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OVERVIEW
• Introduction 
• CFD simulation of vortex shedding-based problem
• Prediction of vortex shedding
• Machine Learning-Aided Design (MLADO) workflow
• Conclusions
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INTRODUCTION
• Vortex shedding is a common phenomenon in many 

engineering situations, such as civil engineering, aviation or 
wind energy.

• In certain applications, vortex shedding may be a desirable 
feature, as in heat and mass transfer, or undesired, as in many 
civil engineering applications. 

• Performance of certain engineering devices often involve a 
passive element from which vortex shedding is observed.
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INTRODUCTION
• If optimisation of the performance is sought, vortex shedding 

must be in our planification.

• Machine Learning-Aided Design Optimisation (MLADO) 
framework allows to optimise system performance by 
speeding-up the process of creating surrogates by saving 
computations/runs.

• Example of application: Design of an efficient vortex 
shedding-based mixer using a single object in a channel.
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CFD SIMULATION

• 2D Micromixer considered in this work:
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Reynolds number: 𝑅𝑅𝑅𝑅 = 𝐻𝐻𝐻𝐻
𝜈𝜈

; (𝑈𝑈: Mean velocity; 𝜈𝜈: kinematic viscosity)

Blockage ratio: 𝐵𝐵𝑅𝑅 = ℎ
𝐻𝐻

Longitudinal aspect ratio: 𝐴𝐴𝑅𝑅 = 𝑙𝑙/ℎ

𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 = 𝑃𝑃(𝑅𝑅𝑅𝑅,𝐵𝐵𝑅𝑅,𝐴𝐴𝑅𝑅)

Granados-Ortiz, F. J., & Ortega-Casanova, J. (2020). Mechanical Characterisation
and Analysis of a Passive Micro Heat Exchanger. Micromachines, 11(7), 668.



CFD SIMULATION
• 2D Micromixer considered in this work:
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𝑅𝑅𝑅𝑅 = 200,𝐵𝐵𝑅𝑅 = 0.5,𝐴𝐴𝑅𝑅 = 0.125 𝑅𝑅𝑅𝑅 = 200,𝐵𝐵𝑅𝑅 = 0.5,𝐴𝐴𝑅𝑅 = 1

𝑅𝑅𝑅𝑅 = 200,𝐵𝐵𝑅𝑅 = 0.2 ,𝐴𝐴𝑅𝑅 = 1



CFD SIMULATION
• Application of MLADO:

• Optimisation: Efficient vortex shedding-based mixing at 
microscale.

• Maximise mixing efficiency, 𝜂𝜂.
• Minimise time-averaged pressure drop, Π .

• Method: surrogate modelling -> Can be accelerated by predicting 
vortex shedding configurations!
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𝑅𝑅𝑅𝑅 = 200,𝐵𝐵𝑅𝑅 = 0.5,𝐴𝐴𝑅𝑅 = 0.125 𝑅𝑅𝑅𝑅 = 200,𝐵𝐵𝑅𝑅 = 0.5,𝐴𝐴𝑅𝑅 = 1

𝑅𝑅𝑅𝑅 = 200,𝐵𝐵𝑅𝑅 = 0.2 ,𝐴𝐴𝑅𝑅 = 1



•PREDICTION OF VORTEX 
SHEDDING
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VORTEX SHED. PREDICTOR
• Random Forest (RF) predictor

• Classification problem: prediction of configurations with vortex 
shedding (VS=1) and without vortex shedding (VS=0).

• Full dataset balanced enough (VS= 0 in 33.75% cases). 80 
simulations from the combinations amongst:

𝑅𝑅𝑅𝑅 = {120, 140, 160, 180, 200}
𝐵𝐵𝑅𝑅 = {0.2, 0.3, 0.4, 0.5}
𝐴𝐴𝑅𝑅 = {0.125, 0.25, 0.5, 1}

• RF: Bootstrap randomised sampling on the training dataset in 
order to train several decision trees that will be ensembled:

• This bootstrap method with replacement (samples can be re-
utilised to train the trees).
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VORTEX SHED. PREDICTOR
• Random Forest (RF) predictor

• Performance:

• However, nested training is interesting to find or recommend a 
minimum of samples 𝑁𝑁𝑝𝑝 to train the predictive model. We can 
start from:
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Initial (𝑁𝑁𝑝𝑝 = 36):
𝑅𝑅𝑅𝑅 = {120, 160, 200}
𝐵𝐵𝑅𝑅 = {0.2, 0.3, 0.4, 0.5}
𝐴𝐴𝑅𝑅 = {0.125, 0.5, 1}



VORTEX SHED. PREDICTOR
• Random Forest (RF) predictor
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MLADO WORKFLOW

• Machine Learning-Aided Optimisation (MLADO): Predictive models
can be input in a framework in the following way to speed-up 
optimisation:
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Granados-Ortiz, F. J., & Ortega-Casanova, J. (2021). Machine Learning-Aided 
Design Optimisation of a Mechanical Micromixer. Physics of Fluids, 33(6), 063604
EDITOR’S PICK



MLADO WORKFLOW
• Genetic Algorithms are applied onto the surrogates to find the

optimal solutions:
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Reference (𝑁𝑁𝑠𝑠 = 80):
𝑅𝑅𝑅𝑅 = {120, 140, 160, 180, 200}
𝐵𝐵𝑅𝑅 = {0.2, 0.3, 0.4, 0.5}
𝐴𝐴𝑅𝑅 = {0.125, 0.25, 0.5, 1}

Initial (𝑁𝑁𝑠𝑠 = 36):
𝑅𝑅𝑅𝑅 = {120, 160, 200}
𝐵𝐵𝑅𝑅 = {0.2, 0.3, 0.4, 0.5}
𝐴𝐴𝑅𝑅 = {0.125, 0.5, 1}

𝑁𝑁𝑠𝑠 = 36 -------------------> 𝑁𝑁𝑠𝑠 = 42 −−−−−−−−−−−−−−−−−−−> 𝑁𝑁𝑠𝑠 =
55 −−−−−−−−−−−−−−−−−−−> 𝑁𝑁𝑠𝑠 = 68

𝑅𝑅𝑅𝑅 = 140 & 𝑉𝑉𝑉𝑉 = 1 𝐴𝐴𝑅𝑅 = 0.25 & 𝑉𝑉𝑉𝑉 = 1 𝑅𝑅𝑅𝑅 = 180 & 𝑉𝑉𝑉𝑉 = 1

= 36 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−> 𝑁𝑁𝑠𝑠
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𝐴𝐴𝑅𝑅 = 0.25 & 𝑉𝑉𝑉𝑉 = 1 𝑅𝑅𝑅𝑅 = 180 & 𝑉𝑉𝑉𝑉 = 1



MLADO WORKFLOW
• Genetic Algorithms are applied onto the surrogates to find the

optimal solutions:
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Config. A

Config. B

Config. C
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CONCLUSIONS
• The Machine Learning-Aided Design Optimisation (MLADO) 

method has been introduced. 

• MLADO has been presented as a method to speed-up 
optimisation in vortex shedding-based engineering 
applications.

• An example of application of MLADO has been presented, to 
optimize the performance of a vortex shedding-based 
micromixer.

• Computational costs have been saved in comparison to a 
classic optimization approach. 19
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