplitude distribution, but represents the same
haracteristic information.
If there is no phase–amplitude coupling, the amplitude distri-

ution P over the phase bins is uniform. Thus, the existence of
AC is characterized by a deviation of the amplitude distribution
from the uniform distribution, U. Tort et al. [35] defined the MI
s an adaptation of the Kullback–Leibler (KL) divergence [43] as

L(P,Q ) =

N∑
j=1

P(j)log
P(j)
Q (j)

(2)

It is a widely used metric in statistics and in information theory
to measure how one probability distribution is different from
another probability distribution Q. The distribution divergence
measure is made to assume values between 0 and 1. It is useful
to notice that the Shannon entropy H(p) is defined as

H(P) = −

N∑
P(j)logP(j) (3)
j=1
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Fig. 2. Amplitude distribution over phase bins. (a) Theta phase. (b) Alpha phase. The synthetic signal contains PAC where the phase of the Theta band modulates
the amplitude of the Gamma band. Thus, (a) shows an amplitude distribution that corresponds to the presence of PAC.
Fig. 3. Phase–amplitude comodulogram showing a coupling between Theta and Gamma bands.
t represents the amount of information inherent in a variable. If it
s maximal, all the phase bins have the same amplitude (uniform
istribution). In this adaptation of the KL divergence, the relation
o the Shannon entropy is described as

L(P,U) = logN − H(P) (4)

here P is the defined amplitude distribution and U is the uni-
orm distribution. Finally, the MI is calculated by the below for-
ula:

I =
KL(P,U)
logN

(5)

The MI results were analyzed using surrogate time series
obtained from the creation of shuffled versions of Φfp (t) and
fA (t) time series. Then, this shuffled series are used to estimate
surrogate MI and this procedure is repeated several hundred

imes. The distribution thus obtained is considered an approx-
mation of the null distribution [44] and allows us to test the
ignificance of the MI values. This null distribution enables us
o infer whether the observed value actually differs from what
ould be expected from chance [35]. To this end, 200 surrogate
I values are generated to assess the significance of the results,
onsidering p < 0.05 as significant. Additionally, the MI measure
s represented in a phase–amplitude comodulogram. This is a tool
o represent the coupling measured among multiple frequency
ands, and it is ideal to explore the PAC [35]. The MI calculated
or the synthetic PAC signal is shown in Fig. 3 where the phase of
he Theta band (fp) modulates the amplitude of the Gamma band
fA).

To sum up, PAC is measured by MI in each temporal segment
or every electrode. This allows to explore the temporal evolution
4

Fig. 4. Adjacency matrix from Table 1. Blue indicates coupling and red indicates
no coupling.

of each subject’s response to auditory stimuli. Thus, the PAC MI
values are used to construct the nodes and edges of the coupling
networks between frequency bands. We used the open-source
Python toolbox, Tensorpac [45], to compute the PAC. It is focused
on PAC analysis of neurophysiological data.

2.3. Complex network analysis

Complex networks are all around us and are present in many
scientific and technological areas, describing a wide range of real
systems in nature and society. The principal tool to study these
complex systems is graph theory [46]. As a natural framework
for the treatment of complex networks, it is useful to describe
some common properties and how they are measured. A complex
network is represented as a graph G(N, K), that is, two sets of N
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nodes and K links or edges. The graphs are undirected or directed
and weighted or unweighted. In an undirected graph, each of the
links is defined by a couple of nodes i and j, and is denoted as
i, j). In a directed graph, the order of the two nodes is important:
i, j) stands for a link from i to j and (j, i) is a different link
rom j to i. An unweighted graph has a binary nature, i.e. the
dges are present or not. In contrast, in a weighted graph each
dge is a measure of the strength of the connection [46]. If
here are loops or multiple edges, they are called multigraphs.
graph is completely described by its adjacency matrix, A. It is
N × N matrix where aij with (i, j = 1, 2, . . . ,N) is equal to
when the edge lij exists, and zero otherwise. In this work, the
djacency matrix (Fig. 4) is a 5 × 5 asymmetric matrix from the
requency bands considered as nodes. The entry aij is one if there
s significant PAC measured in at least an electrode between two
requency bands. This is shown in Table 1.

The node degree, which is one of the most important descrip-
ors for complex networks, is computed as:

i =

N∑
j=1

aij (6)

here ki is the degree of a node i and aij is an entry for the ad-
acency matrix. This way, considering the number of connections
hat link it to the rest of the network. The degree distribution is
rawn from the degree of all nodes. Another measure directly re-
ated to the node degree is the assortativity. It is ‘‘the correlation
etween the degrees of connected nodes’’ [1]. Furthermore, the
elation between the actual number of edges and the number of
ossible edges of a graph provide the density as

=
K

N(N − 1)
(7)

for directed graphs.
The clustering coefficient C is defined as follows [47]. Suppose

that a node i has ki neighbors. In this situation, the number of
edges that exist between them are ki(ki − 1)/2 at most (in the
case that every neighbor of i is connected to each other). Let Ci
denote the edges that actually exist from all the possible. C is
defined as the average of Ci over all i.

C =
1
N

N∑
i=1

Ci (8)

here N is the total number of vertices and Ci is the clustering
oefficient of vertex i.
Path length, L, is defined in [47] as the number of edges that

orm the shortest path between two vertices. This measure is
veraged over all pairs of vertices

=
1
N

N∑
i=1

Li (9)

where Li is the average distance between vertex i and all other
vertex.

The centrality, in general terms, quantifies the relative rel-
evance of a given node in a network. The node betweenness
measures how many of the shortest paths between all other node
pairs in the network pass through a node. The node closeness
is the inverse of the sum of the path length from all other
nodes [46]. The degree, closeness and betweenness are the stan-
dard measures of node centrality.

The study of real networks has shown the existence of bridg-
ing links that connect different areas of most of the networks.
This means that there is a short path between any two nodes
that speed up the communication among nodes [46]. This par-
ticular organization is known as the small-world property or
5

small-worldness. Networks with such topology are named small-
world networks and are typified by having a small value of
L, like random graphs, and a high clustering coefficient C , like
regular lattices than would be expected by chance [47,48]. The
small-worldness of a network is measured by comparing it to an
Erdös–Rényi (E–R) [49] random graph with the same nodes and
edges. For this purpose, a quantitative metric of small-worldness,
S, is defined as

S =
γ

δ
=

C
Crand
L

Lrand

(10)

here L is the mean shortest path length of a network and C its
clustering coefficient. Lrand and Crand are the respective quantities
for the corresponding E–R random graph. From [50] a network is
said to be a small-world network if L ≥ Lrand and C ≫ Crand. Thus,
a network is said to be a small-world network if S > 1.

2.3.1. Network construction
There are numerous works [51–53] about the study of charac-

teristics of complex networks. It is defined as a network with cer-
tain topological features such as high clustering, small-worldness,
the presence of high-degree nodes or hubs, assortativity, mod-
ularity or hierarchy. This does not occur or are not typical of
simple networks such as random graphs or regular lattices [1].
The complex network used in this work are based in the MI
explained in the above section. In this way, we employed directed
and unweighted graphs with the nodes being the typical EEG
frequency bands. Thus, the edges of the graphs correspond to
the presence of significant PAC in at least an electrode between
a pair of frequency bands. In the case that there is more than
one electrode with PAC, we select the highest PAC value to
represent the coupling between the two bands. The edges have a
direction from a band providing the phase to another band whose
amplitude is modulated. These edges are binarized, therefore,
unweighted. From the adjacency matrix in Table 1, the graph
shown in Fig. 5 is obtained. Each entry of the adjacency matrix
equal to 1 is due to a significant PAC MI value in an electrode for
a determined combination of frequency bands. This is represented
on the left part of Fig. 5. Then, graphs are obtained for each
subject and each temporal segment, enabling the study of the
network characteristics through time. This has been done with
the use of the Python package NetworkX that is meant for the
creation, manipulation, and study of the structure, dynamics, and
functions of complex networks [54].

3. Experimental results

We present the results for the PAC analysis, complex net-
work analysis and classification. First, we start with the results
of the PAC analysis over the temporal segments that allow the
exploratory analysis. To this end, the MI measured intra-electrode
is represented for each frequency band combination considered.
With this, extracting information about the temporal evolution
of the PAC for dyslexic and control subjects. Then, we focus on
the complex network analysis, obtaining metrics to study the
networks and the evolution of their characteristics through time.
Finally, these metrics are used as features to train a SVM classifier
to perform a classification test.

3.1. PAC results

The PAC is measured and presented as a function of temporal
segments. A set of frequency band pairs are defined in Tensorpac
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Fig. 5. Frequency bands source for PAC and graph from adjacency matrix in Table 1.
Fig. 6. Average MI topoplots for Theta and Beta frequency bands and 4.8 Hz stimulus. (a) Controls. (b) Dyslexics. (c) Controls and dyslexics difference.
to study and identify a temporal behavior by measuring the
MI. These combinations of frequency bands are: Delta-Gamma,
Theta-Gamma, Alpha-Gamma, Beta-Gamma, Delta-Beta, Theta-
Beta and Alpha-Beta. The PAC is obtained by measuring the MI in
each electrode for all these combinations and for each subject and
each temporal segment. These MIs are represented in topoplots
of the average PAC measured. Thus, information about changes in
the temporal response to the stimulus is drawn for dyslexic and
control subjects at each combination of frequencies. Fig. 6 shows
the average MI measured for each segment and every subject
between the Theta and Beta frequency bands. In Fig. 6(a) and (b)
the MI for controls and dyslexics are presented, respectively. The
differences in the temporal evolution is easier to see and interpret
in Fig. 6(c). This set of topoplots represents the differences in the
average MI value between dyslexics and controls. The topoplots
in Fig. 7 shows the difference between controls and dyslexics for
the MI measured in the rest of frequency bands combinations.

3.2. Complex network analysis results

In this section, the selected characteristics of the complex
etworks that have been measured are presented. From the MI
esults of the PAC analysis, a set of ten graphs (one for each
emporal segment) have been created for each subject. To clarify,
ach graph contains the information of the measured MI of all
lectrodes for a temporal segment of one subject. Thus, as we can
ee in Fig. 8 the edges in the graph represents the existence of
easured PAC in an electrode. These edges appear from a node
6

indicating the ‘‘phase modulating’’ frequency band, to the pointed
node representing the ‘‘amplitude modulated’’ frequency band.

The number of edges of the graphs varies between subjects
and temporal segments. This is shown in Fig. 9, where for certain
temporal segments the number of edges differ from dyslexic to
control subjects.

Once the graphs are calculated, we measured the selected
metrics. First, the segregation of the networks is characterized
with the clustering coefficient. Second, the characteristic path
length is measured obtaining the average path length of each
graph. These metrics make possible to calculate the
small-worldness of the complex networks for each subject and
segment. This is shown in Fig. 10 where the graphs have a
small-world topology (S > 1). Finding more differences in the
small-worldness between groups for the 4.8 Hz stimulus.

3.3. Classification

Here, the metrics obtained from the analysis of the charac-
teristics of complex networks are used as features to train a
SVM [55] classifier. In particular, the classification results from
the small-worldness property are presented and discussed as it
achieves a better performance. Using the small-worldness data,
a NxM matrix has been created with N , the number of subjects,
and M , the number of segments in which the small-worldness is
measured. The accuracy, sensitivity and specificity are the metrics
used to assess the classification performance. We also obtain the
Area Under ROC Curve (AUC) for each case. Then, cross validation
is applied to the data using a K-fold stratified scheme with 5 folds.
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Fig. 7. Average difference MI topoplots for 4.8 Hz. (a) Delta-Gamma bands. (b) Theta-Gamma bands. (c) Alpha-Gamma bands. (d) Beta-Gamma bands. (e) Delta-Beta
ands. (f) Theta-Beta bands. (g) Alpha-Beta bands.
Fig. 8. Graphs showing the presence of MI intra-electrode PAC in a pair of EEG bands. (a) Control subjects. (b) Dyslexic subjects.
Fig. 9. Number of edges for dyslexic and control subjects and each temporal segment. (a) 4.8 Hz. (b) 16 Hz (c) 40 Hz.
s it is exposed in the above section, the graphs obtained for
he 4.8 Hz stimulus PAC measured implied a greater difference
n the small-worldness between groups. This results in a better
lassification performance for 4.8 Hz stimulus using the small-
orldness data that is shown in Fig. 11. In this figure the accuracy,
7

sensitivity, specificity and AUC are represented. Metrics for other
features are shown in Table 2.

At this point, it is important to estimate the significance of
the classification accuracy obtained and evaluate whether the
classifier has found a real connection between the data and the
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Fig. 10. Average small-worldness. (a) 4.8 Hz. (b) 16 Hz. (c) 40 Hz.
Fig. 11. Classification results for 4.8 Hz, 16 Hz and 40 Hz.
Table 1
Example of adjacency matrix for a dyslexic subject.

Delta Theta Alpha Beta Gamma

Delta 0 0 0 1 0
Theta 0 0 0 1 1
Alpha 0 0 0 0 1
Beta 0 0 0 0 1
Gamma 0 0 0 0 0

class labels [56]. Permutation tests are used for this purpose,
providing useful statistics about the underlying reasons for the
obtained classification result. Thus, under the null hypothesis that
the features and the labels are independent the null distribution
is estimated by 1000 permutations of the dataset labels in a 5-
fold cross validation scheme. The p-values obtained represent
the fraction of random datasets where the classifier behaved as
well as or better than in the original data. Fig. 12 illustrates the
accuracy obtained by the random data and the original score
along with the corresponding p-value for each case. The p-value
s only lower than 0.05 for the 4.8 Hz data. Consequently, a
ignificant accuracy score is obtained and is greater than for the
andom data.

. Discussion

The application of graph theory to complex networks is a
romising area to study the brain and its pathologies. In the
resent work, we have performed an exploratory analysis using
omplex networks that are extracted from PAC. This PAC has been
8

measured between the typical EEG frequency bands: Delta, Theta,
Alpha, Beta and Gamma. All the effort is oriented to advance
towards an early Developmental Dyslexia diagnosis and a better
understanding of its neural basis. There are other works that have
studied this neurological disorder to develop machine learning
methods for detecting Dyslexia as in Table 3 using EEG, fMRI
and MRI. For this, it is fundamental to count with a database
that offer adequate EEG data from control and dyslexics subjects.
In this case, the Leeduca Study Group provided the database. It
is obtained from the experiment where a set of three auditory
stimulus 4.8, 16 and 40 Hz is presented to controls and dyslexics.
According to Goswami [57] this auditory stimulus are related
to the oscillatory phase entrainment to speech in brain that are
thought to be important for speech encoding. Furthermore, it is
reinforced in [34] the existence of phonological impairments in
all linguistic levels in dyslexics children such as stressed sylla-
bles, syllables, onset-rimes, and phonemes. The last decade has
faced a change of the approach to language processing with new
tools and ideas. This was stated in Poeppel [58], where it is
pointed out that the system for speech and language processing
is considerably more complex and distributed.

Neural oscillations have become a promising mechanism for
studying the processes of learning and language. The MI as de-
fined by Tort et al. [35] has been used to obtain the PAC intra-
electrode for each subject and for every temporal segment spec-
ified. The PAC results are shown in topoplots that represents
the electrode activation in terms of the MI values. The results
for the Theta-Beta PAC in the 4.8 Hz stimulus are presented in
Fig. 6 as an example of the outcome of the PAC analysis. This
figure shows the evolution of the average MI for both control
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Table 2
Classification comparative using graph metrics as SVM features.
Stimulus Features Accuracy Sensitivity Specificity AUC

4.8 Hz Small-Worldness 0.729 0.723 0.747 0.733
Average Degree 0.519 0.467 0.647 0.575
Assortativity 0.489 0.4 0.71 0.626
Density 0.372 0.23 0.727 0.518
Betweenness Centrality 0.522 0.458 0.6 0.595
Best two-features combination: Small-Worldness and Average Degree 0.726 0.716 0.753 0.739
Best three-features combination: Small-Worldness, Average Degree and
Betweenness Centrality

0.516 0.6 0.4 0.753

Best four-features combination: Small-Worldness, Average Degree, Density and
Betweenness Centrality

0.516 0.6 0.4 0.75

16 Hz Small-Worldness 0.554 0.5612 0.54 0.593
Degree 0.438 0.445 0.433 0.426
Assortativity 0.511 0.354 0.893 0.629
Density 0.573 0.632 0.433 0.524
Betweenness Centrality 0.372 0.2 0.8 0.659
Best two-features combination: Small-Worldness and Average Degree 0.522 0.519 0.54 0.622
Best three-features combination: Small-Worldness, Average Degree and
Density

0.49 0.34 0.86 0.622

Best four-features combination: Small-Worldness, Assortativity, Density and
Betweenness Centrality

0.372 0.2 0.8 0.632

40 Hz Small-Worldness 0.624 0.678 0.493 0.591
Degree 0.5 0.512 0.473 0.53
Assortativity 0.371 0.2 0.8 0.626
Density 0.564 0.559 0.573 0.596
Betweenness Centrality 0.372 0.2 0.8 0.555
Best two-features combination: Small-Worldness and Average Degree 0.509 0.455 0.647 0.616
Best three-features combination: Small-Worldness, Average Degree and
Density

0.635 0.765 0.32 0.627

Best four-features combination: Small-Worldness, Assortativity, Density and
Betweenness Centrality

0.372 0.2 0.8 0.622
Fig. 12. Results of the permutation tests using the small-worldness property as a feature. (a) 4.8 Hz. (b) 16 Hz. (c) 40 Hz.
and dyslexic groups (Fig. 6(a) and Fig. 6(b), respectively) through
each temporal segment and in every electrode. To visualize the
distinction between groups, it is represented the difference of
the mean MI as in Fig. 6(c). There is a high variability in the
topoplots of each subject, and that makes it difficult to perform a
visual analysis of the differences. To overcome this, the difference
average MI for each frequency band combinations is represented
in Fig. 7 for the 4.8 Hz stimulus, showing larger differences for the
temporal segments of the PAC from Delta-Gamma and Delta-Beta.
This implies that for these bands the response to the auditory
stimulus differ over time for controls and dyslexics.

A set of complex networks have been created from the PAC
measured. These networks represent the interaction between
frequency bands through time by means of intra-electrode PAC.
An example of this is shown in Fig. 8. Each graph shows the
results of PAC between every pair of frequency bands for each
subject and each temporal segment, highlighting the presence
of PAC in one or several electrodes. Among all the subjects the
9

graphs obtained differ in the number of edges for certain tem-
poral segments as it is shown in Fig. 9. This suggests that the
number of electrodes with significant PAC measured varies over
time with the evolution of the response to the auditory stimulus.
Then, the graph metrics are calculated to study the characteristics
and its evolution through time. From all the results the property
of small worldness is highlighted (Fig. 10), denoting a small-world
topology in agreement with other brain complex networks as
stated in [16]. Works as [1,16] provide strong evidence that brain
networks exhibit small-world attributes and this is preserved
across multiple frequency bands. From these results, it is noted
that there are larger differences in the small-worldness for the
4.8 Hz stimulus across temporal segments. According to the Tem-
poral Sampling Framework (TSF) [57] the neural oscillations in
auditory cortex encode the acoustic speech signal. It is proposed
that the phonological deficit in DD emerges from an atypical
neural entrainment to the slower amplitude modulations present
in the speech signal (below 10 Hz) [30]. Thus, the differences
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Table 3
Classification results obtained in different works using structural imaging (MRI), functional imaging (fMRI) and electroencephalog-
raphy (EEG).
Author Sample size Acquisition technique Number Stimulus Machine Classifier performance

of learning
electrodes method

Cui et al. [59] 61 MRI - Reading SVM

Acc=0.836±a

Sens=0.75±a

Spec=0.909±a

AUC=0.86±a

Płoński et al. [60] 236 MRI - Reading

SVM Acc=0.65±a

LR Sens=a
RF Spec=a

AUC=0.66±a

Frid and Manevitz
[61]

32 EEG 64 Reading SVM Confusion matrix

Perera et al. [62] 32 EEG 32 Typing and
writing SVM

Acc=0.718±a

Sens=0.764±a

Spec=0.667±a

AUC=0.86±a

Rezvani et al. [63] 44 EEG 64 Typing and
writing SVM

Acc=0.953±a

Sens=0.964±a

Spec=0.933±a

AUC=a

Frid and Breznitz [64] 50 EEG 64 Auditory SVM

Acc=0.85 ± 0.1
Sens=0.749 ± 0.2
Spec=0.822 ± 0.12
AUC=a

Chimeno et al. [65] 56 fMRI 32 Tests ANN

Acc=0.949±a

Sens=0.947±a

Spec=0.95±a

AUC=a

Zahia et al. [66] 66 fMRI 32 Reading 3D CNN

Acc=0.727±a

Sens=0.75±a

Spec=0.714±a

AUC=a

Ortiz et al. [67] 48 EEG 32 Auditory SVM

Acc=0.78±a

Sens=0.66±a

Spec=0.81±a

AUC=0.83±a

Martinez-Murcia
et al. [68] 48 EEG 32 Auditory Autoencoder

Acc=0.74 ± 0.114
Sens=0.596 ± 0.254
Spec=0.79 ± 0.221
AUC=0.762±a

Martinez-Murcia
et al. [69] 48 EEG 32 Auditory SVM

Acc=0.728±a

Sens=0.667±a

Spec=0.789±a

AUC=0.748±a

aData not available in the source.
found for the 4.8 Hz stimulus are consistent with the TSF. These
differences can be generated by a more complex auditory pro-
cessing in dyslexics, attempting to overcome the poorly encoding
of prosodic and syllabic information.

In Table 2 the classification results for all the metrics studied
in this work are presented. From this, we assess the classifica-
tion performance of every metric and concluded that the small-
worldness property has a larger discrimination capacity. We also
show the best classification results for the two-, three- and four-
feature combinations. The combination of small-worldness and
average degree achieved similar results to those obtained with
the exclusive use of small-worldness for 4.8 Hz and 16 Hz stimuli.
The best classification results are for the 4.8 Hz stimulus with the
small-worldness property achieving an accuracy of 0.729, 0.723
sensitivity, 0.747 specificity and an AUC of 0.733, as shown in
10
Fig. 11. For all stimuli, the small-world property provide with bet-
ter classification results than other metrics. Then, a permutation
test is performed to estimate the significance of the classification
accuracy obtained. Fig. 12 indicates that the p-value is only lower
than 0.05 for the 4.8 Hz small-worldness data, thus rejecting the
null hypothesis and finding a real connection between the data
and the class labels.

Finally, a potential limitation of this study is the relatively
small sample size of the dataset. This is commonplace in studies
involving children with dyslexia, due to difficulties in recruiting
experimental subjects. This contextual information is also key to
compare these results to other studies, and therefore, the sample
size for each study has been added to Table 3 to assist in the
interpretation.
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5. Conclusions

The small-world attributes are present in the majority of func-
ional brain networks. This has been the starting point of this
ork, the concept that network organization in neurological dis-
ase reflects a deviation from the optimal pattern. Even though
he complex networks studied in this work are not directly func-
ional brain networks, they are obtained from PAC brain cou-
ling for each electrode under an experimental setup using non-
nteractive and non-speech auditory stimuli. This corresponds to
he sampling processes developed in the brain during language
rocessing and consists of bandwidth-limited white noise modu-
ated in amplitude with 4.8, 16 and 40-Hz signals. Moreover, the
etworks provide information related to the frequency bands and
emporal evolution of the PAC in the electrodes.

Graph theoretical analysis reveals abnormal patterns of orga-
ization that correspond to neurological disorders. The complex
etworks studied present small-world characteristics as having
high clustering coefficient and a small value of path length.
owever, the graphs have different pattern topology over time
or control and dyslexic subjects. This underlines a increased
omplexity of auditory processing in dyslexics, as they attempt to
mploy different neural mechanisms to overcome the phonolog-
cal deficit. After graph analysis, these metrics were used as SVM
eatures in order to classify the subjects. As a result, the small-
orld property provides discriminant information to achieve AUC
alues up to 0.733, and obtaining the best accuracy for the 4.8 Hz
timulus.
It is worth noting that the main aim of this work was to

rovide a methodology for the exploratory analysis of the brain
rocesses involved in low-level auditory processing, analyzed
rom a coupling point of view and modeled by complex net-
ork analysis. However, the results obtained show that complex
etwork based features are able to differentiate between con-
rols and dyslexic subjects with similar sensitivity and specificity
alues than other discriminative methods (Table 3). In future
orks, we plan to extend the current study by combining it with

unctional brain networks. This should help to achieve better
esults relevant to the diagnosis and early detection of DD. This is
erformed by measuring PAC inter-electrode, obtaining complex
etworks, where it is more direct to extract information about the
nderlying neurocognitive profiles in DD. Another possible way is
o improve the extraction of the phase and amplitude time series
ith the use of adaptive decomposition methods as Empirical
ode Decomposition (EMD).
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